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Chaos was the law of nature; Order was the dream of man. 

(Henry Adams, 1918) 

 

That new data that we insist on analyzing 

in terms of old ideas 

(that is, old models which are not questioned) 

cannot lead us out of the old ideas. 

(ET. Jaynes, 1996) 

 

Everything should be as simple as 

it can be, but not simpler 

(quote attributed to A. Einstein in 1933). 

 

On the exchange procedure between order and chaos: 

When you have combined experimentation, 

mathematically and physically based justification, 

time-series analysis of countless observations, 

new parsimonious ideas applied to old and new data, 

and some things seem to be puzzled out , then 

you may have put some order into the chaos in Nature 

but also, Nature has certainly put some chaos into the order in you. 

 

Since it is impossible to obtain 

instantaneous and fully accurate measurements 

two facts are certain: 

we will never be able to completely unpuzzle Nature, 

since we cannot exactly model what we cannot observe, 

but also, we will never cease dreaming 

the Devine of what we cannot comprehend, 

like Love at first sight before time deteriorates it to determinism. 
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Abstract 

The high complexity and uncertainty of atmospheric dynamics has been long identified through the 

observation and analysis of hydroclimatic processes such as temperature, dew-point, humidity, 

atmospheric wind, precipitation, atmospheric pressure, river discharge and stage etc. Particularly, 

all these processes seem to exhibit high unpredictability due to the clustering of events, a behaviour 

first identified in Nature by H.E. Hurst in 1951 while working at the River Nile, although its 

mathematical description is attributed to A. N. Kolmogorov who developed it while studying 

turbulence in 1940. To give credits to both scientists this behaviour and dynamics is called Hurst-

Kolmogorov (HK). In order to properly study the clustering of events as well as the stochastic 

behaviour of hydroclimatic processes in general we would require numerous of measurements in 

annual scale. Unfortunately, large lengths of high quality annual data are hardly available in 

observations of hydroclimatic processes. However, the microscopic processes driving and 

generating the hydroclimatic ones are governed by turbulent state. By studying turbulent 

phenomena in situ we may be able to understand certain aspects of the related macroscopic 

processes in field. Certain strong advantages of studying microscopic turbulent processes in situ is 

the recording of very long time series, the high resolution of records and the controlled 

environment of the laboratory. The analysis of these time series offers the opportunity of better 

comprehending, control and comparison of the two scientific methods through the deterministic 

and stochastic approach. 

In this thesis, we explore and further advance the second-order stochastic framework for the 

empirical as well as theoretical estimation of the marginal characteristic and dependence structure 
of a process (from small to extreme behaviour in time and state). Also, we develop and apply 

explicit and implicit algorithms for stochastic synthesis of mathematical processes as well as 

stochastic prediction of physical processes. Moreover, we analyze several turbulent processes and 

we estimate the Hurst parameter (H >> 0.5 for all cases) and the drop of variance with scale based 

on experiments in turbulent jets held at the laboratory. Additionally, we propose a stochastic model 

for the behaviour of a process from the micro to the macro scale that results from the maximization 

of entropy for both the marginal distribution and the dependence structure. Finally, we apply this 

model to microscale turbulent processes, as well as hydroclimatic ones extracted from thousands of 

stations around the globe including countless of data. 

The most important innovation of this thesis is that, to the Author’s knowledge, a unique 

framework (through modelling of common expression of both the marginal density distribution 

function and the second-order dependence structure) is presented that can include the simulation 

of the discretization effect, the statistical bias, certain aspects of the turbulent intermittent (or else 

fractal) behaviour (at the microscale of the dependence structure) and the long-term behaviour (at 

the macroscale of the dependence structure), the extreme events (at the left and right tail of the 

marginal distribution), as well as applications to 13 turbulent and hydroclimatic processes 

including experimentation and global analyses of surface stations (overall, several billions of 

observations). 



 

 

A summary of the major innovations of the thesis are: (a) the further development, and extensive 

application to numerous processes, of the classical second-order stochastic framework including 

innovative approaches to account for intermittency, discretization effects and statistical bias; (b) 

the further development of stochastic generation schemes such as the Sum of Autoregressive (SAR) 

models, e.g. AR(1) or ARMA(1,1), the Symmetric-Moving-Average (SMA) scheme in many 

dimensions (that can generate any process second-order dependence structure, approximate any 

marginal distribution to the desired level of accuracy and simulate certain aspects of the 

intermittent behaviour) and an explicit and implicit (pseudo) cyclo-stationary (pCSAR and pCSMA) 

schemes for simulating the deterministic periodicities of a process such as seasonal and diurnal; 

and (c) the introduction and application of an extended stochastic model (with an innovative 

identical expression of a four-parameter marginal distribution density function and correlation 

structure, i.e. ���; �� = �/�1 + |�/ + �|���, with � = [�, , �, �, �]), that encloses a large variety of 

distributions (ranging from Gaussian to powered-exponential and Pareto) as well as dependence 

structures (such as white noise, Markov and HK), and is in agreement (in this form or through more 

simplified versions) with an interestingly large variety of turbulent (such as horizontal and vertical 

thermal jet of positively buoyancy processes using laser-induced-fluorescence techniques as well as 

grid-turbulence generated within a wind-tunnel), geostatistical (such as 2d rock formations), and 

hydroclimatic processes (such as temperature, atmospheric wind, dew-point and thus, humidity, 

precipitation, atmospheric pressure, river discharges and solar radiation, in a global scale, as well 

as a very long time series of river stage, and wave height and period). Amazingly, all examined 

physical processes (overall 13) exhibited long-range dependence and in particular, most (if treated 

properly within a robust physical and statistical framework, e.g. by adjusting the process for 

sampling errors as well as discretization and bias effects) with a mean long-term persistence 

parameter equal to H ≈ 5/6 (as in the case of isotropic grid-turbulence), and (for the processes 
examined in the microscale such atmospheric wind, surface temperature and dew-point, in a global 

scale, and a long duration discharge time series and storm event in terms of precipitation and wind) 

a powered-exponential behaviour with a fractal parameter close to M ≈ 1/3 (as in the case of 

isotropic grid-turbulence). 

Keywords: generic stochastic methodology; second order dependence structure; marginal 

probability density function; intermittency; principle of maximized entropy; long-term persistence; 

climacogram; autocovariance; power spectrum; variogram; prediction stochastic algorithms; sum 

of independent Markov models; explicit moving-average generation scheme; explicit and implicit 

cyclostationary generation schemes; statistical uncertainty of deterministic models; process 

discretization; estimators adjusting for statistical bias; fitting norms for both extreme left and right 

tails; turbulent processes in time scale and state; spatiotemporal modelling; geostatistical analysis 

of rock formations; experimental turbulent jets; grid-turbulence; global databases; temperature; 

dew-point and humidity; wind speed; precipitation; river stage and discharge; atmospheric 

pressure; wave height and period; solar radiation; Köppen-Geiger climatic classification. 
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through the analysis of global databases including thousands of stations and several billions of 

observations. 

PhD Boundary Conditions 

In the next Figure, we present my extended supervisory committee. 
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Papanicolaou, Christian Onof, Nikos Mamasis, Andreas Efstratiadis and the ITIA group. 
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gained rich scientific experience by meeting several challenges (such as working side-by-side with 
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PhD General Output Results 

The general results from the PhD thesis are: 

� In total, 23 publications in scientific journals on various themes (some are still pending). 

� Around 45 conference publications (in 17 conferences, mostly funded by NTUA). 

� More than 25 co-supervised theses (in an undergraduate and graduate level). 

� Participation in 7 projects, 5 Courses (3 at undergraduate level and 2 at graduate level) and 

challenging tasks (e.g., organizing tens of students for the EGU conference). 

� Met great people! (see next figure for a small sample). 

 

Figure: A sample of the Great People I met during my PhD thesis. 
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1 Introduction 

Nature is the most beautiful Being and although She might let you observe She will never reveal the 

true secret of Her beauty since it is hidden within an instantaneous reaction impractical to measure at 

a zero scale and in full accuracy but practical to feel and understand its outcome at a larger scale, that 

of the heart and mind, respectively. 

1.1 The complexity of nature 

The word “complex” is attributed to “a whole comprised of parts” and comes from Latin but has 

been re-borrowed from ancient Greek (originated from the verb “συμπλέκω”). It constitutes of the 

Latin preposition “com” or “cum”, which is related to the Greek preposition “συν” and is used, 

usually at the beginning of a word, to declare union, ensemble etc.; and the Latin verb “plectere” 
which comes from the Greek verb “πλέκω” meaning “weave”, “twine” etc. In recent times, we 

characterize a process as complex if it is difficult to analyze or explain it in a simple way. Climate 

dynamics is characterized by high complexity since it is comprised by numerous geophysical 

processes interacting with each other in a non-linear way. However, most of the involved processes 

(will) remain unknown since it is impossible to fully analyze such complicated systems. 

Nevertheless, even if we could determine a set of physical laws that describe in full detail the 

complexity of climate dynamics it would be impossible to combine the equations for the purpose of 

predictability due to the existence of chaos, i.e., a non-predictive sensitivity to initial conditions. For 

example, consider the analysis of Poincaré (1890) for the three-body problem, where chaotic 

behaviour emerges from the equations of classical mechanics when studying the interacting 

gravitational forces between three bodies (e.g., planets). Similar results came into sight from Lorenz 

(1963) while applying a simplified set of equations for the analysis of atmospheric dynamics. E.N. 

Lorenz came across to the idea that non-linear dynamic systems may have a finite limit of 

predictability (which for weather prediction he estimated this limit to be around two weeks), even 

if the model is perfect and even if the initial conditions are known almost perfectly. Later on, 

numerous methodologies were initiated not for predicting the exact outcome of a non-linear 

system, which as we already explained may be trivial, but for rather estimating the limits of this 

prediction through an alternative approach of stochastic analysis. 

1.2 The stochastic approach 

The scientific interest on Stochastics has increased over the last decades as an alternative way of 

deterministic approaches, to model the so-called random, i.e., complicated, unexplained or 

unpredictable, fluctuations recorded in non-linear geophysical processes. Randomness can emerge 

even in a fully deterministic system with non-linear dynamics (Koutsoyiannis, 2010). Thus, 

Stochastics help develop a unified perception for all natural phenomena and expel dichotomies like 

random vs. deterministic. Particularly, there is no such thing as a ‘virus of randomness’ that infects 

some phenomena to make them random, leaving other phenomena uninfected. It seems that rather 

both randomness and predictability coexist and are intrinsic to natural systems which can be 
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deterministic and random at the same time, depending on the prediction horizon and the time scale 

(Dimitriadis et al., 2016b). On this basis, the uncertainty in a geophysical process can be both 

aleatory (alea = dice) and epistemic (as in principle we could know perfectly the initial conditions 

and the equations of motion but in practice we do not). Therefore, dichotomies such as 

‘deterministic vs. random’ and ‘aleatory vs. epistemic’ may be false ones and may lead to paradoxes. 

The line distinguishing whether determinism (i.e. predictability) or randomness (i.e. 

unpredictability) dominates is related to the scale (or length) l(ε) of the time-window within which 

the future state deviates from a deterministic prediction by an error threshold ε. For errors smaller 

than ε, we assume that the system is predictable within a time-window l(ε) and for larger errors 

unpredictable (Dimitriadis and Koutsoyiannis, 2017). Therefore, by applying the concept of 

stochastic analysis we identify the observed unpredictable fluctuations of the system under 

investigation with the variability of a devised stochastic process. This stochastic process enables 

generation of an ensemble of realizations, while observation of the given natural system can only 
produce a single observed time series (or multiple ones in repeatable experiments). 

