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Abstract Single-site disaggregation models of rainfall aim at generating finer scale time series of 17 

rainfall that are fully consistent with any given coarse-scale totals. In this work, we present a 18 

disaggregation method that initially retains the formalism, the parameter set, and the generation 19 

routine of the downscaling model described by Lombardo et al. (2012), which generates time series 20 

with Hurst-Kolmogorov (HK) dependence structure. Then it uses an adjusting procedure to achieve 21 

the full consistency between lower- and higher-level variables without affecting the stochastic 22 

structure implied by the original downscaling model. Furthermore, we provide a general 23 

methodology to account for rainfall intermittency, which is a fundamental issue in simulation. 24 

Intermittency is quantified by the probability that a time interval is dry. Here we focus on a 25 

modelling approach of a mixed type, with a discrete description of intermittency and a continuous 26 

description of rainfall. We model the intermittent rainfall process as the product of two stochastic 27 

processes: (i) The rainfall occurrence process, which is described by a binary valued stochastic 28 

process, with the values 0 and 1 representing dry and wet conditions, respectively; (ii) The non-zero 29 

rainfall process, which is given by our disaggregation model. We study the rainfall process as 30 

intermittent with both independent and dependent occurrences, where dependence is quantified by 31 

the probability that two consecutive time intervals are dry. In either case, we provide the analytical 32 

formulations of the main statistics of our mixed-type disaggregation model and show their clear 33 

accordance with Monte Carlo simulations. An application to rainfall time series from the real world 34 

is also shown. 35 

 36 

Key words Rainfall disaggregation; rainfall intermittency; Hurst-Kolmogorov process 37 

 38 

 39 

 40 

1 INTRODUCTION 41 

Rainfall is the main input to most hydrological systems. A wide range of studies 42 

concerning floods, water resources and water quality require characterization of 43 

rainfall inputs at fine time scales (Blöschl and Sivapalan 1995). This may be possible 44 

using empirical observations, but there is often a need to extend available data in 45 

terms of temporal resolution satisfying some additive property (i.e. that the sum of the 46 

values of consecutive variables within a period be equal to the corresponding coarse-47 

scale amount) (Berne et al. 2004). Hence, rainfall disaggregation models are required. 48 
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Although there is substantial experience in stochastic disaggregation of rainfall to fine 49 

time scales, most modelling schemes existing in the literature are ad hoc techniques 50 

rather than consistent generalised methods (see review by Koutsoyiannis 2003a). This 51 

is mainly due to the skewed distributions and the intermittent nature of the rainfall 52 

process at fine time scales, which are severe obstacles for the application of a 53 

theoretically consistent scheme to rainfall disaggregation (Koutsoyiannis and 54 

Langousis 2011). This paper reports some progress in this respect. We propose herein 55 

a follow-up to the downscaling model by Lombardo et al. (2012), which is revised to 56 

include both a stochastic model accounting for intermittency and an appropriate 57 

strategy to preserve the additive property. It is reminded that the preservation of the 58 

additive property distinguishes disaggregation from downscaling, whereas both are 59 

supposed to reproduce the important statistical properties of a process of interest. This 60 

modification required to set up a disaggregation model produces a more realistic 61 

rainfall model that retains its primitive simplicity in association with a parsimonious 62 

framework for simulation. In brief, the advancements reported under the following 63 

sections include: 64 

− Background information. A basic review with discussion about some 65 

improvements on the model structure is presented in the next section. 66 

− Additivity constraint. Lombardo et al. (2012) utilize auxiliary Gaussian 67 

variables to disaggregate a given rainfall amount to a certain scale of interest 68 

by a linear generation scheme. Nevertheless, rainfall is effectively modelled by 69 

positively skewed distributions, i.e. non-Gaussian. Hence, a scale-dependent 70 

exponential transformation of the variables is used in a way that the 71 

transformed variables have lognormal distribution with some important 72 

properties (see Appendix A). However, this means that the additive property, 73 

which is one of the main attributes of the original disaggregation scheme, is 74 

lost (Todini 1980). To overcome the problem we apply an empirical correction 75 

procedure, known as “power adjusting procedure” (Section 3), to restore the 76 

full consistency of lower-level and higher-level variables. This procedure is 77 

accurate in the sense that it does not alter the original dependence structure of 78 

the synthetic time series (Koutsoyiannis and Manetas 1996). 79 

− Intermittency. The main novelty of this paper is the introduction of 80 

intermittency in the modelling framework, which is fully general and it can be 81 
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used also when simulating mixed-type processes other than rainfall from the 82 

real world. The model by Lombardo et al. (2012) simulates rainfall time series 83 

without intermittency. However, the rainfall process features an intermittent 84 

character at fine (sub-monthly) time scales, and thus the probability that a time 85 

interval is dry is generally greater than zero. Generally, the analysis and 86 

modelling of rainfall intermittency relate to the study of the rainfall occurrence 87 

process. Then, we need to introduce the latter in our modelling framework. In 88 

order to achieve such an objective, we describe (Section 4) the entire rainfall 89 

process using a two-state stochastic process with a discrete (rainfall 90 

occurrences) as well as a continuous component (non-zero rainfall). Our 91 

modelling framework enables the analytical formulation of the main statistics 92 

of the intermittent rainfall process. 93 

− Comparison to observed data. In Section 5, we show a case study in order to 94 

test the capability of our model to reproduce the statistical behaviour of real 95 

rainfall time series.   96 

 97 

2 BASIC CONCEPTS AND BACKGROUND 98 

In rainfall modelling literature, the currently dominant approach to temporal 99 

disaggregation is based on discrete multiplicative random cascades (MRCs), which 100 

were first introduced in turbulence by Mandelbrot (1974). Despite the fact that more 101 

complex scale-continuous cascade models have been introduced (see e.g. Schmitt and 102 

Marsan 2001, Schmitt 2003, Lovejoy and Schertzer 2010a, 2010b), discrete MRCs are 103 

still the most widely used approach as they are very simple to understand and apply 104 

(Paschalis et al. 2012). A MRC is a discrete model in scale, meaning that the scale 105 

ratio from parent to child structures is an integer number strictly larger than one. This 106 

model is multiplicative, and embedded in a recursive manner. Each step is usually 107 

associated to a scale ratio of b = 2 (i.e. branching number); after k steps, the total scale 108 

ratio is 2
k
, and we have: 109 

��,� = ��,��	
��,�
,�
�

��� 																																																																																																											�1
	
where j = 1, …, 2

k
 is the time step; ��,� is the initial rainfall intensity to be distributed 110 

over the (subscale) cells ��,� of the cascade, each cell being associated to a random 111 
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variable 	
��,�
,� (i.e. cascade generator, called “weight”) where ���, �
 = � ������ 112 

denotes a function which defines the position in time at the cascade step i = 0, …, k. 113 

