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Investigation of the effect of the hyperparameter 
optimization and the time lag selection in time series 

forecasting using machine learning algorithms



1. Abstract
The hyperparameter optimization and the time lag selection are considered to be of

great importance in time series forecasting using machine learning (ML) algorithms.

To investigate their effect on the ML forecasting performance we conduct several

large-scale simulation experiments. Within each of the latter we compare 12 methods

on 2 000 simulated time series from the family of Autoregressive Fractionally

Integrated Moving Average (ARFIMA) models. The methods are defined by the set {ML

algorithm, hyperparameter selection procedure, time lags}. We compare three ML

algorithms, i.e. Neural Networks (NN), Random Forests (RF) and Support Vector

Machines (SVM), two procedures for hyperparameter selection i.e. predefined

hyperparameters or defined after optimization and two regression matrices (using

time lag 1 or 1, . . . , 21). After splitting each simulated time series into a fitting and a

testing set, we fit the models to the former set and compare their performance on the

latter one. We quantify the methods’ performance using several metrics proposed in

the literature and benchmark methods. Furthermore, we conduct a sensitivity analysis

on the length of the fitting set to examine how it affects the robustness of our results.

The findings indicate that the hyperparameter optimization mostly has a small effect

on the forecasting performance. This is particularly important, because the

hyperparameter optimization is computationally intensive. On the other hand, the

time lag selection seems to mostly significantly affect the methods performance when

using the NN algorithm, while we observe a similar behaviour for the RF algorithm

albeit to a smaller extent.



2. Introduction
� Machine learning (ML) algorithms are widely used in geosciences and beyond as an alternative to stochastic

methods. Popular ML algorithms are the:

� Neural Networks (NN)

� Random Forests (RF)

� Support Vector Machines (SVM)

� The hyperparameter optimization and the time lag selection are considered to be of great importance in time

series forecasting using ML algorithms. However, published research focusing on their effect in the ML forecasting

performance is rather rare.

� The available studies using ML algorithms within case studies in geosciences (e.g. Koutsoyiannis et al. 2008)

inevitably implement ML model structures that have not been prior investigated on a theorectical basis, perhaps

after performing a small-scale experimentation on the used data sets. The latter is generally not presented for

various reasons.

� Zhang (2001) aimed at the investigation of the capabilities provided by the NN concerning the foreasting of linear

processes. The simulation experiments were based on 8 stochastic processes from the ARMA family and 30

simulated time series for each stochastic process.

� Recently, Papacharalampous et al. (2017b) conducted a multiple-case study using 50 time series of precipitation

and temperature to detect systematic patterns across the various cases regarding the hyperparameter optimization

and time lag selection in forecasting using ML algorithms. The ML algorithms investigated were NN and SVM.

� Papacharalampous (2016), Papacharalampous et al. (2017a), Papacharalampous et al. (2017c) also contributed to

a small extent to the subject, despite their different focus. The ML algorithms investigated were NN and SVM in the

former study and NN, RF and SVM in the latter study.

� Here we conduct several large-scale simulation experiments to broaden the existing knowledge on the subject

and hopefully give rise to further research.

� We simulate time series according to stochastic models from the frequently used family of ARFIMA. Although this

specific modelling is accompanied by certain problems (Koutsoyiannis 2016), it is considered rather satisfying for

the present study and has been widely applied in the literature (e.g. Montanari et al. 1997).



3. Methodological framework

Simulated 
time series

(see 4)

Forecasting 
methods

(see 5)

Metrics

(see 6)

� 3 x 2 000 time 

series of 110

values

� 3 x 2 000 time 

series of 310

values

� 4 metrics 

providing 

assessment in 

respect to the 

following 

criteria: 

accuracy, 

capture of the 

variance, 

correlation

� 12 ML methods: 4 NN 

methods, 4 RF methods, 

4 SVM methods

� 2 benchmark methods

� We conduct 6 large-scale simulation experiments (SE_1a, SE_1b, SE_2a, SE_2b, SE_3a,

SE_3b), which are determined by the simulated time series.

� We combine the following methodological elements:

� Regarding the application of the forecasting methods, we split each simulated time

series into a fitting and a testing set (last 10 values).

� We fit the models to the fitting set and compare their performance on the testing set

using the values of the metrics.



� We simulate time series according to the ARFIMA(p,d,q) model.

� We use the fracdiff.sim algorithm of the fracdiff R package (Fraley et al. 2012) to simulate the time series.

� To describe the long-term persistence of the simulated time series we estimate their Hurst parameter H

(see Figures below) using the mleHK algorithm of the HKprocess R package (Tyralis 2016), which

implements the maximum likelihood method (Tyralis and Koutsoyiannis 2011).

� The parameter H takes values in the interval (0,1). The larger it is the larger the long-range dependence of

the Hurst - Kolmogorov stochastic process, which is widely used for the modelling of geophysical processes

instead of the ARFIMA(0,d,0) model.

4. Simulated time series
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5. Forecasting methods
� We compare 12 ML methods. We also use 2 benchmarks in the comparisons.

� We apply the ML methods using the R package rminer (Cortez 2010, 2016), as also

several built in R algorithms (R Core Team 2017) and the benchmark methods using

the R package forecast (Hyndman and Khandakar 2008, Hyndman et al. 2017).

� The R package rminer uses the nnet algorithm of the nnet R package (Venables and

Ripley 2002), the randomForest algorithm of the randomForest R package (Liaw and

Wiener 2002) and the ksvm algorithm of the kernlab R package (Karatzoglou et al.