1.3 The Hurst-Kolmogorov dynamics 

The high complexity and uncertainty of climate dynamics has been long identified through plain 

observations as well as extended analyses of hydrometeorological processes such as temperature, 

humidity, surface wind, precipitation, atmospheric pressure, river discharges etc. Particularly, all 

these processes seem to exhibit high unpredictability due to the clustering of events, an example is 

large periods of high annual precipitation which are usually followed by large periods of annual 

droughts. Note that this behaviour should not be confused with seasonal effects that correspond to 
sub-annual scales. Interestingly, this clustering behaviour has been first identified in Nature by 

Hurst (1951) while analyzing water levels from the Nile for optimum dam design. However, the 

mathematical description and analysis of this behaviour through a power-law autocorrelation 

function (vs. lag) is attributed to Kolmogorov (1940) who developed it earlier while studying 

turbulence. To give credits to both scientists Koutsoyiannis (2010) named this behaviour as Hurst-

Kolmogorov (HK) behaviour. The high uncertainty of climate dynamics has been linked to the 

power-law type of the marginal distribution as well as of the dependence structure through 

empirical evidence (Newman, 2005) as well as theoretical justification (Koutsoyiannis, 2011). 

1.4 From the microscopic analysis to the macroscopic observation 

In order to properly study the aforementioned clustering of events and, in general, the stochastic 

behaviour of hydrometeorological processes we would naturally require copious measurements in 

annual scale. Unfortunately, large lengths of high quality annual data are hardly available in 

observations of hydrometeorological processes (Koutsoyiannis, 2014). However, the microscopic 

processes driving and generating the hydrometeorological ones are governed by turbulent state, 

e.g., as identified in the field of Hydrology by Mandelbrot and Wallis (1968). For example, the size of 

drops which is highly linked to the form and intensity of precipitation events is strongly affected by 

the turbulent state of small scale atmospheric wind (Falkovich et al., 2002). Also in a physical-basis 

the rain rate is found to be a function of gradient level wind speed, the translational velocity of the 
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tropical cyclone, the surface drag coefficient, and the average temperature and saturation ratio 

inside the tropical cyclone boundary layer (Langousis and Veneziano, 2009). Another example is 

the multifractal similarities between rainfall and turbulent atmospheric convection (Veneziano et 

al., 2006). Therefore, by studying turbulent phenomena (or other related small scale processes) in 

situ we may be able to understand certain aspects of the related macroscopic processes in field. 

Additional advantages of studying macroscopic processes in field through the microscopic 

turbulent ones in situ could be the recording of very long time series, the high resolution of records 

and the controlled environment of a laboratory. 

1.5 Scientific innovations of the thesis 

In this thesis, the sections are organized as follows: (1) in the first section we introduce basic 

concepts of the thesis, such as the HK dynamics and we discuss on the motivation and the scientific 

interest of the thesis mostly from an engineer point of view; (2) in the second section we introduce 

and develop the statistical tools as well as the methods used in the thesis; (3) in the third section we 

introduce and develop the generation algorithms that are extensively used in the thesis; (4) in the 

fourth section we discuss on how and why the HK dynamics are related to uncertainty as well as on 

the dichotomy between randonmness and determinism, with plenty applications on deterministic 

and more complex processes; (5) in the fifth section we conduct a stochastic analysis on an 

isotropic and an anisotropic turbulent process and we discuss on some identified similarities to 

hydrometeorological processes; (6) in the sixth section we apply a stochastic analysis on several 

hydrometeorological processes from a local to a global scale and we show how simple stochastic 

models can simulate certain challenging aspects such as long-term persistence, and (7) in the 
seventh section we summarize our results by highlighting the most important ones, and we discuss 

on future investigations. 

The major innovations of the thesis are the following: (a) further development and extensive 

application to numerous processes of the classical second-order stochastic framework (sections 2.1 

to 2.3 and 2.5) and related monoschedastic processes; (b) the estimation of the dimensionless 

statistical error through Monte-Carlo analysis for a variety of Markov and HK models, regarding the 

power spectrum, autocovariance and climacogram (section 2.4.5); (c) the analytical mathematical 

expression of the statistical bias of the autocovariance, variogram and power spectrum classical 

estimators, for an unknown mean and a known variance of the process, as a function of the 

theoretical autocovariance and climacogram (sections 2.3.4 and 2.3.5); (d) the further development 

of how to deal with discretization and statistical bias in stochastic modelling by selecting 

appropriate climacogram-based (and autocorrelation-based) estimators for the identification of the 

second-order dependence structure of a process in case of the analysis of a single time series and of 

several time series of the same process with different lengths and identical lengths (sections 2.5 

and 6); (e) the introduction of the Markov process for a different time interval and response time, 

and the expressions for its generation through an ARMA(1,1) model (section 2.4.1); (f) the further 

development of the Sum of Autoregressive (SAR) and Moving Average (SARMA) schemes that can 

generate a large variety of Gaussian processes approximated by a finite sum of AR(1) or ARMA(1,1) 

processes (section 3.2); (g) the further development of the Symmetric-Moving-Average (SMA) 
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scheme that can explicitly (or implicitly) generate any process second-order dependence structure 

(applied to any of the above metrics), approximate any marginal distribution to the desired level of 

accuracy as well as simulate certain aspects of the intermittent behaviour, and an explicit and 

implicit (pseudo) cyclo-stationary (pCSAR and pCSMA) schemes for simulating the deterministic 

periodicities of a process such as seasonal and diurnal (sections 3.3); (h) the introduction and 

application of an extended stochastic model (with an innovative identical expression of a four-
parameter marginal distribution density function and correlation structure, i.e. ���; �� =��1 + |�/ + �|��6�, with � = [�, , �, �, �]) to various turbulent, geostatistical and hydroclimatic 

processes (such as horizontal and vertical thermal jet of positively buoyancy processes using laser-

induced-fluorescence techniques as well as grid-turbulence generated within a wind-tunnel; 2d 

rock formations; temperature, atmospheric wind, dew-point, precipitation, atmospheric pressure, 

river discharges and solar radiation in a global scale; as well as very long time series of river stage, 

and wave height and period; sections 4.5, 5.3, 6.3 and 6.4), where the mean long-term persistent 

parameter is estimated (if treated properly within a robust physical and statistical framework, e.g. 

by adjusting the process for sampling errors as well as discretization and bias effects) equal to H ≈ 

5/6, and the fractal parameter (for the processes examined in the microscale such as grid-

turbulence, atmospheric wind, long duration storm events in terms of precipitation and wind, and 

surface temperature) equal to M ≈ 1/3 ; (i) estimation of the Hurst parameter based on the Köppen-

Geiger climatic-classification for numerous hydroclimatic processes from global databases (section 

6.5); and (j) the further development of the multi-dimensional classical second-order stochastic 

framework and HK process (section 3.4). 

Incidental contributions and moderate innovations of this thesis are: (a) several illustrative 

comparisons between complex natural as well as purely deterministic processes and the emerging 

statistical uncertainty (section 4); (b) the further development and application of analogue and 
stochastic prediction algorithms based on the climacogram (sections 3.5 and 4); (c) the estimation 

of the most uncertain parameters in flood inundation modelling based on commonly-used hydraulic 

models and on benchmark geometries (section 4.2). 
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2 Definitions, methods and notation for stochastic analysis 

In this section, we present the definitions and notations of the concepts used in the thesis as well as 

the statistical metrics, methods and models for the stochastic analysis. 

2.1 The definition of Stochastics and related concepts 

A.N. Kolmogorov (1931) is the first to mathematically define how a process can be stochastically 

determined based on the theory of continuous-time probability function (rather than discrete), a 

concept first visualized and applied by Bachelier (1900) while working on the evolution of price for 

his PhD thesis (Koutsoyiannis and Dimitriadis, 2016). Kolmogorov (1931) distinguishes a purely 

deterministic from a stochastic process by correspondingly letting a preceding state to uniquely 

define a subsequent state rather than by permitting only a certain probability of a possible event of 
a subsequent state to occur. Alternatively, the change of a physical system is deterministically 

(stochastically) defined if (the probability distribution for) every subsequent state is decisive by the 

knowledge of a preceding state. Therefore, a deterministic (stochastic) physical process can exactly 

predict (the probability of an event of) a future state given the present and/or past state. The 

purpose of stochastic analysis, or else the mathematical field of Stochastics, is to subject a natural 

process to a stochastic process, or in other words to predict real changes using a stochastic (i.e., not 

purely deterministic) mathematical scheme. 

Two concepts can arise from the above definition of Stochastics, these of stationarity and ergodicity 

(Koutsoyiannis and Montanari, 2015). Both concepts are properties of the stochastic models and 

not of the time series. While a process can be (wide-sense) stationary (i.e., its marginal 

characteristics and dependence structure do not alter with time) and non-ergodic, an ergodic 

process (i.e., its marginal and dependence characteristics can be evaluated through a single time 

series of infinite length) must be also stationary. However, if a process is non-ergodic then (as 

mentioned) we cannot estimate its characteristics from its realizations, and therefore, there is no 

physical meaning other than applying both concepts in Stochastics. To conclude, the main scope of a 

stochastic analysis is the identification of the most parsimonious (stationary and ergodic) model in 

continuous time that adequately preserves the physical characteristics of the natural process (after 

having removed any known deterministic behaviour) in discrete time along with its statistical 

estimates from observed timeseries in order to investigate its future variability (after having added 

the known deterministic behaviour) through the generation of synthetic timeseries (Figure 1). The 

same principles can be obviously also applied to spatiotemporal processes. 

The analysis presented in this thesis is also based on both the assumption of stationarity (although 

it can be easily expanded to non-stationary processes following the methodology described in 

section 3.3 and Appendix E) and ergodicity, so that we can estimate all the desired characteristics of 
the marginal distribution, dependence structure and combination thereof (e.g., intermittent 

behaviour) from a single time series and simulate all periodicities (e.g., seasonal, diurnal) of the 

process. Another important concept highlighted in most of the applications where many (and not a 

single) realizations are used, is the homogenization, where all time series corresponding to a single 
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physical process are treated as realizations of a single mathematical process, with a single marginal 

distribution and dependence structure. Therefore, by a simple homogenization scheme (which 

depends entirely on the expression of both the marginal distribution and dependence structure) we 

can combine all related time series to a single one with a much larger length and thus, towards a 

better estimation of the statistical and stochastic characteristics (see sections 3.3.3, 5.3 and 6.2 to 

6.5 for such applications). Note that the homogenization should not be confused with the concept of 

standardization which corresponds to the standardization of a process by simply dividing it with a 

parameter or to the concept of normalization which can be only applied to normal (or close to 

normal) processes in order to transform them properly to follow exactly (or approximately) the 

standard N(0,1) distribution. 

 

Figure 1: The steps for a stochastic analysis after having removed (before the analysis) and added 

back (after the analysis) any known deterministic behaviour (source: Koutsoyiannis and 

Dimitriadis, 2016). 

2.2 Observing a natural stochastic process 

A stochastic analysis should imitate the physical procedure of data collection as much as possible 
rather than strictly the observations. Observation of natural processes includes numerous technical 

and unsurpassed obstacles, mostly related to hydrometeorological and engineering processes, 

which are introduced by the complexity of numerous known and unknown interacting processes, 

such as (known) instrumental errors and the (unknown) hydroclimatic variability. This is of high 

importance in stochastic analysis and a stochastic analyst should be cautious with data as well as 

the technical properties of the instrument used for data collection in order not to end up simulating, 

without knowing it, the limitations of the instrument rather than the physical process. 