All these random variables are assumed non-negative, independent and identically 114 

distributed, and satisfy the condition 〈	〉 = 1 where 〈∙〉 denotes expectation. 115 

Unfortunately, as detailed in Lombardo et al. (2012) the application of MRC 116 

models is questionable in the context of rainfall simulation. The random process 117 

underlying these models is not stationary, because its autocovariance is not a function 118 

of lag only, as it would be in stationary processes. This is simply inherent to the 119 

model structure. For example, it can be shown that for canonical MRCs we may write 120 

lagged second moments after k cascade steps as: 121 〈��,�����,�〉 = 〈��,�� 〉〈	�〉� ,���
																																																																																													�2
	
where t is the discrete-time lag; since we have ℎ�,��# = 0
 = % for any j and k, then 122 

the exponent ℎ�,��#
 can be calculated recursively by: 123 

ℎ�,��#
 = &'ℎ�,�(��#
 + 1*Θ,2�(� − � − #. � ≤ 2�(�, # > 0	ℎ��(�(���,��#
 � > 2�(�, # > 0ℎ��(���,��|#|
 # < 0 																																				�3
 
where Θ,4. is the discrete form of the Heaviside step function, defined for a discrete 124 

variable (integer) m as: 125 

Θ,4. = 50, 4 < 01, 4 ≥ 0																																																																																																															�4
 
Analogous considerations apply to microcanonical and bounded MRC models. 126 

Then, from eqs. (2) and (3), it is evident that the autocovariance for a MRC model 127 

depends upon position in time j and cascade step k. We emphasise that the 128 

nonstationarity, which is thus taken into account, is often neglected by several 129 

researchers and practitioners. The problem of nonstationarity in processes generated 130 

by discrete MRCs is indeed not new in the literature (see e.g. Mandelbrot, 1974; Over, 131 

1995; Veneziano and Langousis, 2010). From a scientific point of view, it is not 132 

always satisfactory to model an observed phenomenon by a stationary process. 133 

Nonetheless, it is important to stress here that stationarity is also related to ergodicity, 134 

which in turn is a prerequisite to make statistical inference from data. From a practical 135 

point of view, if there is nonstationarity then ergodicity cannot hold, which forbids 136 

inference from data that represent the most reliable information in building 137 
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hydrological models and making predictions (Koutsoyiannis and Montanari 2014). 138 

Even though the two concepts of ergodicity and stationarity do not coincide in 139 

general, it is usually convenient to devise a model that is ergodic provided that we 140 

have excluded nonstationarity (Montanari and Koutsoyiannis 2014, Serinaldi and 141 

Kilsby 2015).  142 

Most of the problems of MRC models reported above might be overcome by 143 

other disaggregation methods in the literature (see e.g. Marani and Zanetti 2007, 144 

Gyasi-Agyei 2011, 2012, Pui et al. 2012). However, MRC models gain their 145 

popularity due to their ease of use and understanding. 146 

 We propose a model characterized by a structure equally simple as that of 147 

MRC models, but it is based on a different approach (Hurst-Kolmogorov) and it 148 

proves to be stationary. Indeed, we emphasize that this model is not a multiplicative 149 

random cascade (MRC); it exploits knowledge from an auxiliary Gaussian domain 150 

where fractional Gaussian noise (i.e. Hurst-Kolmogorov —HK— process) is 151 

generated by means of a stepwise disaggregation technique based on a random 152 

cascade structure. For a detailed theoretical and numerical comparison of this model 153 

with discrete MRCs, the reader is referred to Lombardo et al. (2012). In the following, 154 

we briefly outline the model in question (see also Appendix B for a step-by-step 155 

implementation procedure).  156 

Note that most of the derivations, notation, etc., used herein follow closely the 157 

paper by Lombardo et al. (2012), to which the reader is referred for further details. 158 

Nevertheless, here we use a different normalizing transformation of the given rainfall 159 

amount 8�,� at the initial largest scale (i = 0). In particular, we assume 8�,� 160 

lognormally distributed with a given mean 9� and variance :��, and we log-transform 161 

it into an auxiliary Gaussian variable 8;�,� as follows:  162 

8;�,� = 1<�%
 =log8�,� − A�%
B																																																																																														�5
	
where <�%
 and A�%
 are two functions given in Appendix A, that depend on the 163 

disaggregation level k of interest. Note that the transformation cannot be invariant 164 

with respect to the time scale. The functions <�%
 and A�%
 differ from those used by 165 

Lombardo et al. (2012), as will be discussed later (see also Appendix A).  166 
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The auxiliary variable 8;�,� obtained by eq. (5) is then disaggregated into two 167 

variables on subintervals of equal size. This procedure is applied progressively until 168 

we generate the series at the time scale of interest.  169 

Since this is an induction technique, it suffices to describe one step. Consider 170 

the generation step in which the higher-level amount 8;�,�(� is disaggregated into two 171 

lower-level amounts 8;��(�,� and  8;��,� such that:  172 8;��(�,� + 8;��,� = 8;�,�(�																																																																																																										�6
	
Thus, we generate the variable of the first subinterval 8;��(�,� only, and that of the 173 

second is then the remainder that satisfies eq. (6). At this step, we have already 174 

generated the values of previous lower-level time steps, i.e. 8;�,�, … , 8;��(�,�, and of the 175 

next higher-level time steps, i.e. 8;�,�(�, … , 8;F,�(� where n = 2k–1
. Theoretically, it is 176 

necessary to preserve the correlations of 8;��(�,� with all previous lower-level 177 

variables and all next higher-level variables. However, we can obtain a very good 178 

approximation if we consider correlations with only one higher-level time step behind 179 

(i.e. two lower-level time steps behind) and one ahead (Koutsoyiannis, 2002). This is 180 

particularly the case with moderate values of the Hurst coefficient, while for high 181 

values (e.g. G ≥ 0.9) an extensive numerical investigation (not reported here) showed 182 

that we could obtain the best trade-off between model accuracy and computational 183 

burden by expanding of one higher-level time step behind and ahead the number of 184 

variables that are considered in the generation procedure. In either case, we use the 185 

following linear generation scheme: 186 8;��(�,� = JKL + M																																																																																																																			�7
	
where Y is a vector of previously generated variables, θ is a vector of parameters, and 187 