2004) for the application of the NN, the RF and the SVM methods respectively.
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� Subsequently, we define the metrics used for the comparative assessment of the forecasting methods.

� For the definitions we consider a time series of N values. Let us also consider a model fitted to the first N - n values of this

specific time series and subsequently used to make predictions corresponding to the last n values. Let x1, x2, …, xn

represent the last n values and f1, f2, …, fn represent the forecasts.

� The root mean square error (RMSE) metric is defined by

� Let be the mean of x1, x2, …, xn and sx be the standard deviation of x1, x2, …, xn, which are defined by the following

equations:

� Let be the mean of f1, f2, …, fn and sf be the standard deviation of f1, f2, …, fn, which are defined by the following equations:

� Then the ratio of standard deviations (rSD) metric is defined by

� The Pearson’ s correlation coefficient (Pr) metric is defined by

� The index of agreement (d) metric is defined by

6. Metrics 

RMSE :=   (1/n) ∑i = 1
n (fi - xi)2  

x‾ 

x‾ := (1/n) ∑i = 1
n xi 

sx :=   (1/(n-1))∑i = 1
n (xi - x‾)2  

f‾ := (1/n) ∑i = 1
n fi 

sf :=   (1/(n-1))∑i = 1
n (fi - f‾)2  

Pr :=  (∑i = 1
n (xi - x‾)(fi - f‾))/(∑i = 1

n (xi - x‾)2 ∑i = 1
n (fi - f‾)2)0.5 

d := 1 - (∑i = 1
n (fi - xi)2/∑i = 1

n (|fi - x‾|+|xi - x‾|)2) 

rSD := sf/sx 

 f‾ 



7. Comparison of the methods in terms of RMSE

SE_1a SE_2a SE_3a

SE_1b SE_2b SE_3b

� The far outliers have been removed from the above figures, so that the latter are readable. In fact, the NN methods share a form of instability,

which expresses itself by producing outliers, far above the median to an extent greater than the observed average.

� The simulated process does not affect the relative performance of the ML methods.

� The length of the time series mostly affect the performance of the NN_4 method.

� The hyperparameter optimization has mostly a small effect on the ML forecasting performance.

� The time lag selection seems to signifficantly affect the results when using the NN algorithm. We observe a similar behaviour for the RF

algorithm albeit to a smaller extent.

� Naive can be better than NN_3 and NN_4, while most of the ML methods are as competent as auto_ARFIMA in terms of RMSE.



8. Comparison of the methods in terms of rSD

� The optimum rSD value is 1.

� The first five notes of 7 also apply to 8.

� The image formed in terms of rSD is rather the opposite than the one formed in terms of RMSE for most of the ML

methods compared, a fact we expected (see Papacharalampous 2016, Papacharalampous et al. 2017a).

� Most of the ML methods exhibit better performance than the auto_ARFIMA benchmark in terms of rSD.

� The performance of the ML methods is graded to a greater extent in terms of rSD than it does in terms of RMSE.
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SE_1a



9. Comparison of the methods in terms of Pr

SE_1a SE_2a SE_3a

SE_1b SE_2b SE_3b

� The optimum Pr value is 1.

� The picture formed in terms of Pr is rather smoother than those presented in 7 and 8. In other words, the

forecasting methods are less graded in respect to this specific metric.

� The relative performance of the ML methods is slightly different across the various simulation experiments.

� The medians are all close to zero, a fact indicating that the forecasting performance of all the methods is poor.

� The auto_ARFIMA is mostly better than the ML methods, but to a small extent.



10. Comparison of the methods in terms of d

� The optimum d value is 1.

� The relative performance of the forecasting methods can differ to a rather small extent across the various

simulation experiments.

� The Naive benchmark has the best average case performance in terms of d. This is quite remarkable.

� The auto_ARFIMA benchmark can exhibit either better or worse performance than the ML methods depending

on the simulation experiment and the ML method.

SE_2a SE_3a

SE_1b SE_2b SE_3b

SE_1a



11. Contribution of the present study
� The findings indicate that the hyperparameter optimization mostly has a small effect on the

forecasting performance when using the machine learning algorithms of the present study. This is

particularly important, because the hyperparameter optimization is computationally intensive.

� On the contrary, the time lag selection seems to mostly affect the machine learning methods’

performance when using the Neural Networks algorithm, while we observe a similar behaviour

for the Random Forests algorithm albeit to a smaller extent.

� Of course, the present study does not fill the existing gap in the literature and further research is

essentially required. Nevertheless, it provides some evidence that these two factors do not

necessarily affect the machine learning performance or that their effect is strongly dependent on

the machine learning algorithm and the criterion of interest.

� In fact, the metrics employed in the evaluation process provide measurements which lead to

different aspects of the same information to an extent that we cannot decide on a general ranking

of the machine learning methods.

� Furthermore, the findings suggest that the machine learning methods do not differ dramatically

from the stochastic benchmarks, while particularly noteworthy is the fact that the last observation

benchmark is also competent.

� Admittedly, the results of the present study are entirely consistent with Papacharalampous

(2016) and Papacharalampous et al. (2017a), while the limitations accompanying time series

forecasting emphasized by the latter studies, as well as by Koutsoyiannis et al. (2008) and

Papacharalampous et al. (2017b), are evident here as well.

� Perhaps research should invest more on probabilistic forecasting (e.g. Tyralis and Koutsoyiannis

2014) and its effective exploitation by the users (e.g. Ramos et al. 2013) rather than on point

forecasting.
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