Although natural processes evolve in continuous time all observed timeseries are subject to a 

response time Δ > 0 of the instrument and a sampling time interval D ≥ Δ, often fixed by the 

observer. The corresponding discretized mathematical process can be estimated by averaging the 

continuous one over a time scale Δ ≥ 0 for every time interval D ≥ Δ. It should be noted that 

although the case Δ = 0 is technically impossible, is theoretically possible and can be used as an 

approximation for instruments of high resolution or instruments with negligible time interval. 

Thus, the discrete time stochastic process �7�8,9� can be calculated from the continuous one ��:� as: 
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�7�8,9� = ; �� �d �76=�9>8�76=�9 5  �1� 
where ? ∈ [1, "] is an index representing discrete time, " = AB689 C + 1 is the total number of 

realizations and D ⋲ [F5, ∞�F is the time length of the realization sample (Figure 2). Note that 

underlined quantities denote random variables. 

 

Figure 2: An example of realization (blue line) of a continuous time process x  and a sample of 

( )D
ix ,∆  realizations (black dots) of the discretized process ( )D

ix ,∆  averaged at time scale Δ, with time 

intervals D and for a total period T (source: Dimitriadis et al., 2016a). 

2.3 Stochastic metrics for identification of a stochastic process 

During a stochastic analysis we first have to visualize certain behaviours of the natural process 

using the appropriate stochastic metrics, then to combine them for the identification of the 

mathematical process and finally, to estimate the parameters of the latter. For simplicity, we can 

investigate separately the probability distribution function and the dependence structure of the 

process. 

2.3.1 Most common measures for the marginal characteristics of a process 

The marginal characteristics of the process can be entirely described by the probability distribution 

function, i.e., HI�J ≔ LI� ≤ �J, where � is the random process and � is a realization of the process. 

In this thesis, we also use the tail probability distribution function, i.e., H∗I�J ≔ 1 − HI�J, and the 

density distribution function, i.e., OI�J ≔ dHI�J /d�. The distribution function is estimated through HPI�J = "′/��"�, where n’ is the empirical number of occurrence with values less or equal to �, n is 

the total number of observations, and typically ��"� = " + 1 is known as the Weibull estimator. For 

the density of the distribution function we use the forward difference quotient, i.e., ORI�J =
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SHPI� + ℎJ − HPI�JU /ℎ, where h is the length of the interval over which O is estimated. Note that the 

estimation of a marginal characteristic of a process through the distribution function has the 
drawback of preference of the function ��"�, whereas through the density distribution function 

that of the type of the derivative discretization. Other important marginal characteristics of the 

process are the statistical moments (raw, central, L-moments etc.) that can be estimated directly 

from the distribution density function, i.e. for the central ones E VI� − WJ7X ≔ ; I� − WJ7OI�JY6Y d�., 

for i > 1, where W = EZ�[ is the mean of the process. In case of large samples we can either use the 

above definition (i.e., provided that we know the theoretical distribution OI�J of the process) in 

discretized form or the classical estimators for the sample central moments, whereas for small 

samples lack of information on OI�J could lead to poor estimation of the sample moments. 

2.3.2 Most common and uncommon metrics for the dependence structure of a process 

For the second order dependence structure (we will refer to this as dependence structure) we 

present several metrics based on the correlation between variables as a function of lag as well as on 

the variance of averaged variables as a function of scale. The first presented metric is the 

climacogram \�]�, i.e., the variance of the scaled process i.e., _̂ ; ��:�d:à  vs. scale ], where ] = b5 is 

the continuous-time scale in time units and b the dimensionless discrete one, assuming that Δ = D is 

a time unit that is used for discretization. The climacogram is directly linked to the autocovariance 

c(h), i.e., ��ℎ� = =c dcIℎc\�ℎ�J/dℎc, where h is the continuous-time lag in time units, and its power 

spectrum, i.e., e���: = 2 ; ��ℎ� cos�2π�ℎ� dℎY6Y , where � is the continuous frequency in reverse 

time units (Koutsoyiannis, 2013). Thus, each of these three stochastic tools contains exactly the 

same information and either can be used for the estimation of the dependence structure. However, 

it has been shown that the former provides better estimates than the other two (Dimitriadis and 

Koutsoyiannis, 2015a) and therefore, all applications here are based on the climacogram. In Tables 

1-3, we introduce the definitions of several climacogram-based measures and in Tables 4-6, the 

corresponding autocovariance-based ones. We show the definitions in case of a stochastic process 

in continuous time and in discrete time, widely used estimators and estimations based on the latter 

estimators, all expressed as a function only of the climacogram (Dimitriadis et al., 2016a). 

2.3.3 Climacogram-based metrics for the dependence structure as a function of scale 

First, we present the climacogram definition and expressions for a process in continuous and 

discrete time, along with the properties of its estimator (Table 1), for comparison with the 

autocovariance function. 
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Table 1: Climacogram definition and expressions for a process in continuous and discrete time, 

along with the properties of its estimator. Source: Dimitriadis et al., (2016a). 

Type Climacogram  

continuous \�]�: = Var lm ��n�dn`
a o /]c 

where ] ⋲ ℝ> 

(T1-1) 

discrete \�8��b�: = VarZ∑ �r�8�srt= [bc = \�b5� = \�]� 

where b ⋲ ℕ is the dimensionless scale for a discrete time process 

(T1-2) 

classical 

estimator 

(biased) 

\v�8��b� = 1w"/bx − 1 y I�7�8� − �Jcwz/sx
7t=  

where w"/bx is the integer part of "/b and in the following expressions we 

assume that w"/bx ≈ "/b, �7 = I∑ �rs7rts�76=�>= J/b is the sample average of 

the time-averaged process �7  at scale b = ]/5 and � = ∑ �rzrt= /" is the 

sample average at scale b = 1. 

(T1-3) 

expectation 

of the biased 

estimator 

E V\v�8��]�X = 1 − \�"5�/\�b5�1 − b/" \�b5� 
(T1-4) 

classical 

estimator 

(unbiased) 

\v�8��b� = b" yI�|�8� − �Jcz/s
7t= + \�"5� 

where E V\v�b5�X = \�b5� 

(T1-5) 

Note that the climacogram can be estimated through other methods such as raw moments, L-

moments etc. but for convenience in this thesis we choose the central classical moment estimator. 

Furthermore, we introduce a climacogram-based variogram (CBV) for comparison with the 

classical variogram defined in Table 5. 



 

10 

Table 2: Climacogram-based variogram (CBV) definition and expressions for a process in 

continuous and discrete time, along with the properties of its estimator (source: Dimitriadis et al., 

2016a). 

Type Climacogram-based variogram  

continuous  �]�: = \�0� − \�]� (T2-1) 

discrete  }�8��b�: = \�0� − \�b5� (T2-2) 

classical 

estimator 
 R}�8��b� = \�0� −  R}�8��b� (T2-3) 

expectation 

of classical 

estimator 

E V R}�8��b�X = \�0� − E V R}�8��b�X 
(T2-4) 

Note that CBV includes the process variance at scale 0, i.e., \�0�, and so, in cases where \�0� is 

infinite, we can use a slightly different estimator with \�5� instead. Finally, we introduce a 

climacogram-based spectrum (CBS) for comparison with the classical power spectrum 

(Koutsoyiannis, 2013) defined in Table 3. 

Table 3: Climacogram-based spectrum (CBS) definition and expressions for a process in continuous 

and discrete time, along with the properties of its estimator (source: Dimitriadis et al., 2016a). 

Type Climacogram-based spectrum  

continuous ~���: = 2\�1/��� �1 − \�1/��\�0� � 

where � ⋲ ℝ is the frequency for a continuous time process (in inverse 

time units) and is equal to �=1/k. 

(T3-1) 

 

discrete ~}�8����: = 2\�1/��� �1 − \�1/��\�0� � 

where � ⋲ ℝ is the frequency for a discrete time process (dimensionless; ω 

= wΔ) 

(T3-2) 

classical 

estimator 
~P}�8���� = 2\�1/��� �1 − \�1/��\�0� � 

(T3-3) 

expectation 

of classical 

estimator 

E V~P}�8����X = 2E[\�1/��]� �1 − E[\�1/��]\�0� − Var[\�1/��]\�0�E[\�1/��]� 
(T3-4) 
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Note that in cases where \�0� is infinite, CBS simplifies to 
c��=/��� . Another useful metric is the 

dimensionless-climacogram which is defined as \�]�/\�0� (or \�b5�/\�5� for the HK process) to 

be used as an alternative tool to the autocorrelation function. 

2.3.4 Autocovariance-based metrics for the dependence structure as a function of lag 

The climacogram is useful to measure the variance of a process among scales (the kinetic energy, in 

case the variable under consideration is the velocity), and has many advantages in stochastic model 

building, namely small statistical as well as uncertainty errors (Dimitriadis and Koutsoyiannis, 
2015a). It is also directly linked to the autocovariance function ��ℎ�, ℎ being the continuous-time 

lag, by the following equations (Koutsoyiannis, 2013): 

\�]� = 2 m�1 − �����]�d�=
a  �2� 

��ℎ� = dc�ℎc\�ℎ��2dℎc  �3� 
The autocovariance definition and expressions for a process in continuous and discrete time, along 

with the properties of its estimator can be seen in Table 4. 
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Table 4: Autocovariance definition and expressions for a process in continuous and discrete time, 

along with the properties of its estimator (source: Dimitriadis et al., 2016a). 

Type Autocovariance  

continuous ��ℎ�: = covZ��:�, ��: + ℎ�[ 

where ℎ ⋲ ℝ is the lag for a continuous time process (in time units) 

(T4-1) 

 

discrete �}�8���� ≔ Δc[�c\��5�]2Δ[�c] = 

= 12 S�� + 1�c\I�� + 1�5J + �� − 1�c\I�� − 1�5J − 2�c\��5�U 

where � ⋲ ℤ is the lag for the process at discrete time (dimensionless) 

(T4-2) 

classical 

estimator �̂}�8���� = 1���� y ��7�8� − 1" �y �r�8�z
rt= �� ��7>��8� − 1" �y �r�8�z

rt= ��z6�
7t=  

where ���� is usually taken as: n or n – 1 or n – �. 

(T4-3) 

expectation 

of classical 

estimator 

EZ�̂}�8����[ = =���� ��" − ���}�8���� + ��z \��5� − �\�"5� − �z6���z \I�" − ��5J� * 
(T4-4) 

* For proof see in (Dimitriadis and Koutsoyiannis, 2015a). 

 

We then introduce the classical variogram or else the second-order structure function (Table 5). 

Table 5: Variogram definition and expressions for a process in continuous and discrete time, along 

with the properties of its estimator (source: Dimitriadis et al., 2016a). 

Type Variogram  

continuous ��ℎ�: = ��0� − ��ℎ� (T5-1) 

discrete �}�8����: = \�5� − �}�8���� (T5-2) 

classical 

estimator 
�v}�8���� = \v�5� − �̂}�8���� (T5-3) 

expectation 

of classical 

estimator 

EZ�v}�8����[ = E V\v�5�X − EZ�̂}�8����[ 
(T5-4) 
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2.3.5 The power spectrum 

Finally, we define the power spectrum (or else spectral density) that was introduced as a tool to 

estimate the distribution of the power (i.e., energy over time) of a velocity sample over frequency, 

more than a century ago by Schuster (Stoica and Moses, 2005, p. xiii). Since then, various methods 

have been proposed and used to estimate the power spectrum, via the Fourier transform of the 

time series (periodogram) or its autocovariance or autocorrelation functions (for more information 

on these methods see in Stoica and Moses, 2005, ch. 2, and Gilgen, 2006, ch. 9). Most common (and 

also used in this thesis) is that of the autocovariance which corresponds to the definition of the 

power spectrum of a stochastic process. However, this accurate mathematical definition lacks 

immediate physical interpretation since the Fourier transform of a function is nothing more than a 

mathematical tool to represent the function in the frequency domain in order to identify any 

periodic patterns which are not easily tracked in the time domain. Historically the power spectrum 

is defined in terms of the Fourier transform of the process x(t) by taking the expected value of the 
squared norm of the transform for time tending to infinity, which for a stationary process 

converges to the Fourier transform of its autocovariance (this is known as the Wiener- Khintchine 

theorem after Wiener, 1930, and Khintchine, 1934). Both definitions can be used for the power 

spectrum; however the latter is simpler and more operational and has been preferred in modern 

texts (e.g. Papoulis and Pillai, 1991, ch. 12.4). 