V is a Gaussian white noise that represents an innovation term. All unknown 188 

parameters and the variance of the innovation term can be estimated applying the 189 

methodology proposed by Koutsoyiannis (2001), which yields: 190 J = Ocov,L, L.R(�covSL, 8;��(�,�T																																																																																									�8
 var,M. = varS8;��(�,�T − covS8;��(�,�, LTJ																																																																									�9
 
In short, the generation step is based on eq. (7) that can account for 191 

correlations with other variables, which are the components of the vector Y above. For 192 

example, if one considers correlations with only one higher-level time step behind and 193 
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one ahead, then L = S8;��(X,�, 8;��(�,�, 8;�,�(�, 8;���,�(�TK where superscript T denotes 194 

the transpose of a vector. Then, eq. (7) simplifies as follows: 195 8;��(�,� = Y�8;��(X,� + Y�8;��(�,� + Z�8;�,�(� + Z�8;���,�(� + M																																		�10
 
where Y�, Y�, Z� and Z� are parameters to be estimated and V is innovation whose 196 

variance has to be estimated as well. It can be shown that, for the HK process, the two 197 

equations above depend only on the Hurst coefficient H and the variance :�� 198 

(Koutsoyiannis 2002). From eqs. (8) and (9), all unknown parameters can be 199 

estimated in terms of correlations of the form: 200 [\�#
 = corrS8;��(�,�, 8;��(���,�T = |# + 1|�] 2⁄ + |# − 1|�] 2⁄ − |#|�]																				�11
 
The reader is pointed to eqs. (33) and (34) by Lombardo et al. (2012) to find the 201 

complete analytical formulation. 202 

In the implementation of such an approach, it can be noticed that the 203 

generation procedure is affected by changes in eq. (10) that occur at the boundary of 204 

the cascade (i.e. edge effects). In practice for each cascade step, when we generate 205 8;��(�,� near the start or end of the cascade sequence, some elements of the vector Y 206 

may be missing. In other words, some terms of eq. (10) are eliminated when j = 1 or j 207 

= 2
k – i
 (i.e. at the start or end of the cascade sequence, respectively), for each cascade 208 

step i, where i = 0, …, k. This limits the capability of the model to reproduce the 209 

theoretical properties of the HK process. To overcome this problem, again we found a 210 

good compromise by numerical investigation. The purpose is to reduce "leakage" 211 

aberrations in the model output that are introduced by a sharp truncation of the 212 

sequence at the outer edges of the cascade. We found a good solution by 213 

simultaneously disaggregating three independent and identically distributed Gaussian 214 

variables (where 8;�,� is the one in the middle), as shown in Fig. 1. We use only the 215 

synthetic series pertaining to 8;�,� and discard the remainder.  Then, the effects of the 216 

peripheral leakage on the main statistics are practically negligible. 217 

Finally, the lower-level variables generated in the auxiliary (Gaussian) domain 218 

must then be transformed back to the target (lognormal) domain, so as to make them a 219 

more realistic representation of the actual rainfall process and more comparable to 220 

common MRC models. Nevertheless, it can be argued that the structure of our model 221 

is substantially different from that of MRCs.  222 

We use the following simple exponential transformation: 223 
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8�,� = exp'8;�,�*																																																																																																																						�12
 
This transformation is simpler than that used by Lombardo et al. (2012) in eq. (37). In 224 

fact, we normalize the given coarse-scale total 8�,� by eq. (5) in order to use a simpler 225 

inverse transformation, eq. (12), at the scale k of interest. This is more appropriate for 226 

a disaggregation approach resembling a top-down strategy. Note that the functions 227 <�%
 and A�%
 are derived to preserve some scaling properties of the auxiliary 228 

process (as shown in the Appendix A). Specifically, the mean, variance and 229 

autocorrelation after k cascade steps of the actual rainfall process are given 230 

respectively by: 231 9� = 〈8�,�〉 = 9� 2�⁄ 																																																																																																													�13
 :�� = varS8�,�T = :�� 2�]�⁄ 																																																																																																		�14
 
[��#
 = corrS8�,� , 8���,�T = exp=:\��[\�#
B − 1exp�:\��
 − 1 																																																														�15
 
where [\�#
 and :\�� = varS8;�,�T respectively denote the autocorrelation function, eq. 232 

(11), and the variance of the auxiliary Gaussian process (i.e. Hurst-Kolmogorov 233 

process), H is the Hurst coefficient, t is the time lag, while 9� and :�� are, 234 

respectively, the mean and variance of the given coarse-scale total 8�,�. Note that the 235 

autocorrelation functions of the Hurst-Kolmogorov process, [\�#
, and the target 236 

lognormal process, [��#
, generally differ. Nevertheless, for small values of :\��, as 237 

encountered in disaggregation modelling of rainfall amounts, the experimental [��#
 238 

closely resembles the ideal form of [\�#
. Specifically, in the small-scale limit of 239 % → ∞ (i.e., very small :\��), the autocorrelation function of the target process 240 

converges to that of the Hurst-Kolmogorov process, so that [��#
 → [\�#
. 241 

In summary, our model assumes lognormal rainfall, and then it is reasonable 242 

to use a (scale-dependent) logarithmic transformation of variables (eq. 5) and perform 243 

disaggregation of transformed variables in a Gaussian (auxiliary) domain, thus 244 

exploiting the desired properties of the normal distribution for disaggregation schemes 245 

(Koutsoyiannis, 2003a). Therefore, we do not disaggregate rainfall by a multiplicative 246 

random cascade (MRC). Rather, we assume a Hurst-Kolmogorov process in the 247 

auxiliary domain whose characteristics are changed (by eq. 5) based on the last 248 

disaggregation step of interest. The Hurst-Kolmogorov process is effectively 249 

generated using a stepwise disaggregation approach introduced by Koutsoyiannis 250 
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(2002), which is based on a random cascade structure. Finally, the generated lower-251 

level variables are transformed back (eq. 12) to the original lognormal domain. Our 252 

specific transformation enables to preserve the scaling properties of the Hurst-253 

Kolmogorov process also in the target (lognormal) domain; thus, it allows to 254 

reproduce the empirically observed characteristics of rainfall time series (e.g. at the 255 

daily scale). 256 

 257 

3 ADJUSTING PROCEDURE 258 

An important drawback of the above-summarized model is that generated, back-259 

transformed rainfall amounts, 8�,�, generally fail to sum to the specified coarse-scale 260 

total, 8�,�, which is a major requirement of disaggregation methods. This is what 261 

normally happens when a model is specified in terms of the logarithms of the target 262 

variables, or some other normalizing transformation. In such cases, adjusting 263 

procedures are necessary to ensure additivity constraints (Stedinger and Vogel 1984, 264 

