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Quantification of GCMs uncertainty
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• Quantification of the uncertainties of the GCMs projections is a

mainstream subject.

• Discussion on the potential of the reduction of uncertainties

(Hawkins and Sutton 2009, 2011).

• Knutti and Sedláček (2013) conclude that the progress in terms of

narrowing uncertainties is too limited.

• An overview of methods to evaluate uncertainty of deterministic

models, not only in the climate science, is presented in Uusitalo et al.

(2015).

• Quantification of uncertainty with simulation of the local weather

(e.g. Groves et al. 2008), combination of multiple models (Smith et al.

2009, Chowdhury and Sharma 2011, Strobach and Bel 2015), bias

corrections.

• Methods are criticized.



Proposed framework
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• The Bayesian Processor of Forecasts (BPF) is based on the concept

of conditional stochastic independence (de Finetti 1974,

Krzysztofowicz 1985).

• The BPF “combines a prior distribution, which describes the natural

uncertainty about the realization of a hydrologic process, with a

likelihood function, which describes the uncertainty in categorical

forecasts of that process, and outputs a posterior distribution of the

process, conditional upon the forecasts” (Krzysztofowicz 1985).

• Estimating uncertainties of forecasted geophysical variables using

information from deterministic models is frequently met in rainfall-

runoff modelling (e.g. Montanari and Grossi 2008, Wang et al. 2009,

Zhao et al. 2011, Smith et al. 2012, Pokhrel et al. 2013, Zhao et al.

2015a and others).



How the BPF works
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y1 y2

y3 y4

h(y4|y3, x1) ∝ f(y2|y4) g(y4|y3) 

h(y4|y3, x1) = f(x1|y3, y4) g(y3, y4) / ξ(y3, x1) 

Stochastic 

model

Combining information from observations 

and deterministic model outputs

fn(x11, x12, …, x1n|x21, x22, …, x2n) = ∏i = 1
n  fi(x1i|x21, x22, …, x2n) fi(x1i|x21, x22, …, x2n) = fi(x1i|x2i) 

Conditional independence



Distinct fitting periods
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• The estimation of the stochastic model parameters should better be

performed using only data that were not used in the GCM

fitting/tuning, i.e. for the period after 2006.

• This would correspond to the so-called split-sample technique

(Klemeš 1986), which avoids possible model overfitting on the

available data and thus artificially good performance.

• This corresponds to model fitting period after 2006.



Case study
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• The observations are modelled using the Hurst-Kolmogorov

process (HKp, also known as fractional Gaussian noise, fGn,

Koutsoyiannis 2002, 2003).

• However, the modelling can be performed using any normal

stationary stochastic process.

• A linear model is used to represent the relation between the

observations and the deterministic model output.

• Estimates of the parameters are obtained using the Maximum

Likelihood Estimator for both the HKp (Tyralis and Koutsoyiannis

2011, Tyralis 2016) and the linear cases.

• Uncertainty in the estimation of the parameters is not considered

(See also Tyralis and Koutsoyiannis 2014).



Examples using simulations
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Deterministic model of poor quality

Perfect deterministic model



Examples using simulations
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Deterministic model of good quality

Deterministic model of good quality, moved up



Application of the methods – Deterministic models
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Model Name Temperature Precipitation Institute ID 

GISS-E2-H � � NASA GISS 

GISS-E2-R �  NASA GISS 

HadGEM2-AO � � NIMR/KMA 

IPSL-CM5A-LR � � IPSL 

IPSL-CM5A-MR � � IPSL 

MIROC5 � � MIROC 

MIROC-ESM � � MIROC 

MIROC-ESM-CHEM � � MIROC 

MRI-CGCM3 � � MRI 

NOAA GFDL GFDL-CM3 � � NOAA GFDL 

NOAA GFDL GFDL-ESM2G � � NOAA GFDL 

NOAA GFDL GFDL-ESM2M � � NOAA GFDL 

NorESM1-M � � NCC 

NorESM1-ME � � NCC 



General Circulation Models
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Area of interest and Thiessen polygons
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Temperature Precipitation

GISS-E2-H

Stations



Temperature, fitting period 1916-2005
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GISS-E2-H

MRI-CGCM3

prediction quantiles refer 95% confidence regions



Temperature, fitting period 2006-2015
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GISS-E2-H

MRI-CGCM3

prediction quantiles refer 95% confidence regions



Precipitation, fitting period 1916-2005
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GISS-E2-H

MRI-CGCM3

prediction quantiles refer 95% confidence regions



Precipitation, fitting period 2006-2015
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GISS-E2-H

MRI-CGCM3

prediction quantiles refer 95% confidence regions



Temperature 95% envelopes for all examined GCMs
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fitting period 1916-2005

fitting period 2006-2015

Looks like a Bayesian thistle! See for 

naming Tyralis and Koutsoyiannis (2017)



Precipitation 95% envelopes for all examined GCMs
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fitting period 1916-2005

fitting period 2006-2015



Conclusions

18

• Proofs and results can be found in Tyralis and Koutsoyiannis

(2017).

• The BPF can be applied to any normal stationary stochastic process.

Examples so far included the case of Markovian processes.

• The framework quantifies the uncertainty of the GCMs predictions.

• Large uncertainties are observed.

• The inclusion of the uncertainty in a fully Bayesian setting, also

considering the uncertainty of parameters, would result in even higher

uncertainties of the forecasted variables.
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