Several studies that evaluate the statistical estimator of the power spectrum conclude that its major 

disadvantage is that of its large variance (Stoica and Moses, 2005, p. xiv). Notably, this variance is 

not reduced with increased sample size (Papoulis and Pillai, 1991, p. 447). To remedy this, several 

mathematical smoothing techniques (e.g. windowing, regression analysis, see Stoica and Moses, 

2005, ch. 2.6) have been developed. In cases of short datasets, trend-line approaches are most 

commonly used to obtain a very rough estimation of the model behaviour or rules of thumb to 

distinguish exponential and power-type behaviours (e.g., Fleming, 2008). In cases of long datasets, 

the most commonly used approach is the windowing (data partitioning), also known as the Welch 

approach, where a certain window function (the simplest of which is the Bartlett window) is 

applied to nearly independent segments. In the latter method, one has first to divide the sample 

into several segments (but only after insuring these segments have very small correlations between 

them), to calculate the power spectrum for each segment and then to estimate the average. 

Assuming that the process is stationary, this average will be the power spectrum estimate. 

Unfortunately, the more segments we divide the sample into, the more the cross-correlations 

between segments are increasing as well as the more we lose in low frequency values (since the 

lowest frequency is determined by the length of the segments). Thus, this method could be indeed a 

robust one, but only for a very long sample (which is a rare case in geophysics), only when there is 

no interest in the low frequency values (which can reveal large-scale behaviours) and only for an 

unbiased power spectrum estimator or at least for an ‘a priori’ known bias, e.g. via an analytical 
equation (which, as can observe in Table 6, is rarely the case). Based on these limitations 

Koutsoyiannis (2013) provided some examples where this smoothing technique fails to detect the 

large scale behaviour (i.e., HK behaviour), gives small scale trends that are completely different 

from the ones characterizing the stochastic model and have several numerical calculation problems 
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that could cause misinterpretation. These all are due to the fact that the power spectrum estimator 

has a large variance, is biased and it is difficult to estimate these analytically. Nevertheless, the 

power spectrum is a useful tool to analyze a sample in harmonic functions and so, to detect any 

dominant frequencies (this is the reason behind harmonic analysis introduced by Fourier, 1822, 

and not time series analysis). In Table 6, we summarize the basic equations for the power spectrum 

definition and estimation. Note that the identification and simulation of the dependence structure 

through frequency can be employed through the power spectrum (in this case frequency is defined 

as the inverse of lag) or equivalently through the CBS (Table 3) which is based on the climacogram 

(in this case frequency is defined as the inverse of scale). 

Table 6: Power spectrum definition and expressions for a process in continuous and discrete time, 

along with the properties of its estimator (source: Dimitriadis et al., 2016a). 

Type power spectrum  

continuous e���: = 4 m ��ℎ� cos�2π�ℎ� dℎY
a  

(T6-1) 

discrete e}�8����: = 25\�5� + 45 y �}�8���� cos�2π���Y
�t=  

where � ⋲ ℝ is the frequency for a discrete time process (dimensionless; ω = 

wΔ) 

(T6-2) 

classical 

estimator ê}�8���� = 25�̂}�8��0� + 45 y �̂}�8���� cos�2π���z
�t=  

(T6-3) 

expectation 

of classical 

estimator** 

EZê}�8����[ = 2"5I\�5� − \�"5�J/��0� + 

+45 y cos�2π������� ��" − ���}�8���� + �c" \��5� − �\�"5� − �" − ��c" \��n − ��Δ��z
�t=  

(T6-4) 

The continuous-time power spectrum can be solved in terms of c to yield (the inverse cosine 

Fourier transformation): 

��ℎ� = m e��� cos�2π�ℎ� d�Y
a  �4� 

Also, it can be solved in terms of \ to yield (Koutsoyiannis, 2013): 

\�]� = m e��� sinc�π�]��π�]�c d�Y
a  �5� 
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e��� = −2 m �2π�]�c\�]� cos�2π�]� d]Y
a  �6� 

Note that the discrete-time power spectrum and the expectation of its classical estimator are more 

easily calculated with fast Fourier transform (fft) algorithms. 

2.4 Stochastic processes and estimators used in thesis 

Although numerous stochastic processes exist in literature, in this thesis we mostly focus on 

processes with mixed powered-exponential and power-type dependence structures as well as 

mixed forms of various distribution functions such as Gaussian-type, powered-exponential and 

Pareto-type. 

2.4.1 The Markov process  

As shown above the time constants Δ and D affect the estimation of the statistical properties of the 

continuous time process. Two special cases, Δ = 0 and Δ = D, are analyzed by Koutsoyiannis (2013) 

who shows that in several tasks the differences are small. For samples with Δ << D (e.g., hourly 

timeseries with one minute resolution) we can assume Δ = 0 and for samples with Δ/D ≈ 1 we can 

focus on the case D = Δ > 0. 

However, it is known that the discrete time representation of the Markov process corresponds to an 

ARMA(1,1) model (as mentioned in Dimitriadis and Koutsoyiannis, 2015a; Koutsoyiannis, 2002), 

denoted as n. Its algorithm for the general case of D ≠ Δ, with discrete autocovariance: 

���8,9���� = =8� m m ��� − n�d�dn�9>8
�9

8
a = �I1 − 368 �⁄ Jc�5/��c 36�9�68� �⁄  �7� 

where q is a scale parameter (with ρ1=368 �⁄ ) and λ is the true variance at zero lag. 

In Table 7, we provide the mathematical expressions of the climacogram, autocovariance and 

power spectrum for a Markov process, in continuous and discrete time for D = Δ > 0. 
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Table 7: Climacogram, autocovariance and power spectrum expressions of a Markov process, in 

continuous and discrete time (source: Dimitriadis and Koutsoyiannis, 2015a). 

Type Markov process  

autocovariance (continuous) ��ℎ� = �36|�|/�  (T7-1) 

autocovariance (discrete) ���8���� = �I1 − 368 �⁄ Jc�5/��c  e6�|�|6=�8 �⁄  

for |�| ≥ 1 and ���8��0� = \�5� 

(T7-2) 

climacogram (for continuous 

and discrete) 
\�]� = 2��]/��c I]/� + 36` �⁄ − 1J 

with \�0� = � 

(T7-3) 

power spectrum (continuous) e��� = 4��1 + 4π�c�c (T7-4) 

power spectrum (discrete) e��8���� = 4�� �1 − 15 �⁄  �1 − cos�2�5��� sinh�5 �⁄ �cosh�5 �⁄ � − cos�2�5�� � (T7-5) 

 

2.4.2 The HK-behavioural processes 

The term HK-behaviour corresponds to the behaviour of process at large scales while the process 

itself could not be necessarily an HK process or follow a Gaussian distribution. For example, both 

the fractional Gaussian noise (fGn; see section 3.2) and the generalized HK (GHK; see below) 

process are processes exhibiting an HK behaviour, but while the former’s autocorrelation function 

is a power-law type at the whole range of lags, the latter’s autocorrelation function is a power-law 

type only at large lags (at small lags behaves like a Markov process) and its distribution function is 

not necessarily Gaussian. 

The HK process (for more details on the definition see in section 3.4) can be described via the 

climacogram in continuous time (with Δ = D): 

\�b5� = \�5�bc6c� �8� 
where b = ]/5 denotes discrete time scale and \�5� is the variance at the unit time scale Δ, and H is 

the Hurst parameter (0 < H < 1). Note that this process has infinite variance at zero scale and thus, 

should not be used to model the small scales of a physical process (e.g., the fGn process is widely 

but erroneously used to model several processes at small scales). 

Another example that will be used in this thesis is the so-called Hybrid Hurst-Kolmogorov (HHK) 

process (Koutsoyiannis et al., 2017), whose climacogram is: 
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\�]� = ��1 + �]/��c��=6��   �9� 
where λ is the variance of the continuous-time process ��:�, M is a fractal parameter, H is the Hurst 

parameter and q is a characteristic time parameter. A particular case of the HHK, which is also used 

in this thesis and referred to as GHK process, is when M = ½, i.e.: 

\�]� = ��1 + ]/��c6c�   �10� 
Note that due to the discretization effect, an HK process for D ≠ Δ > 0 can be well represented by a 

GHK process. For example, an HK process with Δ = 0.1, D = 1, λ = 1 and Η = 0.8, can be well 

represented by a GHK process with Δ = D = 1, λ = 2.2, q =0.14 and Η = 0.8. 

In Figure 3, we show the discretization effect for the case D ≠ Δ and for various Markov processes, 

as well as an example of a comparison between an HK process with D/Δ ≥ 5 (which is 

approximately invariant to Δ and can be well represented by a process with Δ = 0) and with D = Δ. 

  

Figure 3: [left] Ratio of the true Markov process at lag one for D ≠ Δ over the one with D = Δ vs. D/q, 

for various values of the ratio Δ/q; and [right] Ratio of the true HK process for D/Δ ≥ 5 vs. the one 
with Δ = D for various Hurst parameters. 

 

We can also define another generalized HK process (gHK), similar to the HHK one, if we expand the 

HK process through the autocovariance rather than the climacogram. The expressions of 

climacogram, autocovariance and power spectrum for the gHK process are summarized in Table 8. 

An important remark is that as the number of model parameters increase so does the complexity of 

these models, and in some cases it may be more difficult to estimate the parameters and/or 

perform a fast Monte-Carlo analysis. A fair alternative is to use other simpler models to represent 

the target model (see for example the SAR, SARMA and SMA schemes in section 3). Additionally, we 

can define more general models (with additional parameters) that can capture a wider variety of 

model behaviours in a simpler way. Such model is the one proposed in Dimitriadis et al. (2016a), 

and it comprised of a sum of a powered-exponential (PE) autocovariance (that can simulate the 

small scale fractal behaviour) and a gHK model with M = ½(based on autocovariance; see next 

1.E-03

1.E-02

1.E-01

1.E+00
1.E+00 1.E+01 1.E+02

D
/q

Ratio of true process at lag one over the one with Δ = D

Δ/q = 50

Δ/q = 20

Δ/q = 10

Δ/q ≤ 1
0.7

0.8

0.9

1.0

1 2 3 4 5

R
at

io
 o

f 
tr

u
e 

p
ro

ce
ss

 f
o

r 
D

/Δ
≥

5
o

v
er

 th
e 

o
n

e 
w

it
h

 Δ
=

 D

lag

H = 0.9

H = 0.8

H = 0.7

H = 0.6

H = 0.5



 

18 

Table) for the large scale behaviour (abbreviated as PEgHK). This model includes six parameters 

(instead of the five-parameter HHK one) but can preserve any HHK behaviour and it is simpler to 

implement. In this way, we can first apply the PEgHK model and then, estimate the parameters of 

the corresponding HHK one to physically interpret the behaviour of the process. 

Table 8: Climacogram, autocovariance and power spectrum expressions of a positively correlated 

gHK process, with 0 < � < 1, in continuous and discrete time. 