Grygier and Stedinger 1988, 1990, Lane and Frevert 1990, Koutsoyiannis and 265 

Manetas 1996), such as:  266 

8�,� = d 8�,�F���
��� 																																																																																																																							�16
 
A relevant question is how to adjust the generated rainfall amounts without 267 

unduly distorting their marginal distribution and dependence structure. Koutsoyiannis 268 

and Manetas (1996) showed that this is possible using appropriate adjusting 269 

procedures, which preserve certain statistics of lower-level variables. In particular, 270 

here we focus on the so-called “power adjusting procedure” that can preserve the first- 271 

and second-order statistics regardless of the type of the distribution function or the 272 

covariance structure of 8�,�. This procedure allocates the error in the additive property 273 

among the lower-level variables. Thus, it modifies the generated variables 8�,� (j = 1, 274 

…, 2
k
) to get the adjusted ones 8�,�e  according to:  275 

8�,�e = 8�,� f 8�,�∑ 8�,�F��� hi ,� j ,�⁄ 																																																																																												 �17
 
where 276 

k�,� = ∑ covS8�,�, 8�,�TF���∑ ∑ covS8�,�, 8�,�TF���F��� 																																																																																											�18
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l�,� = 〈8�,�〉∑ 〈8�,�〉F��� 																																																																																																																			�19
 
The power adjusting procedure is more effective and suitable for our 277 

modelling framework than the classical linear and proportional adjusting procedures 278 

(see e.g. Grygier and Stedinger 1988, Lane and Frevert 1990). Indeed, a weakness of 279 

the former is that it may result in negative values of lower-level variables, but rainfall 280 

variables must be positive. Conversely, the proportional procedure always results in 281 

positive variables, but it is strictly exact only in some special cases that introduce 282 

severe limitations. The power adjusting procedure has no limitations and works in any 283 

case, but it does not preserve the additive property at once. Then, the application of 284 

eq. (17) must be iterative, until the calculated sum of the lower-level variables equals 285 

the given 8�,�. Despite converging very rapidly, iterations reduce the model speed. 286 

However, the power adjusting procedure is a useful approximate generalization of 287 

proportional procedures, which in turn have severe limitations with lognormal 288 

variables (Koutsoyiannis and Manetas 1996). 289 

Finally, we carry out some Monte Carlo experiments for further investigation. 290 

First we generate m = 50000 time series assuming the same parameters as in 291 

Lombardo et al. 2012: % = 7, 9� = 1, :�� = 1.5, and G = 0.7; then we apply the 292 

power adjusting procedure described by eq. (17) above. Fig. 2 shows that the adjusted 293 

variables fulfil the additive property, while Fig. 3 confirms that summary statistics of 294 

the generated variables are well preserved by the adjusting procedure. The latter 295 

displays, indeed, a very good agreement between the ensemble mean 〈8�,�〉 = 9�, 296 

standard deviation :�, and autocorrelogram of the adjusted variables with generated 297 

ones; the latter termed as “empirical” in the figure legend.  298 

 299 

4 INTERMITTENCY 300 

The intermittent nature of rainfall process at fine time scales is a matter of common 301 

experience. In a statistical description, this is reflected by the fact that there exists a 302 

finite nonzero probability that the value of the process within a time interval is zero 303 

(often referred to as probability dry). Intermittency results in significant variability 304 

and high positive skewness, which are difficult to reproduce by most generators 305 

(Efstratiadis et al. 2014). Therefore, modelling rainfall intermittency is receiving 306 
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renewed research interest (Koutsoyiannis 2006, Rigby and Porporato 2010, Kundu 307 

and Siddani 2011, Schleiss et al. 2011, Li et al. 2013, Mascaro et al. 2013).  308 

In essence, for modelling rainfall intermittency two strategies are commonly 309 

used. The simplest approach is to model the intermittent rainfall process as a typical 310 

stochastic process whose smallest values are set to zero values according to a specific 311 

rounding off rule (see e.g. Koutsoyiannis et al. 2003). The second strategy considers 312 

in an explicit manner the two states of the rainfall process, i.e. the dry and the wet 313 

state. This is a modelling approach of a mixed type with a discrete description of 314 

intermittency and a continuous description of rainfall amounts (Srikanthan and 315 

McMahon 2001). The two-state approach is preferable for our modelling framework, 316 

because it facilitates the analytical formulation of the main statistics of the 317 

intermittent rainfall process. 318 

The rainfall occurrence process (a binary-valued stochastic process) and the 319 

rainfall depth process (a continuous-type stochastic process) can be combined to give 320 

rise to a stochastic process of the mixed type. For simplicity, we assume that the 321 

discrete and continuous components are independent of one another; therefore, we are 322 

allowed to write the intermittent rainfall as the product of those two components.  323 

In our modelling framework, we assume to model the intermittent rainfall n�,� 324 

on a single time scale setting at the cascade step k and discrete time j (= 1, …, 2
k
) as: 325 n�,� = o�,� ∙ 8�,�e 																																																																																																																								�20
 

where 8�,�e  denotes the continuous-type random variable pertaining to our 326 

disaggregation model (given by eq. (17)), which represents the nonzero rainfall 327 

process. Whereas, the rainfall occurrence process is represented by o�,� that is a 328 

discrete-type random variable taking values 0 (dry condition) and 1 (wet condition), 329 

respectively with probability p�,� and p�,� = 1 − p�,�. The former denotes the 330 

probability that a certain time interval is dry after k cascade steps, i.e. p�,� =331 Prrn�,� = 0s. This is the probability dry at the scale of interest, which is an additional 332 

model parameter. Clearly, this notation reflects a stationarity assumption of rainfall 333 

occurrences, because the probability dry p�,� does not depend on the time position j 334 

but depends only on the timescale k. 335 

The above considerations imply the following relationships for the mean and 336 

variance of the mixed-type rainfall process: 337 
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〈n�,�〉 = '1 − p�,�*9�																																																																																																												�21
 varSn�,�T = '1 − p�,�*':�� + p�,�9��*																																																																																�22
 
where 9� and :�� denote the mean and the variance of the series generated by our 338 

rainfall depth model, see eqs. (13) and (14) respectively.  339 

Note that eq. (20) resembles the classical intermittent lognormal β-model 340 

based on MRCs (Gupta and Waymire, 1993; Over and Gupta, 1994, 1996), but it is 341 

