
Asia Oceania Geosciences Society

14th Annual Meeting

Singapore | 06-11 August 2017

Session HS06: Hydroinformatics

Large scale simulation experiments for the assessment

of one-step ahead forecasting properties of stochastic

and machine learning point estimation methods

Georgia Papacharalampous, Hristos Tyralis, and Demetris Koutsoyiannis

Department of Water Resources and Environmental Engineering,

School of Civil Engineering, National Technical University of Athens

(papacharalampous.georgia@gmail.com)

Singapore, August 9, 2017 Available online at: itia.ntua.gr/1719



Lambrakis et al. (2000); Ballini et al. (2001); Yu et al. (2004);

Yu and Liong (2007); Hong (2008); Koutsoyiannis et al. (2008); 

Papacharalampous et al. (2017b)

� The scientific literature includes a large number of studies assessing the one-step ahead

forecasting performance of stochastic and/or machine learning methods when applied

to geophysical processes within case studies, e.g.:

Background information
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� However, generalized information about the forecasting methods cannot be extracted

from case studies.

� Makridakis and Hibon (2000) presented the results of the M3-Competition. In the

latter the one- and multi-step ahead forecasting performance of several methods were

assessed on 3 003 real-world time series.

� Recently, Papacharalampous et al. (2017a) compared several stochastic and machine

learning methods regarding their multi-step ahead forecasting properties when applied

to stationary stochastic processes. The methods were tested on 48 000 simulated time

series.

� In a similar vein, Tyralis and Papacharalampous (2017) compared several random

forests methods regarding their one-step ahead forecasting performance on 16 000

simulated time series. The aim was to suggest an optimal set of time lags to be used in the

fitting phase.



The present study
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Time series Forecasting methods (see 6)

� 12 x 2 000 time series of 100

values, resulted from the simulation 

of ARMA and ARFIMA processes (see 

4), which are widely used for the 

modelling of geophysical processes

� 135 mean annual time series of 

temperature, which contain 100 

continuous observations (see 5)

� 11 stochastic methods

originating from the families: 

simple, ARMA, ARIMA, ARFIMA, 

exponential smoothing, state space

� 9 machine learning methods

originating from the families: 

neural networks, random forests, 

support vector machines

� We have focused on one-step ahead forecasting in geoscience.

� We have conducted 12 large scale simulation experiments.

� Additionally, we have conducted a real-world multiple-case study.

� We have compared 20 forecasting methods.

� The comparative assessment of the methods has been based on the error and the

absolute error of the forecast of the last value.



Simulated stochastic processes
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Simulation 

experiment

Stochastic

process

Parameters of the 

stochastic process

SE_1 AR(1) φ1 = 0.7

SE_2 AR(1) φ1 = -0.7

SE_3 AR(2) φ1 = 0.7, φ2 = 0.2

SE_4 MA(1) θ1 = 0.7

SE_5 MA(1) θ1 = -0.7

SE_6 ARMA(1,1) φ1 = 0.7, θ1 = 0.7

SE_7 ARMA(1,1) φ1 = -0.7, θ1 = -0.7

SE_8 ARFIMA(0,0.45,0)

SE_9 ARFIMA(1,0.45,0) φ1 = 0.7

SE_10 ARFIMA(0,0.45,1) θ1 = -0.7

SE_11 ARFIMA(1,0.45,1) φ1 = 0.7, θ1 = -0.7

SE_12 ARFIMA(2,0.45,2) φ1 = 0.7, φ2 = 0.2,

θ1 = -0.7, θ2 = -0.2

The simulations 

were performed 

with zero mean 

and standard 

deviation of 1.

Simulation of the 

ARMA processes
o R package stats

(R Core Team 2017)

Simulation of the 

ARFIMA processes
o R package fracdiff 

(Fraley et al. 2012)

The definitions of the

ARMA and ARFIMA

stochastic processes

can be found in Wei

(2006).



Real-world time series
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135 mean annual time series of temperature

Hurst parameter estimation
o R package HKprocess (Tyralis 2016, 

see also Tyralis and Koutsoyiannis 2011)



Implementation of the forecasting methods
o R package forecast (Hyndman and Khandakar 2008, 

Hyndman et al. 2017)

o R package kernlab (Karatzoglou et al. 2004)

o R package nnet (Venables and Ripley 2002)

o R package randomForest (Liaw and Wiener 2002) 

o R package rminer (Cortez 2010, 2016)

Forecasting methods
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Naive
simple

RW
simple

ARIMA_f
ARMA

ARIMA_s
ARMA

auto_ARIMA_f
ARIMA

auto_ARIMA_s
ARIMA

auto_ARFIMA
ARFIMA

BATS
state space

ETS_s
state space

SES
exponential

smoothing

Theta
exponential

smoothing

NN_1
neural networks

NN_2
neural networks

NN_3
neural networks

RF_1
random forests

RF_2
random forests

RF_3
random forests

SVM_1
support vector 

machines

SVM_2
support vector 

machines

SVM_3
support vector 

machines



Simulation experiments: Errors
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Simulation experiments: Absolute errors
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Simulation experiments: Average-case performance
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The darker the colour the better the forecasts.

ARMA processes ARFIMA processes



135 temperature time series: Forecasted vs observed
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135 temperature time series: Performance assessment
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The darker the colour the better the forecasts.

Medians of the absolute errors

Medians of the absolute percentage errors



� We have conducted large scale simulation experiments for the assessment of the one-

step ahead forecasting properties of several stochastic and machine learning point

estimation methods.

� Our findings indicate that the results can vary significantly across the different

simulation experiments and across the different time series.

� ARIMA_f, auto_ARIMA_f and BATS were proven to be the most accurate forecasting

methods on the ARMA processes. The same applies to auto_ARFIMA, BATS, SES and Theta

on the ARFIMA processes.

� The simple forecasting methods (Naive and RW) are also competent.

� Most of the observed far outliers were produced by neural networks.

� We have additionally applied our methodology to 135 mean annual time series of

temperature.

� The Theta method, presented by Assimakopoulos and Nikolopoulos (2000), exhibited the

best performance whithin this real-world case study being slightly better than BATS and

SES.

Summary and conclusions
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