Type gHK process  

autocovariance 

(continuous) 
��4� = ���|4|/��c� + 1�6¡/�c��; Gneiting (2000) 

with � = 2 − 2¢ 

(T8-1) 

autocovariance 

(discrete) 

for M=1/2 

���8��£� = � |£5/� − 5/� + 1|c6¡ + |£5/� + 5/� + 1|c6¡ − 2|£5/� + 1|c6¡�5/��c�1 − ���2 − ��  

for j ≥ 1, with ���8��0� = \�5� 

(T8-2) 

climacogram 

(continuous and 

discrete)  

for M=1/2 

\�¤� = 2���¤/� + 1�c6¡ − �2 − ��¤/� − 1��1 − ���2 − ���¤/��c  

with \�0� = � 

(T8-3) 

power 

spectrum 

(continuous) 

for M=1/2 

e��� ≈ 4��¡ Γ�1 − ��Sin S��2 + 2��|�|U�2π|�|�=6¡
− 4�� F= c V1; 1 − �2 , 32 − �2 ; −�c�c�cX1 − �  

(where F= c is the hyper-geometric function) 

(T8-4) 

power 

spectrum 

(discrete) 

for q>0 

not a closed expression  

It should be noted that the gHK for M=1/2 (or the GHK) process can be considered as an HK process 

that gives a finite autocovariance value at zero lag, which is the common case in geophysical 

processes (an HK process with autocovariance |ℎ|6c>c� gives infinity at zero lag). Thus, a 
parameter q is added to the HK process indicating the limit between HK processes (q << |ℎ|) and 

those affected by the minimum scale limit of the process (q >> |ℎ|). To switch to an HK process from 

the gHK (or GHK) we can replace λ with ��6c>c� and then estimate the limit � → 0 (see Dimitriadis 
and Koutsoyiannis, 2015a, section 2.1 of the supplementary material). 
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2.4.3 A mixed dependence structure from entropy extremization 

In complex systems, entropy maximization (or extremization of entropy production) is a principle 

that can determine the thermodynamic equilibrium of a system (Koutsoyiannis, 2011). Therefore, it 

is a good practice when modelling a complex system, to first try-out processes that result from the 

extremization of entropy, which is defined for a random process with a probability density function 

f(x) as (Koutsoyiannis, 2011; Shannon, 1948): 

©I�J = Ε V−ln SOI�JUX (11) 

Note that in terms of the density function the maximization of entropy lead to (Jaynes, 1957) O��; �� = e6 ∑ «¬||¬®¬¯°  (where � is the parameters matrix), whereas in terms of the autocorrelation 

function it should lead to ±�ℎ; �′� = e6 ∑ «¬²|�|¬®¬¯° ≈ ∑ 36|�|³¬/�¬Y7ta  (where h is the lag and �′ the 

parameters matrix). Thus, a sum of powered-exponential (and not just autoregressive) processes 

should be adequate to represent any process dependence structure (similar expressions can be also 

used in terms of the climacogram). 

Extremization of entropy is equivalent to extremization of entropy production (Koutsoyiannis, 

2011). Such one-parameter processes that extremize the Entropy Production in Logarithmic Time 

(EPLT), i.e., ´I��]�J = d©���]� �/dln�]�, are the Markov and HK processes. Particularly, the 

Markov process maximizes the EPLT in small scales while the HK process dominates in large scales 

(Koutsoyiannis, 2016). Interestingly, the EPLT for a Gaussian HK process is independent of scale 

and equals ¢ (Koutsoyiannis, 2011), while for a Gaussian-Markov process it can be expressed as: 

´�]� = 12 ln�±6`��1 − ±`� �±` + ln�±6`� − 1�⁄  (12) 

Following the analysis in (Koutsoyiannis, 2011, 2016), we investigate the powered exponential 

dependence structure, i.e., with an autocovariance function ��ℎ� = �e6��/���µ
 (Gneiting, 2000), 

through the HHK process and an extended version called HMK (Hurst-Mandelbrot-Kolmogorov) in 

order to include the effect of viscosity (a microscale effect generated by roughness), i.e. in terms of 

the correlation coefficient (including an extra parameter K’ in the innovative expression of Gneiting, 

2000) ±�4� = ±′/�1 + �4/�′ + ¶′�c�·��=6��/�·, where ±′ = �1 + ¶′c�·��=6��/�·, so as ±�0� = 1, or in 

terms of the climacogram (see also Dimitriadis and Koutsoyiannis, 2017): 

\�]� = ��1 + �]/� + ¶�c��=6��   �13� 
where � is the variance at the zero time scale \�0� = �/�1 + ¶c���=6��/¸, adapted for roughness. 

In Figure 5, we observe that the HK process corresponds to a larger ELTP for large scales whereas 

for small scales the Markov (or the powered-exponential) process. Therefore, among processes 

with Markov, HK and mixed behaviour, we expect that an HMK process with H > 0.5, should 

adequately describe a great variety of natural processes. Interestingly, the same expression can be 
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used for the density distribution function (as shown in the next section) and thus, one may use a 

single expression (that drives both the distribution function and dependence structure) to model an 

amazingly large variety of geophysical processes. This may seem strange, since one may think that 

may exist infinite such expressions. However, recently Koutsoyiannis (2017) has shown that such 

expressions are bounded to the zero-infinite conditional entropy extremization space, and thus, 

only a narrowed family of generalized expressions can robustly model geophysical processes. 

  

Figure 4: [left] Illustration of the HHK or HMK (simulated only by the (S)MA scheme for M ≠ 1/2), 

and GHK and HK (simulated either by (S)MA or AR families) models, as well as fractal-type (or else 

powered-exponential-type), Markov-type, HK-type and mixed (HMK or HHK) behaviours, 
expanding from micro to macro scale (Source: Dimitriadis et al., 2018a); [right] The ELTP of a 

Markov process with q = 1 and an HK process with Η = 5/6, an HHK with additionally M = 1/3 and 

an HMK with additionally K = 1. 

 

2.4.4 Distributions based on entropy extremization 

The extremization of entropy for a white noise process results in the so-called maximized entropy 

(ME) distribution, written as (Dimitriadis and Koutsoyiannis, 2017; Jaynes, 1957): 

O��; ¹�: = 1�a e6� «^>º»¼½�«��¾ «�¿�>¾ «À¿À>º»¼½�«Á�¾ «Á¿Á>⋯>¾ «Ã¿Ã�  �14� 
where λ = [�a, … , �r] , with �r having same units as �, �r ≥ 0 and with 

constraints: ; �ÆO��; ¹�d�Y6Y = EZ�Æ[, for Ç = 0, …, È. 

The ME for l = 2 results in the well-known Gaussian distribution (e.g., Koutsoyiannis, 2014). 

Another interesting distribution function for a real random variable is a generalization of the 

Cauchy distribution, i.e.: 

O��� = ¾1 + É� + �É�¿6�
 (15) 
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where Ê is a scale parameter in units of [x], c and � are the dimensionless shape parameters of the 

marginal distribution, and b is a dimensionless lag parameter. 

This distribution is similarly derived from the maximization of entropy as shown in the previous 

section, i.e., combination of exponential-type distributions for small values of x and heavy-tailed 

distributions for large values of x, maximizing the raw moment E[xb] and the entropic moment (cf., 

Costa, 2008) E[ln(xc)], respectively. Also, it can describe a variety of geophysical processes since it 

includes Gaussian distributions, powered-exponential and Pareto-type distributions. 

It can be shown (through Monte-Carlo analysis) that the magnitude of independent and identically 

distributed processes or bounded processes by a threshold (following the above distribution) can 

be described by the Pareto-Burr-Feller distribution (Dimitriadis and Koutsoyiannis, 2017): 

H��� = 1 − ¾1 + É �Ê′ + �′É�·¿6�·
 (16) 

where Ê′ is a scale parameter in units of [x], c’ and �′ are the dimensionless shape parameters of the 

marginal distribution, and b’ is a dimensionless lag parameter. 

Interestingly, .there are several cases where the above expressions can be also used for both the 

marginal distribution (cumulative or density) and the dependence structure as firstly done by 

Koutsoyiannis et al. (2016) for the global wind process (for other applications see sections 5 and 6). 

The above distribution has been also derived with alternative methods, as for example from a 

generalization of the Rényi-Tsallis alternative definition of ME distribution (Bercher and Vignat, 

2008; Yari and Borzadaran, 2010) or by adding a background measure to the original definition of 

entropy in order for the discretized entropy to diverge to a real value (Koutsoyiannis, 2014, and 

references therein). For this distribution we use the name Pareto- Burr-Feller (PBF) to give credit 

to (a) the engineer V. Pareto, who discovered the family of power-type distributions (while working 

on the size distribution of incomes in a society, Singh and Maddala, 1978), (b) to Burr (1942) who 

identified and analyzed (but without giving a justification) of its function first proposed as an 

algebraic form by Bierens de Haan, and (c) to Feller (1971) who linked it to the Beta function and 

distribution through a linear power transformation, which was further analyzed and summarized 

by Arnold and Press (1983, sect. 3.2). Other names such as Pareto type IV or Burr type VII are also 
in use for the same distribution. Interestingly, the PBF distribution has two different asymptotic 

properties, i.e., the Weibull distribution for low wind speeds and the Pareto distribution for large 

ones. The PBF has been used in a variety of independent fields (Brouers, 2015). These distributions 

are in agreement with various geophysical processes such as magnitude of grid-turbulence and 

wind (see in sections 5 and 6 for applications). 

2.4.5 On the uncertainty induced by the statistical bias; from mode to expectation 

As we show above the true value of a statistical characteristic (e.g. variance) of a stochastic model 

may differ from the one estimated from a time series (with finite length). Therefore, the bias effect, 

i.e. the deviation of a statistical characteristic (e.g. variance) from its theoretical value in discretized 
time, should be taken into account not only for the marginal characteristics but also for the 
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dependence structure. Therefore, to correctly adjust the stochastic model to the observed time 

series of the physical process we should always account for the bias effect since all time series are 

characterized by finite (and often short) lengths. For example, in Tables 1-6, we present the 

expressions for the expected value of each stochastic metric as a function of their true values. 

Therefore, the bias of the expected value can be easily calculated by subtracting the expected value 

from its true value, e.g. the bias for the expected value of the classical estimator of the climacogram 

is equal to (Koutsoyiannis, 2016): 

BÌ V\v��8��b�X = \��8��b� − E V\v��8��b�X = \�"5�/\�b5� − b/"1 − b/" \�b5� �17� 
where BÌ[] denotes the bias of the expected value of a statistical characteristic of a process (e.g. 

mean, variance, etc. or climacogram, autocorrelation etc.). Clearly, for the mean value of a process 

we have that BÌ VŴX = W − Ε VŴX = 0. 

Similarly for the classical estimator of the autocovariance function we have that BÌZ�̂��8����[ =���8���� − EZ�̂��8����[, and interestingly, the bias of autocovariance is directly linked to the 

climacogram as (Dimitriadis and Koutsoyiannis, 2015a): 

BÌZ�̂��8����[ = 1" − 1 Í�1 + � − "�2 Δ2 S�2\��5�U5�2 + �\�"5� + �" − ��2" \I�" − ��5J − �2" \��5�Î �18� 
where Δ2(g(υ))/Δυ2 is the double discrete derivative of the function g(υ), e.g. for the HK process we 

have that \��5� = \�5�/�c6c� and ΔcI�c\��5�J/5�c = \�5��|� + 1|c� + |� + 1|c� − 2�c��. Note 

that this is easier to implement, analytical and simpler expression that the original one presented 

by Beran et al. (2013), since it does not involve double or single summation. Equivalently, the bias 

expression for the power spectrum can be similarly written in terms of the autocovariance as 

(Dimitriadis and Koutsoyiannis, 2015a): 

BÌZê��8����[ = 25BÌZ�̂}�8��0�[ + 45 y BÌZ�̂}�8����[ cos�2π���z
�t=  �19� 

We can observe that the statistical bias always depends on the selected model and so, sentences 

like ‘the bias is estimated from data’ are erroneous. For example, consider the fractional-Gaussian-

noise (or else known as Gaussian-HK) process, i.e. with an autocorrelation function in discrete-time ±��� = 1/2I|£ + 1|2¢ + |£ − 1|2¢J − |£|2¢, where H is the Hurst parameter (0 < H < 1). The bias of the 

autocorrelation is similarly defined as BÌ V±Ï���X = ±��� − Ε V±Ï���X, and thus, depends on the model 

parameter H. 