strictly embedded into our Hurst-Kolmogorov modelling framework.  342 

Since we aim at modelling a family of mixed-type random variables each 343 

representing the rainfall state at time steps j = 1, 2, …, we need to investigate the 344 

dependence structure of this particular stochastic process. In other words, we analyse 345 

the pairwise dependence of two randomly chosen variables n�,� and n���,� separated 346 

by a time lag t. This is accomplished through deriving the formulation of the 347 

autocovariance function for the intermittent rainfall process. Recall that:  348 covSn�,�, n���,�T 	= 〈n�,�n���,�〉 − 〈n�,�〉�																																																																									�23
 
where the last term of the right-hand side can be easily calculated from eq. (21), while 349 

the lagged second moment 〈n�,�n���,�〉 can be expressed through the following joint 350 

probabilities: 351 p��,� = Prrn�,� = 0, n���,� = 0sp��,� = Prrn�,� > 0, n���,� = 0sp��,� = Prrn�,� = 0, n���,� > 0sp��,� = Prrn�,� > 0, n���,� > 0s
																																																																																										�24
 

By total probability theorem and eq. (20) then, we have:  352 〈n�,�n���,�〉 = p��,�〈8�,�e 8���,�e 〉 = p��,�〈8�,�8���,�〉																																																									�25
 
where the last equality is due to the properties of the power adjusting procedure (see 353 

previous section). 354 

For convenience, we express the joint probability p��,� in terms of the 355 

probability dry p�,� and the autocovariance of rainfall occurrences covSo�,� , o���,�T. 356 

The latter is given by (see also Koutsoyiannis 2006):  357 covSo�,� , o���,�T = 〈o�,�o���,�〉 − 〈o�,�〉� = p��,� − '1 − p�,�*�																																							�26
 
The derivation of this equation is based on the relationships 〈o�,�〉 = 〈o�,�� 〉 = 1 − p�,�, 358 

and 〈o�,�o���,�〉 = p��,�. Thus, from eq. (26) we obtain:  359 
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p��,� = '1 − p�,�*� + covSo�,� , o���,�T																																																																																�27
 
Substituting eqs. (21), (25) and (27) in eq. (23), we obtain:  360 covSn�,�, n���,�T = ='1 − p�,�*� + covSo�,�, o���,�TB 〈8�,�8���,�〉 − '1 − p�,�*�9��			�28
 
Adding and subtracting the term covSo�,� , o���,�T9�� to the right-hand side of eq. (28), 361 

we obtain:  362 covSn�,� , n���,�T == ='1 − p�,�*� + covSo�,�, o���,�TB covS8�,� , 8���,�T + covSo�,�, o���,�T9��																				�29
 
Hence, we have expressed the degree of dependence of the intermittent rainfall 363 

process in terms of the dependence structures of both the rainfall occurrence and 364 

depth processes. 365 

A more common indicator of dependence of a stochastic process is the 366 

autocorrelation coefficient:  367 

[t,��#
 = covSn�,� , n���,�TvarSn�,�T 																																																																																																			�30
 
Recalling that varSo�,�T = p�,�'1 − p�,�* and substituting eqs. (22) and (29) in eq. 368 

(30), after algebraic manipulations we obtain:  369 

[t,��#
 = '1 − p�,� + [u,��#
p�,�*[��#
:�� + [u,��#
p�,�9��:�� + p�,�9�� 																																							�31
 
where 9�, :�� and [��#
 are given by eqs. (13), (14) and (15) respectively. The only 370 

unknown in eq. (31) is the autocorrelation function [u,��#
 of the rainfall occurrence 371 

process at a single characteristic time scale (i.e., the final disaggregation step k). 372 

Therefore, to quantify the degree of dependence of the intermittent rainfall process we 373 

must assume a model for the dependence structure of rainfall occurrences. 374 

Generally, we could classify such models into three types: (i) independence, 375 

which includes the Bernoulli case, characterized by one parameter only; (ii) simple 376 

dependence, which includes Markov chains characterized by two parameters; (iii) 377 

complex dependence, characterized by more than two parameters (Koutsoyiannis 378 

2006). For the sake of numerical investigation, hereinafter we analyse the first two 379 

modelling categories of the occurrence processes: 380 

1. Purely random model 381 

2. Markov chain model 382 
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It was recognized in early stages of analysis and modelling attempts that the 383 

rainfall occurrences are not independent in time, and the Markov chain model was 384 

widely adopted for discrete time representations of this process (Gabriel and 385 

Neumann 1962, Haan et al. 1976, Chin 1977). It was later observed, however, that 386 

Markov chain models yield unsatisfactory results for rainfall occurrences, despite 387 

being much closer to reality than the independence model (De Bruin 1980, Katz and 388 

Parlange 1998). Moreover, there exist other types of models intended to simulate 389 

more complex dependence structures that are consistent with empirical data, such as 390 

positive autocorrelation both on small scales (short-term persistence) and on large 391 

scales (long-term persistence) (see e.g. Koutsoyiannis, 2006).  392 

Our main purpose is to generate intermittent rainfall time series at a certain 393 

time scale, which are fully consistent with a given coarse-scale total. We focus on a 394 

modelling approach of a mixed type with a discrete description of intermittency and a 395 

continuous description of rainfall amounts. By eq. (20), we introduce the intermittent 396 

character in the (back-transformed) synthetic series at the “basic scale”, which is 397 

represented by the last disaggregation step. In other words, we assume to model 398 

intermittency on a single time scale setting, and then we confine our interest only to 399 

the basic scale of disaggregated series. 400 

In summary, we generate both independent and autocorrelated (binary) time 401 

series of rainfall occurrences at the basic scale, which are then multiplied by the 402 

continuous rainfall depth time series (generated by our disaggregation model) in order 403 

to obtain the final intermittent rainfall series. Note that our intermittency model is 404 

general and allows using any type of autocorrelation function, and we use the 405 

independent and Markovian cases as simple applications of our theoretical framework 406 

for Monte Carlo experiments. 407 

 408 

4.1 Random occurrences 409 

The simplest case is to assume that the rainfall process is intermittent with 410 

independent occurrences o�,�, which can be modelled as a Bernoulli process in discrete 411 

time. This process is characterized by one parameter only, i.e. the probability dry p�,�. 412 

Then, we can write that:  413 [u,��#
 = covSo�,� , o���,�T = 0																																																																																															�32
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Substituting eq. (32) in eqs. (29) and (31), we obtain respectively:  414 covSn�,�, n���,�T = '1 − p�,�*�covS8�,�, 8���,�T																																																															�33
 
[t,��#
 = '1 − p�,�*[��#
 :��:�� + p�,�9�� 																																																																											�34
 
 415 

4.2 Markovian occurrences 416 

As a second example, we assume a very simple occurrence process with some 417 

correlation. In this model, the dependence of the current variable o�,� on the previous 418 

variable o�(�,� suffices to express completely the dependence of the present on the 419 

past. In other words, we assume that the state (dry or wet) in a time interval depends 420 

solely on the state in the previous interval. This is a process with Markovian 421 

dependence, which is completely determined by lag-one autocorrelation coefficient 422 [u,��1
 = corrSo�,�, o�(�,�T. Therefore, the occurrence process is characterized by two 423 

parameters, i.e. p�,� and [u,��1
. The autocorrelation of o�,� is (see the proof in 424 

Appendix C):  425 [u,��#
 = corrSo�,�, o���,�T = [u,�|�|�1
																																																																																			�35
 
Substituting in eq. (31), we derive the autocorrelation of the entire rainfall process as:  426 

[t,��#
 = '1 − p�,� + [u,�|�|�1
p�,�*[��#
:�� + [u,�|�|�1
p�,�9��:�� + p�,�9�� 																																						�36
 
 427 

4.3 Numerical simulations 428 

For the sake of illustration, we generate 10,000 time series with sample size v =429 2�� = 1024 (k = 10 cascade steps), Hurst coefficient G = 0.85, and rainfall depths 430 

with unit mean and variance 9� = :�� = 1. In addition, we simulate both random and 431 

Markovian occurrences with probability dry p�,� = 0.2, 0.5, 0.8 and lag-one 432 

autocorrelation coefficient (for Markovian case) [u,��1
 = 0.7. The Markovian 433 

occurrences are generated implementing Boufounos (2007) algorithm.  434 

 Figs. 4 and 5 depict, respectively, the good agreement between the theoretical 435 

and empirical probability dry and autocorrelation functions for both types of 436 

occurrence models. 437 
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Figs. 6 and 7 show autocorrelograms of the mixed-type process for various 438 

values of the probability dry, i.e. p�,� = 0, 0.2, 0.8. Note that the case with p�,� = 0 439 

corresponds to the rainfall depth process. The autocorrelogram of this process is used 440 

as a benchmark to compare the influence of each occurrence model on the dependence 441 

structure of the entire process. As expected, both of our occurrence models are 442 

generally cause for decorrelation of the intermittent process with respect to the 443 

process without intermittency. Clearly, this is particularly the case for random 444 

occurrences (see Fig. 6). For Markovian occurrences (see Fig. 7), the autocorrelation 445 

is higher for small time lags than that for random occurrences, while it tends to the 446 

random case asymptotically (compare Figs. 6 and 7 for p�,� = 0.2, 0.8).  447 

 448 

5 APPLICATION TO OBSERVATIONAL DATA 449 

In this section, we compare our model against real rainfall time series in order 450 

to show the capability of the proposed methodology to reproduce the pattern of 451 

historical rainfall data on fine timescales. The dataset consists of 30-minute rainfall 452 

time series spanning from 1995 to 2005 from a raingauge in Viterbo, Italy. For further 453 

details on the observational data, the reader is referred to Serinaldi (2010). 454 

As the rainfall process exhibits seasonality at sub-annual timescales, we focus 455 

on rainfall records from each month of the year separately, in order for the analyses to 456 

be consistent with the stationarity requirement of our model with an acceptable degree 457 

of approximation.  458 

As highlighted in the previous section, the dependence structure of the rainfall 459 

occurrence process appears to be non-Markovian (Koutsoyiannis, 2006). To a first 460 

approximation, we make the simplifying assumption that the autocorrelation function 461 [u,��#
 of the binary component (intermittency) of our model is given by eq. (11), 462 

where the only parameter H equals the Hurst parameter of the continuous component 463 

(rainfall depth) of our model.  464 

Concerning the estimation of model parameters from observational data, H is 465 

estimated by the LSV (Least Squares based on Variance) method as described in 466 

Tyralis and Koutsoyiannis (2011), which is applied directly to each month of the data 467 

series. As the latter represent a realization of the intermittent rainfall process, n�,�, 468 

with mean and variance given by eqs. (21) and (22), respectively, such statistical 469 
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properties can be therefore estimated directly from data. Once we easily estimate the 470 

probability dry from data, we can solve eqs. (21) and (22) for the remaining two 471 

parameters to be estimated, i.e. the mean and variance of the rainfall depth process, 472 8�,�. Hence, we have a very parsimonious disaggregation model with only four 473 

parameters.  474 

We perform 10,000 Monte Carlo experiments to disaggregate monthly totals 475 

into sub-hourly time series of intermittent rainfall at the cascade level % = 10 (i.e., 476 

sample size 2��). Following the procedure described in sections 2 and 3 above, we 477 

first generate correlated series of rainfall amounts, 8�,�e , with ACF in eq. (15). Second, 478 

we generate correlated binary series of rainfall occurrences,	o�,�, with ACF in eq. (11) 479 

(for a detailed description of the algorithm, refer to Serinaldi and Lombardo (2016)). 480 

By eq. (20), we combine the outcomes of the two generation steps above to obtain the 481 

synthetic intermittent series, n�,�, with ACF in eq. (31). 482 

By way of example, in Figs. 8 and 9 we respectively compare the observed 483 

autocorrelograms for January 1999 and April 2003 data series against the ACFs 484 

simulated by our model. In the left and right panels of each figure, we show 485 

respectively the ACF of the occurrence (binary) process [u,��#
 and that of the 486 

intermittent (mixed) process [t,��#
. In either case, it can be noticed that the model on 487 

average fits the observed behaviour satisfactorily. Other summary statistics such as 488 

the mean, variance and probability dry of the data series are preserved by hypothesis 489 

(not shown).  490 

In Figs. 10 and 11, we compare the historical hyetographs for January 1999 491 

and April 2003 to a typical synthetic hyetograph generated by our model. In both 492 

cases, we can see that our model produces realistic traces of the real world 493 

hyetograph. Other than similarities in the general shapes, we showed that our model 494 

provides simulations that preserve the statistical behaviour observed in real rainfall 495 

time series.  496 

 497 

6 CONCLUSIONS 498 

The discrete MRC is the dominant approach to rainfall disaggregation in hydrological 499 

modelling literature. However, MRC models have severe limitations due to their 500 

structure, which implies nonstationarity. As it is usually convenient to devise a model 501 
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that is ergodic provided that we have excluded nonstationarity, Lombardo et al. 502 