Following the same notation, the statistical bias of the mode value of the climacogram that will be 

used below, can be defined as (for more details see Dimitriadis et al., 2018b): 
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BÐ V\v��8��b�X = \��8��b� − M V\v��8��b�X �20� 
where M[] denotes the mode (most probable) value, which is estimated with a fixed accuracy of a 

certain number of arithmetic digits (i.e., the mode value is roundup to a selected number of digits). 

An important remark is how the statistical bias is generally modeled through the second-order 

dependence structure (e.g. autocorrelation, autocovariance, power spectrum, climacogram, 

variogram etc.) in case of long-term processes. Particularly, the selected stochastic model should be 

adjusted for bias before it is fitted to the sample dependence structure. Unfortunately, most studies 

do not take into account the bias effect leading to erroneous estimated of the stochastic model 

parameters. Nevertheless, there are a few studies in literature that adjust their models for bias but 

following the common practice to equate the sample dependence structure with the expected value 

of a stochastic model. However, this is justified only when many realizations (i.e. many time series) 

of a single process are available and with identical lengths. In cases where a single realization (i.e. a 

single time series of a physical process) is observed, the mode dependence structure (i.e. most 

probable value at each lag, scale or frequency for the climacogram, autocovariance or power 

spectrum, respectively) of the model should be handled instead rather than its expectation 

(Dimitriadis and Koutsoyiannis, 2017; see Figure 5 for an illustration). 

 

Figure 5: An illustration of how the mode and expected values should be adjusted for bias (for the 

climacogram or for any other stochastic metric such as autocorrelation, power spectrum etc.). 

 

A preliminary analysis of common HK-type process has shown that the mode climacogram is very 

close to the 25% quantile for each scale (Dimitriadis et al., 2016c; Gournari, 2017). Note that in case 
where there is not an analytical expression for the bias of a statistical property of a process (e.g. 

mode), we can use the Monte-Carlo technique to calculate the bias in an empirical rather than a 

theoretical way (see below for the proposed scheme for stochastic synthesis). Amazingly, by 

1.E-03

1.E-02

1.E-01

1.E+00

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

c(
h

),
 γ

(k
)

h, k

true 

expected

mode



 

24 

properly handling the bias numerous of non mixed-processes (such as temperature, dew-point and 

humidity, wind and turbulent-type ones etc.), examined through very large samples and thus 

eliminating any possible sampling errors, exhibit an HK behaviour with a common global Hurst 

parameter. In Appendix D, we have several benchmark experiments for illustration and in sections 

5 and 6, we present how the bias effect of the mode and the expected value can be simulated when 

we model (a) a single time series, where the mode dependence structure should be analyzed and 

not the expected one (see applications in Dimitriadis and Koutsoyiannis, 2017; Dimitriadis et al., 

2018a; c), and (b) several time series regarded as realizations of a single process and therefore, the 

expected value of the dependence structure should be analyzed (see applications in Dimitriadis and 

Koutsoyiannis, 2017; Dimitriadis et al., 2018b). 

Another important remark is that neither the autocovariance (and thus, neither the variogram) nor 

the power spectrum (as a function of their true values) can be analytically solved for n, and thus, 

numerical looped methods should be implemented to adjust for bias through these metrics. 
Therefore, we propose that the stochastic model should be handled for statistical bias, in order to fit 

and emulate the sample statistical characteristics of the observed time series, using metrics of low 

uncertainty such as the climacogram-based ones. Furthermore, for the bias adaptation, (a) for a 

single time series one should equate the mode of the climacogram-based metrics (e.g., the q25 of 

the classical biased estimator, shown in Eqn. T1-3, calculated through Monte-Carlo simulation) to 

the sample values, whereas (b) for many time series with identical lengths one should equate the 

expected value of the climacogram-based metrics (estimated through the classical biased estimator 

shown in Eqn. T1-3) to the sample values or (c) for many time series with different lengths one 

should equate the expected value of the climacogram-based metrics (estimated through the 

unbiased classical estimator shown in Eqn. T1-5) to the sample values. A final remark on the 

etymology of the above definitions is that the expected value of a process should not be called 

‘expected’ since the mode (i.e. most probable value) is more likely to occur and thus, should be 

expected. 

Comparison between the bias introduced by the expected value of the classical estimator of the 
autocovariance, power spectrum and climacogram 

Here, we investigate the bias in power spectrum estimator (evaluated via the autocovariance) that 

is caused by the bias of autocovariance and the finite sample size of the discretized-time process 

(often the discretization effect is also attributed to bias), complementing earlier studies (e.g., Stoica 

and Moses, 2005, ch. 2.4). We also examine the asymptotic behaviour when the sample size tends to 

infinity, investigating the question whether or not the discrete power spectrum estimator is 

asymptotically unbiased or not. For comparison, we perform similar investigations for the 

autocovariance and climacogram (Dimitriadis and Koutsoyiannis, 2015a). The concepts of 

autocovariance, power spectrum and climacogram are examined using both exponential and 

power-type autocovariance, as well as combinations thereof, in order to obtain representative 

results for most types of geophysical processes. 
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The log-log derivative (LLD) is a measure of the scaling behaviour related to asymptotic coefficients 

such as the fractal and Hurst parameter. The LLD of a function f(x) is defined as O# ��� ≔ } Ó½IÔ��J} Ó½  =Ô�� }Ô��}  , and for the finite logarithmic derivative of f(x), e.g. in case of discrete time process, we 

choose the backward log-log derivative, i.e. O#��7� ≔ Ó½IÔ�¬�/Ô�¬Õ^�JÓ½�¬/¬Õ^� . Since the LLD is always negative 

for stationary mean processes, we also define for convenience the negative log-log derivative (NLD) 

as -O#���. 

Based on Gneiting et al. (2012) analysis, the fractal parameter (F) can be defined as (cf., Beran et al., 

2013, ch. 3.6): 

H ≔ Ö + 1 − 12 lim�→a  #�ℎ� �21� 
where D the dimension of the field (e.g. D = 1 for one-dimensional velocity field) and for a 1d HHK 

(or HMK) process is equal to M+2. 

Based on Beran et al., (2013, ch. 1.3) analysis, the Hurst parameter (H) can be defined as 

(Dimitriadis et al., 2016a): 

¢ ≔ 1 + 12 lim`→Y \# �]� �22� 
Various physical interpretations of geophysical processes are based on the power spectrum and/or 

autocovariance behaviour. However, as mentioned above, the estimation of these tools from data 

may distort the true behaviour of the process and thus, may lead to wrong or unnecessarily 

complicated interpretation. To study the possible distortion we use the simplest processes often 

met in geophysics, which could be also used in synthesizing more complicated ones. Specifically, in 

Appendix A, we investigate and compare the climacogram, autocovariance and power spectrum of 

the Markov process and gHK one (for M = 0.5) in terms of their behaviour and of their estimator 

performance for different values of their parameters. The methodology we use to produce synthetic 
time series is through the SAR scheme (see in section 3.2). Some observations concluded from the 

graphical investigation of Appendix A as well as from the definitions of the stochastic metrics, are 

summarized as follows: 

(a) In the definition of the climacogram, the continuous-time values are equal to the discrete-time 

ones (for Δ = D > 0), while in case of the autocovariance and power spectrum they are different. 

More specifically, the discrete-time autocovariance is practically indistinguishable from the 

continuous-time one, but only after the first lags, while the power spectrum continuous and 

discrete time values vary in both small and large frequencies (where this variation is larger in the 

latter). 

(b) The expectation of autocovariance departs from both the true one and the discrete-time one, for 

all the examined processes and its bias is always larger than that of the climacogram and the power 

spectrum. Also, the climacogram has smaller bias in comparison to the power spectrum. 
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(c) While in theory the NLD of the climacogram, autocovariance and power spectrum should be 

equal to each other, at least asymptotically, we observe from the graphical investigation (Appendix 

A ; Dimitriadis and Koutsoyiannis, 2015a) that in practice this correspondence may be lost. 

(d) The expected value of the power can be estimated theoretically only up to frequency w = 1/2 

(also known as the Nyquist frequency), due to the cosine periodicity. On the contrary, 

autocovariance and climacogram expected values can be estimated theoretically for scales and lags, 

respectively, up to n - 1. 

(e) A high computational cost is involved in the calculation of the power spectrum as compared to 

the simple expressions of the climacogram and autocovariance. Although this is often dealt with 

fast-Fourier-transform algorithms, the involved large sums and large number of trigonometric 

products can often also cause numerical instabilities. 

Some of the observations concerning the estimated power spectrum can be explained by 

considering the way the power spectrum is calculated through the autocovariance: when a sample 
value is above (below) the sample mean, the residual is positively (negatively) signed; thus, a high 

autocovariance value means that, in that lag, most of the residuals of the same sign are multiplied 

together (++ or --). In other words, the same signs are repeated (regardless of their difference in 

magnitude). The same ‘battle of signs’ process, is followed in the case of the power spectrum, but in 

this case, the sign is given by the cosine function. A large value of the power spectrum indicates 

that, in that frequency, the autocovariance values multiplied by a positive sign (through the cosine 

function) are more than those multiplied by a negative one. So, the power spectrum can often 

misinterpret an intermediate change in the true autocovariance or climacogram. A way to ttackle 

this could be through the autocovariance itself, i.e., not using the power spectrum at all, but this is 

also prone to high bias (especially in its high lag tail) which always results in at least one negative 

value (for proof see Hassani, 2010 and analysis in Hassani et al., 2012). These can be avoided with 

an approach based on the climacogram since the calculated variance is always positive. Also, the 

structure of the power spectrum is not only complicated to visualize and to calculate but also lacks 

direct physical meaning (opposite to autocovariance and climacogram), as it actually describes the 

Fourier transform of the autocovariance (Dimitriadis and Koutsoyiannis, 2015a)  

Moreover, we investigate the performance of the estimators of climacogram, autocovariance and 

power spectrum for Gaussian distributed variables. For their evaluation we use mean square error 

expressions as shown in the equations below. Assuming that θ is the true value of a statistical 

characteristic (i.e. climacogram, autocovariance, power spectral density and NLDs thereof) of the 

process, a dimensionless mean square error (MSE): 

× = E VIØP − ØJcXØc = ×Ù +  ×¡ �23� 
where we have decomposed the dimensionless MSE into a variance and a bias term, i.e. ×Ù = VarZØP[/Øc and ×¡ = IØ − ΕZØP[Jc/Øc. 
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Note that θ is given by the true climacogram, the true autocovariance in discrete-time and the true 

power spectrum in discrete-time. ×¡ can be found analytically through ΕZØP[, but ×Ù cannot due to 

the lack of analytical solutions for ΕZØPc[ and hence, VarZØP[, for the classical estimators of 

climacogram, autocovariance and power spectrum (hence, we use a Monte-Carlo analysis). This 

analysis (also presented in Appendix A) allows for some observations related to stochastic model 

building (Dimitriadis and Koutsoyiannis, 2015a): 