(2012) proposed a simple and parsimonious downscaling model of rainfall in time 503 

based on the Hurst-Kolmogorov process. This model is here revisited in the light of 504 

bringing it more in line with the properties observed in real rainfall. To this aim, we 505 

upgrade our model to produce finer-scale intermittent time series that add up to any 506 

given coarse scale total.  507 

Our main purpose is to provide theoretical insights into modelling rainfall 508 

disaggregation in time when accounting for rainfall intermittency. Then, we propose 509 

and theoretically analyze a model that is capable of describing some relevant statistics 510 

of the intermittent rainfall process in closed forms. We combine a continuous-type 511 

stochastic process (representing rainfall amounts) characterized by scaling properties 512 

with a binary-valued stochastic process (representing rainfall occurrences) that can be 513 

characterized by any dependence structure. 514 

In particular, we first modify our model structure according to a top-down 515 

approach. Second, since our method utilizes nonlinear transformations of the variables 516 

in the generation procedure, we need to satisfy the additive property, which is the 517 

mass conservation between lower- and higher-level variables. To accomplish this 518 

purpose, we use an accurate adjusting procedure that preserves explicitly the first- and 519 

second-order statistics of the lower-level variables. Consequently, the original 520 

downscaling model by Lombardo et al. (2012) now becomes a disaggregation model.  521 

Furthermore, we account for intermittency in our modelling framework by a 522 

modelling approach of a mixed type with a discrete (binary) description of 523 

intermittency and a continuous description of rainfall amounts. Our disaggregation 524 

model gives the latter, while the former should be specified by assuming a certain 525 

rainfall occurrence model. Nevertheless, we provide general theoretical formulations 526 

for summary statistics of the mixed-type process. For illustration purposes, we assume 527 

two different models of rainfall occurrences: (i) the Bernoulli model characterized by 528 

one parameter only, and (ii) the Markov chain model characterized by two 529 

parameters. We carry out Monte Carlo experiments to emphasize the good 530 

performance of our model.  531 

Finally, comparisons between model simulations and intermittent rainfall time 532 

series from the real world show extremely encouraging results with a very 533 

parsimonious modelling framework (just four parameters).   534 
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APPENDIX A 676 

We assume that the disaggregated rainfall process at scale k is given by: 677 8�,� = exp'8;�,�*																																																																																																																					�A1
 
Consequently, its mean 9� and variance :�� are functions of their auxiliary 678 

counterparts 9\� and :\�� as follows (recall that 9\� = 9\� 2�⁄  and :\�� = :\�� 2�]�⁄ ):  679 

yz{
z|9� = 	expf9\�2� + :\��2�]���h
:�� = expf 9\�2�(� + :\��2�]�hfexp f :\��2�]�h − 1h																																																													�A2
 

Then, our primary goal is to let the process 8�,� follow the same scaling laws of the 680 

relevant auxiliary process 8;�,�, such as:  681 

}9� = 2�9�:�� = 2�]�:�� 																																																																																																																								�A3
 
where 9� and :�� are respectively the mean and variance of the initial rainfall amount 682 8�,� at the largest scale.  683 

To accomplish our goal, we may write 8�,� as:  684 8�,� = exp =<�%
8;�,� + A�%
B																																																																																											�A4
 
where <�%
 and A�%
 depend on the scale k of interest, and they should be derived to 685 

preserve the scaling properties in eq. (A3).  686 

We first recall that eq. (A4) implies:  687 

~9� = expfA�%
 + <�%
9\� + <��%
 :\��2 h:�� = exp�2A�%
 + 2<�%
9\� + <��%
:\��
�exp�<��%
:\��
 − 1
																													�A5
 
Substituting equation (A2) in (A3), equating the latter to eq. (A5) and then taking the 688 

natural logarithm of both sides, we obtain respectively:  689 

% log 2 + 9\�2� + :\��2�]��� = A�%
 + <�%
9\� + <��%
 :\��2 																																																�A6
 
2G% log2 + 9\�2�(� + :\��2�]� + logfexp f :\��2�]�h − 1h == 2A�%
 + 2<�%
9\� + <��%
:\�� + log�exp�<��%
:\��
 − 1
																																						�A7
 
Solving eq. (A6) we obtain:  690 

A�%
 = % log 2 + 9\� f 12� − <�%
h + :\��2 f 12�]� − <��%
h																																									�A8
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Substituting equation (A8) in (A7), after algebraic manipulations we have:  691 

<2�%
 = 1:�02 log�22%�G−1
 �exp� :�0222G%�− 1� + 1� 																																																								�A9
 
Without loss of generality we assume <�%
 > 0, then we derive the following 692 

relationships for the functions <�%
 and A�%
:  693 

yz{
z|<�%
 = 1:\��logf2���](�
 fexp f :\��2�]�h − 1h + 1h
A�%
 = % log 2 + 9\� f 12� − <�%
h + :\��2 f 12�]� − <��%
h																																					�A10
 

Finally, we recall that 9\� and :\�� respectively denote the mean and variance of the 694 

highest-level auxiliary variable 8;�,�. It can be easily shown that they can be expressed 695 

in terms of the known statistics 9� and :�� of the given rainfall amount 8�,� at the 696 

largest scale, such as:  697 

yz{
z|9\� = 2� 	flog 9�2� − 12 logf2����(]
 :��9�� + 1hh
:\�� = 2�]� log f2����(]
 :��9�� + 1h 																																																										�A11
 