(a) In general, the climacogram has lower variance than that of the autocovariance, which in turn is 

lower than that of the power spectrum (e.g., for the examined Markov and HK processes as well as 

in most scales for the gHK). Additionally, the climacogram has a smaller bias than that of the 

autocovariance but larger than that of the power spectrum (for all examined processes). Since, for 

the Markov and HK processes, the error component related to the variance, i.e., ×Ú, is often larger 

than that from the bias, i.e., ×Û, or conversely for the gHK ones, the climacogram has a smaller total 

error ε. Thus, we can state that (for all the examined cases) the expression below holds (for a direct 

comparison the climacogram at discrete-time scale κ is compared to the autocovariance at lag υ+1 

and to the power spectrum at frequency 1/ω): 

E l¾\v��8��b� − \��8��b�¿co /\��8�c�b� ≤ E ÜS�̂��8��� + 1� − ���8��� + 1�UcÝ /���8�c�� + 1�
≤ E ÜSê��8��1/�� − e��8��1/��UcÝ /e��8�c�1/�� �24� 

(b) The total error for the NLD, i.e. ε#, increases with scale in the climacogram and with lag in the 

autocovariance for all examined processes. In case of a Markov process, the power spectrum NLD, 

i.e. ε#, first decreases and then increases in large inverse-frequency values, while the 

autocovariance and climacogram ε# always increase. Also, climacogram and autocovariance ε# are 

close to each other and in most cases smaller than the power spectrum ε#. For HK and gHK 

processes, where large scales/lags/inverse-frequencies exhibit HK behaviour, the power spectrum 

always decreases with inverse frequency under a power-law decay, in contrast to the 

autocovariance and climacogram ε# which they always increase. Thus, in this type of processes, 

there exists a cross point between power spectrum ε# and the other two, where behind this point, 

the power spectrum has a larger ε# and beyond a smaller one. 

(c) The density distribution function of the climacogram and autocovariance have small magnitude 

of skewness and can approximate a Gaussian density function for most of scales and lags, while the 

power spectrum density has a larger skewness that results in non-symmetric prediction intervals 

(an important characteristic when it comes to stochastic modelling, e.g., see Lombardo et al., 2014). 

However, the NLD of the power spectrum has a negligible skewness in comparison to those of the 

autocovariance and climacogram, meaning that the expected NLD should be very close to the mode 

NLD. 
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2.5 Proposed methodology for stochastic modelling 

As mentioned above, we should investigate the behaviour of a natural process by estimating 

separately its distribution function and its dependence structure. A theoretically more valid 

approach for the estimation of the process parameters would be to apply estimators that take into 

account simultaneously both marginal and dependence structures. Such estimators can result in 

more accurate estimations. However, it is not advised to use them directly without having first 

visualized and identified candidates of mathematical processes, since this may result in an 

erroneous analysis due to the complex nature of geophysical processes, an often large number of 

included parameters and a high numerical burden. The best estimators of this kind certainly belong 

to the maximum-likelihood group of estimators. 

In this thesis, we mostly focus to the dependence structure where the climacogram-based metrics 

are shown to be the most appropriate in terms of statistical uncertainty (section 2.4.5; Dimitriadis 

and Koutsoyiannis, 2015a; Dimitriadis et al., 2016a). An important issue in statistical estimation, 
which is sometimes misused or even neglected, is the discretization effect and statistical bias. The 

discretization effect can be easily tackled either by applying the climacogram-based metrics (which 

are the same for a continuous and discrete time process) or (if the autocovariance-based metrics 

such as the power spectrum are used) by following the methodology presented in section 2.4. 

Furthermore, the accurate estimation of any characteristic of a timeseries corresponding to a 

stochastic process requires an infinite number of realizations, i.e., D → ∞. However this is possible 

only in theory in the sense that all estimations from a timeseries are biased and therefore, the 

model parameters cannot be accurately calculated if the model is directly fitted to the timeseries. 

This can be illustrated through the estimation of raw moments from Gaussian-distributed 

processes with a power-law dependence structure, where statistical uncertainty is highly increased 

after the first two moments (Lombardo et al., 2014). Also, several researchers have commented on 

that higher order moments are underestimated from short finite samples (e.g., Ossiander and 

Waymire, 2000, 2002; Lashermes, 2004; Veneziano et al., 2006; Langousis and Veneziano, 2007; 

Veneziano and Furcolo, 2009; Langousis et al., 2009; Veneziano and Langousis, 2010, Langousis and 

Kaleris, 2014 and references therein). 

Fortunately, although we cannot accurately estimate a statistical characteristic from a timeseries of 

a stochastic natural process, we can estimate the error induced by the bias effect of the stochastic 

mathematical process through theoretical calculations. In Tables 1 to 8, we show the equations for 

calculating the expected value for the most common dependence structures and metrics. In the 

cases where we cannot derive theoretically such relationships we can use as a fair approximation 

through the Monte Carlo method which is based on algorithms presented in section 3. Nevertheless, 

we can conclude that it is more likely for the sample climacogram to be closer to the theoretical one 

(considering also the bias) in comparison to the sample autocovariance or power spectrum to be 

closer to their theoretical values. Thus, it is proposed to use the climacogram when building a 
stochastic model and estimate the autocovariance and power spectrum from that model, rather 

than directly applied these to data. Particularly, we have to decide upon the large scale type of 

decay from the climacogram. If the large scale NLD is close to 1 then the process is more likely to 
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exhibit either an exponential decay of autocovariance at large lags such as in Markov processes 

(scenario S1) or a white noise behaviour, i.e., H = 0.5 (scenario S2). In case where the large scale 

NLD deviates from 1 then the process is more likely to exhibit HK behaviour (scenario S3). The 

autocovariance can help us choose between scenarios S1 and S2, as in S1 we expect an immediate, 

exponential-like, drop of the autocovariance (which often has the smaller difference between its 

expected and mode value) whereas in S2 it is unbiased and therefore, the NLD should be close to 1. 

In case of the scenario S1, we can estimate the scale parameter of the Markov-type decay from the 

NLD of the climacogram while in case of the scenario S3 we should also look into the power 

spectrum decay behaviour in low frequencies. It should be noted that the NLDs in S1 and S2 are 

identical in terms of the climacogram, and therefore, the latter is preferable for the identification of 

the long-range behaviour (i.e., S3). Thereafter, for the determination of the Hurst parameter, we can 

use various algorithms, (e.g., Chen et al. (2007) or Tyralis and Koutsoyiannis, 2011, and references 

therein), such as the ones presented here (see previous section to adjust the bias), that are based on 
the climacogram. For the estimation of the rest of the properties, i.e. for intermediate and smaller 

scales, we should use the climacogram-based spectrum and climacogram-based variogram, 

respectively (Dimitriadis et al., 2016a). 

A recipe for a robust second-order stochastic analysis includes the following steps: 

1) Select a stochastic model based on parsimony (few parameters as possible it can be), theoretical 

justification (principle of maximized entropy) and physical interpretation (depending on the 

natural characteristics of the physical process) as done by Koutsoyiannis (2016) and Koutsoyiannis 

et al. (2017). From the analysis of this thesis, we find that the most appropriate models for the 

general case of both the second order dependence structure (in terms of the autocovariance or the 

climacogram) and the marginal distributions of several hydroclimatic processes are in sections 

2.4.3 and 2.4.4. 

2) Handle the stochastic model for discretization and statistical bias in order to fit and emulate the 

sample statistical characteristics of the observed time series that can be estimated with metrics of 

low uncertainty. Note that the climacogram-based metrics (Dimitriadis and Koutsoyiannis, 2015a; 

Dimitriadis et al., 2016a) are the ones with the lowest statistical uncertainty and without a 

discretization effect. For the statistical bias, one should equate the mode of the climacogram-based 

metrics whereas for many time series one should use the expected value (see section 2.4.5 for more 

information, and 5 and 6 for several applications). 

3) Using a Monte-Carlo analysis, generate as many time series as required (based on the 

uncertainty induced by the stochastic model) and perform a sensitivity analysis in order to certify 

the selection of model and parameters through the estimation of confidence intervals (Dimitriadis 

et al., 2016a). The generation scheme for the correlation structure can be the Sum of AR(1) or 

ARMA(1,1) models (known as the SAR or SARMA model; Dimitriadis and Koutsoyiannis, 2015a; see 

section 3.1 and 3.2) for correlation structures that are only based on autoregressive expressions 
(e.g., these schemes cannot simulate a powered-exponential correlation structure for M ≠ 1/2) or 

the Symmetric-Moving-Average (SMA; Koutsoyiannis, 2016; see section 3.3) model for any 

correlation structure. To approximate the marginal distribution an implicit scheme (see in section 



 

30 

3) can be used whereas to adjust for intermittency an explicit scheme (Dimitriadis and 

Koutsoyiannis, 2017; see section 3.3.3) can be also used. Note that the implicit scheme can preserve 

in an exact way only the marginal distribution (while the dependence structure can be only 

approximated numerically or through Monte-Carlo analysis; see section 3.3.3) whereas the explicit 

one can preserve in an exact way only the dependence structure (while the marginal distribution 

can be only approximated through the preservation of statistical moments). 
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3 Stochastic synthesis and prediction algorithms 

The main purpose of stochastic analysis is the synthesis and prediction of a process. Here, we 

present several algorithms for generating and predicting the next values of a stochastic process by 

preserving both the marginal probability function and second order dependence structure. When 

applying the concept of stochastic analysis we model the observed unpredictable fluctuations of the 

system under investigation with the variability of devised stochastic processes. This stochastic 

process enables generation of an ensemble of its realizations, while observation of the given natural 

system can only produce a single or multiple (but always limited) observed timeseries. The most 

simple and yet powerful technique to reveal and analyze in total the system’s variability, is the 

Monte-Carlo approach. However, this technique requires a generation algorithm capable of 

modelling any selected marginal probability distribution and dependence structure of the 

stochastic processes, appropriate for the investigated natural system. 

3.1 Synthesis of a Markov process 

In this section, we present a methodology to synthesize a discrete time representation of a 

continuous time Markov process, with parameters q and λ. We assume a sample size n and D = Δ ≥ 

0. First, we try to approximate the continuous-time Markov process in discrete-time by an AR(1) 

model with variance �Þß, shape parameter �Þß and autocovariance �Þß36�8 �àá⁄ , for � ≥ 0. We find 
that the AR(1) model either underestimates all autocovariances of the process for lags � ≥ 1, when 

we set the variance correctly to: 

�Þß = \�5� = 2��5/��c I5/� + 368 �⁄ − 1J ≤ � �25� 
or overestimates this variance, when we set it equal to the continuous-time Markov variance, i.e., �′Þß = \�0� = �. Note that in both cases we apply the correct shape parameter �Þß = �. Keeping 

the variance equal to �Þß and setting the ratio of the lag-one autocovariance (or first-order 
autocorrelation coefficient) ρ1 over the discrete variance to: 

′ = ���8��1�\�5� = I1 − 368 �⁄ Jc�5/� + 368 �⁄ − 1� �26� 
instead of its proper value, i.e.,  = 368 �⁄ , the model correctly estimates the zero and one lags of the 
discrete-time autocovariances but leads to high overestimation for the rest autocovariances, i.e., for 

lags � > 1. Only in case of a very small 5/� (or 5 ≪ Ö), i.e., when  ≈ · ≈ 1, ���8��1� ≈ \�5� and �Þß ≈ �, a single AR(1) model can well approximate a discrete time representation of a continuous-

time Markov process. In other words, only for the impossible case of 5 = 0, the model AR(1) can 

exactly represent a Markov process. In practice, for 5/� ≲ 2.5%, we have |′ − |/′ ≲ 1% and 

thus, the AR(1) autocovariance deviates only a little from the Markov discretized one, while for 

large 5/�, the error produced can be quite large. An example is shown in Figure 6 for Δ = D > 0, 
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while for cases of Δ ≠ D > 0, the produced errors can be significant. Particularly, we plot the 

dimensionless error, between a Markov process in discrete time and various representations 

through the AR(1) model, defined as: 

× = max�ta,…,z6= ç�′��8���� − ���8�������8���� ç �27� 
where ���8��� > 0� is the Markov process and ���8��0� the zero-lag variance: 

���8���� = �I1 − 368 �⁄ Jc�5/��c  e6�|�|6=�8 �⁄  �28� 
���8��0� = \�5� = 2��5/��c I5/� + 368 �⁄ − 1J �29� 

and �′��8���� the AR(1) model, with �Þß = � and a scale parameter equal to the discrete-time 

variance �Þß of the Markov process (blue line), the variance of the continuous time Markov process 

i.e., �′Þß = � (red line), the variance �′′Þß used to correctly estimate all autocovariances except the 

zero lag one (green line) and a variance �′′′Þß = ��Þß + ��/2 in between �Þß and � (black line). The �Þß and �′′Þß can be expressed as: 

�Þß = 2��5/��c I5/� + 368 �⁄ − 1J �30� 
�′′Þß = ���8��1�368 �⁄ = �38 �⁄ I1 − 368 �⁄ Jc�5/��c  �31� 

 

Figure 6: Dimensionless error between the autocovariance of a Markov process and those of 

expressed through various AR(1) models. 