 698 

APPENDIX B 699 

We provide herein some basic instructions to improve understanding of the 700 

implementation steps of our model. 701 

1. Input parameters 702 

− Hurst coefficient H: it is dimensionless in the interval (0, 1); 703 

− Mean 9� and variance :�� of the rainfall amount 8�,� to be 704 

disaggregated in time; 705 

− Last disaggregation step k: it is assumed that the desired length of the 706 

synthetic series to be generated is 2
k
, where k is a positive integer; 707 

− Probability dry p�,�: probability that a certain time interval is dry after 708 

k disaggregation steps; 709 

Estimating such parameters from rainfall data series is relatively 710 

straightforward (see also Koutsoyiannis 2003b). In addition, it should be 711 

emphasized that our model fitting does not require the use of statistical 712 
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moments of order higher than two, which are difficult to be reliably 713 

estimated from data (Lombardo et al. 2014).  714 

2. Auxiliary domain 715 

By eq. (5) we transform the initial lognormal variable 8�,� into the 716 

auxiliary Gaussian variable 8;�,�  with mean 9\� and variance :\�� given by 717 

eq. (A11). 718 

3. Disaggregation scheme 719 

This is based on a dyadic random cascade structure (see e.g. Fig. 1) such 720 

that each higher-level amount is disaggregated into two lower-level 721 

amounts satisfying the equality constraint in eq. (16). The generation step 722 

is based on eq. (7) that can account for correlations with other variables 723 

previously generated. 724 

4. Adjusting procedure 725 

By eq. (12), we transform lower-level variables generated in the auxiliary 726 

(Gaussian) domain back to the target (lognormal) domain, but eq. (16) is 727 

not satisfied anymore. To restore full consistency, we apply the power 728 

adjusting procedure to the disaggregated series, see eq. (17). 729 

5. Intermittency 730 

By eq. (20), we introduce the intermittent character in the (adjusted and 731 

back-transformed) synthetic series at the “basic scale”, which is 732 

represented by the last disaggregation step. 733 

 734 

APPENDIX C 735 

Let rainfall occurrences, o�,�, evolve according to a discrete-time Markov chain with 736 

state space O0, 1R. This Markov chain is specified in terms of its state probabilities:  737 

}p�,� = Prro�,� = 0sp�,� = Prro�,� = 1s = 1 − p�,� 																																																																																									�C1
 
and the transition probabilities (based on Koutsoyiannis 2006, eq. (13)):  738 

yz{
z|���,� = Prro�,� = 0�o�(�,� = 0s = p�,� + [�'1 − p�,�*���,� = Prro�,� = 0�o�(�,� = 1s = p�,��1 − [�
���,� = Prro�,� = 1�o�(�,� = 0s = 1 − ���,����,� = Prro�,� = 1�o�(�,� = 1s = 1 − ���,�

																																														�C2
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where [� = [u,��1
 is the lag-one autocorrelation coefficient of the Markov chain, and 739 p�,� is the probability dry. Both are model parameters. Clearly, we assume that the 740 

parameters are such that the probabilities in (C2) are all strictly positive. Then, the 741 

Markov chain is ergodic, and, therefore, it has a unique stationary distribution. Hence, 742 

we can derive its autocorrelation function (ACF).  743 

For a Markov chain, we can say that, conditional on the value of the previous variable 744 o�(�,�, the current variable o�,� is independent of all the previous observations. 745 

However, since each o�,� depends on its predecessor, this implies a non-zero 746 

correlation between o�,� and o���,�, even for lag t > 1. In general, conditional 747 

independence between two variables given a third variable does not imply that the 748 

first two are uncorrelated.  749 

To derive the ACF of our process, it can be easily shown that the correlation between 750 

variables one time period apart is given by the determinant of the one-step transition 751 

matrix P in (C2), such that:  752 det��
 = [� = [u,��1
																																																																																																										�C3
 
Similarly, the correlation between variables t time periods apart is given by the 753 

determinant of the t-step transition matrix P[t], i.e.:  754 det��,#.
 = [u,��#
																																																																																																																�C4
 
Recall that the Markov property yields (see Papoulis, 1991, eq. (16-114), p. 638):  755 �,#. = �� 																																																																																																																																	�C5
 
and that the basic properties of determinants imply:  756 det���
 = 'det��
*� 																																																																																																													�C6
 
Substituting eqs. (C5), (C4) and (C3) in eq. (C6), we obtain eq. (35).  757 
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FIGURES 758 

 759 

Fig. 1: Illustrative sketch for simulation of the auxiliary process 8;�,� . To eliminate “edge effects” in 760 

the generation procedure, we produce three (or five in case of G ≥ 0.9) parallel cascades, then 761 

use only the one in the middle for simulations, and discard the remainder (adapted from 762 

Lombardo et al. 2012). 763 

 764 

Fig. 2: Scatter plot of the calculated sum of lower-level variables vs. the given values of the higher-765 

level variables Z1,0 for all Monte Carlo experiments, where “empirical” and “adjusted” stand 766 

for original synthetic series and modified ones according to eq. (17), respectively.   767 
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Fig. 3: Ensemble mean, standard deviation and autocorrelogram (from left to right, respectively) of 769 

the example disaggregation process as a function of the time position j and lag t after k = 7 770 

cascade steps. 771 

 772 

Fig. 4: Ensemble probability dry of three example intermittent processes (with both random and 773 

Markovian occurrences) as a function of the time position j after k = 10 cascade steps. 774 

 775 

Fig. 5: Comparison between empirical and theoretical autocorrelation functions of random and 776 

Markovian occurrences for our simulations. Note that the former is a degenerate at zero for 777 

positive lags, according to eq. (32), while the latter follows the exponential form of eq. (35). 778 
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 780 

Fig. 6: Theoretical and empirical autocorrelograms of the entire rainfall process for three values of 781 

probability dry, i.e. p�,� = 0, 0.2, 0.8; in case of purely random occurrences. Note that the 782 

autocorrelation function for p�,� = 0 equals that of the rainfall depth process. 783 

 784 

Fig. 7: Theoretical and empirical autocorrelograms of the entire rainfall process for three values of 785 

probability dry, i.e. p�,� = 0, 0.2, 0.8; in case of Markovian occurrences. The autocorrelation 786 

function for p�,� = 0 is plotted to show the impact of the occurrence model on the dependence 787 

structure of the intermittent process.  788 
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 789 

Fig. 8: Comparison between the simulated (average, 1st and 99th percentiles) and empirical 790 

autocorrelograms for the data series recorded at Viterbo raingauge station in January 1999. In 791 

the left and right panels, we show respectively the ACF of the occurrence (binary) process 792 [u,��#
 and that of the intermittent (mixed) process [t,��#
. Estimated model parameters are: 793 9� = 0.72, :� = 1.02, p�,� = 	0.96, G = 0.83.  794 

 795 

Fig. 9: Same as Fig. 8 for the data series recorded at Viterbo raingauge station in April 2003. 796 

Estimated model parameters are: 9� = 0.61, :� = 0.65, p�,� = 	0.95, G = 0.7.  797 
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 798 

Fig. 10: Hyetograph of the rainfall data recorded at Viterbo raingauge station in January 1999 (left 799 

panel) along with the synthetic time series of equal length generated by our model (right 800 

panel).  801 

 802 

Fig. 11: Hyetograph of the rainfall data recorded at Viterbo raingauge station in April 2003 (left panel) 803 

along with the synthetic time series of equal length generated by our model (right panel). 804 
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