It is known that the discrete time representation of the Markov process corresponds to an 

ARMA(1,1) model (Koutsoyiannis, 2002). The ARMA(1,1) algorithm for generating a Markov 
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process n, i.e., with continuous-time autocovariance ��4� = 3xp�−|ℎ| ⁄ ��, in discrete-time, is the 

following: 

n7�8,9� = =n76=�8,9� + �7 + c�76= �32� 
where i=1, …, n, = = 369/� is a parameter related to the shape of the process with 0 < = ≤ 1, �7 = éIWÙ , êÙJ is the discrete time Gaussian white noise process with mean value WÙ = =6ë^=>ë� Wì with Wì the mean of n. 

The parameters c and êÙ and can be found from the solution of two equations (Dimitriadis and 

Koutsoyiannis, 2015a): 

���8��0� = =���8��1� + �1 + =c + cc�êÙc �33� 
���8��1� = =���8��0� + cêÙc �34� 

where ���8,9��0� and ���8,9��1� are the discrete-time autocovariances of the Markov process for lag 

zero and one, respectively: 

���8,9��0� = \�5� = 2��5/��c I5/� + 368 �⁄ − 1J �35� 
���8,9��1� = �I1 − 368 �⁄ Jc�5/��c 36�968� �⁄  �36� 

These equations result in a second-order polynomial, i.e.: 

cc + c 2=���8,9��1� − �1 + =c�\�5����8,9��1� − =\�5� + 1 = 0 �37� 
with ���8,9��1� ≥ =\�5� (the equality holds only for � → ∞). There are two real positive solutions: 

c = −í ± √íc − 42  �38� 
with c > 0 and í and êÙ derived as: 

í = 2=���8,9��1� − �1 + =c�\�5����8,9��1� − =\�5� ≤ −2 �39� 
êÙ = ð\�5� − =���8,9��1�1 + =c + cc  �40� 
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3.2 Sum of Markov processes; the SAR process and algorithms 

In this section, we describe a methodology to produce synthetic Gaussian distributed timeseries of 
a target process � based on a sum of independent Markov processes. For a typical finite size n, the 

sum of a finite, usually small, number of Markov processes is capable of adequate representing a 

great variety of processes. For the HK-Gaussian process (else called fractional-Gaussian-noise and 
abbreviated as fGn) Mandelbrot (1971) introduced the idea of approximating the discrete fGn with 

a sum of finite AR(1)-Gaussian models. On the same principle Koutsoyiannis (2002) showed that 

the sum of three AR(1) models is adequate for representing an fGn process for n < 104. As accuracy 

requirements and n increase, a larger number of Markov processes maybe required that could be 

also applied for continuous processes as well as for processes different than fGn. 

A general approach that can be applied to any autoregressive models (AR, ARMA etc.) has been 

introduced in Dimitriadis and Koutsoyiannis (2015a) based on: (a) the original idea of Mandelbrot 

(1971) for the approximation of the fGn by a finite sum of Gaussian-AR(1) models with their 

parameters theoretically estimated (not arbitrarily from data), (b) the work of Koutsoyiannis 

(2002) for a similar but simpler approach to simulate an fGn model through only a sum of three 

AR(1) models and for time series lengths less than 104 (with the parameters of AR(1) estimated 

analytically through empirical expressions derived from Monte-Carlo analysis), and (c) the work of 

Koutsoyiannis (2000) where the original idea of Mandelbrot (1971) is expanded to any other 

process (i.e., approximating any few-parameter process with a Moving-Average model with 

infinitely many coefficients that can be theoretically derived, rather than arbitrarily estimated from 

data). In Dimitriadis and Koutsoyiannis (2015a), it is shown how arbitrarily many AR(1) and 

ARMA(1,1) models can be summed and properly adapted for statistical bias (see also section 2.4.5) 

to approximate a large variety of autoregressive models, such as fGn, HK, GHK, and AR, ARMA etc. 

families, whose coefficients are theoretically estimated and adapted for bias, rather than arbitrarily 

calculated from data. Note that although the methodology proposed by Dimitriadis and 

Koutsoyiannis (2015a) can be easily applied to the sum of higher order AR or ARMA models (e.g., 

sum of many AR(2), AR(3) models etc.), it is highly not recommended, since the complexity increase 

could easily cause a model over-fit (e.g., see Figure 8), and present practical as well as psychological 

drawbacks (Mandelbrot, 1971). In other words, a three-parameter GHK model can be equivalently 

simulated by (a) a sum of, as large as possible (even equal to the length of the time series), finite 
number of AR(1) or ARMA(1,1) models, as well as by (b) a single higher-order autoregressive 

model (e.g., AR(q), ARMA(q,p) etc., with arbitrarily large q >1), but only the former approach is 

recommended since it can provide exactly the same results as the latter but in a simpler way (i.e., it 

is simpler to calibrate and generate a q number of AR(1) models rather than a single high order 

AR(q) model). Additionally, the AR(q) model includes only one white noise term, and therefore, it is 

argued that it can adequately approximate the high variability of a long-term process in large scales. 

Finally, only the SAR model (which comprises of many AR(1) models) can handle explicitly non-

Gaussian distributions through the preservation of moments higher than the second (e.g., the PGAR 

model of Fernandez and Salas, 1986), whereas this cannot be explicitly done by any other AR(q) or 

ARMA(q,p) model for q >1 (see also section 3.3.1). Note that the SAR has been already applied to 

several processes such as benchmark experiments (Dimitriadis and Koutsoyiannis, 2015a), the 
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wind process (Deligiannis et al., 2016), the process of solar radiation (Koudouris et al., 2017) or the 

process of wave height and wave period (Moschos et al., 2017). 

To explain how the SAR works, we seek the Markov climacograms whose sum fits the climacogram 
of our target true continuous time process, represented by a function O�]5�, with κ the discrete-

time scale and D = Δ > 0 the time step. We could use the autocovariance or power spectrum but the 

climacogram for D = Δ > 0 has the advantage of reduced computational cost due to the identical 
expressions for continuous and discrete-time for a time-averaged process. We denote ��b5, �, �� 

the true climacogram of a Markov process, i.e.: 

��b5, �, ��: = 2��b5/��c Ib5/� + 36s8 �⁄ − 1J �41� 
where � and � are parameters corresponding to the variance and a characteristic time scale of the 

process, respectively. 

Our target is to approximate O�]5� with the sum of a finite number é of functions ��b5, �r , �r� for l 

= 1 to N, i.e., for all integral scales from κ = 1 to n, where n is the number of data produced in the 
synthetic time series. We seek �r > 0 and  �r > 0 such as for all scales b ≥ 1 we have O�b5� ≈∑ ��b5, �r , �r�ñrt= . The basic assumption of this methodology is that the Markov parameters �r are 

connected to each other in a predefined way, which can be even similar to the target process if we 

wish to preserve in an exact way the 2nd order dependence structure. Here, we choose a simple 

relationship based on two parameters -= and -c (Dimitriadis and Koutsoyiannis, 2015a): 

�r = -=-cr6= �42� 
If we know -= and -c, we can calculate analytically parameters �r (expressed by the matrix ò ≥ ó) 
from the equation below, since the ratio ��]5, �r , �r�/�r is independent of �r for Markov processes: 

ôò = õ → ò = ô6=õ �43� 
where ò=[�=, … , �ö]÷, õ=[1, … ,1]÷ and ô6= = Iô÷ôJ6=ô÷, the left inverse of ø (for " > é), 

expressed as: 

ô =
ùú
úú
û ��5, �=, �=�/�=O�5� ⋯ ��5, �ñ , �ñ�/�ñO�5�⋮ ⋱ ⋮��"5, �=, �=�/�=O�"5� ⋯ ��"5, �ñ , �ñ�/�ñO�"5� þ�

��
�
 �44� 

As minimization objective for the above system of equations, in order to estimate the parameters -= 

and -c, first we use the dimensionless error ×º between the sum of Markov climacograms and O�b5�, to locate initial values and then, we use the error ×� (maximum absolute dimensionless 

residual), for fine tuning and distributing the error equally to all scales: 



 

36 

×º = y �∑ ��b5, �r , �r�ñrt= − O�b5�O�κ5� �z
st=  �45� 

×� = maxst=,…,z �∑ ��b5, �r , �r�ñrt= − O�b5�O�b5� � �46� 
Thus, we can estimate parameters -= and -c by minimizing the above errors, then parameters �r 

and �r can be easily found. Finally, the synthetic discrete time series for the x(t) process can be 

estimated as: 

�7�8� = y n7�8��È�ñ
rt=  �47� 

where n7�8��È� is the discrete time Markov process corresponding to the climacogram ��b5, �r , �r� 

with parameters �r and �r. 

The above methodology has been tested in simple processes such as HK, GHK, gHK and combination 

thereof as well as with Markov processes (Dimitriadis and Koutsoyiannis, 2015a) and therefore, for 

other types of processes (e.g. anti-correlated ones with 1 < � < 2) one should be cautious when 

applying it. For the purpose of the analysis, we apply the above methodology for HK and gHK 

processes for λ = 1 and for a variety of b, q/Δ and n values. In Tables 9-11, we present the results 

from this analysis. Note that we choose N, for each n and each process, as the minimum value of the 

sum of Markov processes achieving ×� ≤ 1%. 

Table 9: Parameters p1 and p2 estimated to fit different types of HK and gHK processes (for λ = 1) 

with a sum of Markov processes for n = 102. 

process b q/Δ p1 p2 N ×� (‰) 

HK 0.2 - 0.069 47.358 3 6 

HK 0.5 - 0.122 22.196 3 8 

HK 0.8 - 0.101 17.045 3 9 

gHK 0.2 1 2.888 10.656 3 5 

gHK 0.2 10 11.424 27.168 2 1 

gHK 0.2 100 611.13 - 1 2 

gHK 0.5 1 1.789 7.695 3 9 

gHK 0.5 10 9.232 12.514 2 2 

gHK 0.5 100 243.46 - 1 4 

gHK 0.8 1 1.373 6.559 3 9 

gHK 0.8 10 7.676 8.807 2 2 

gHK 0.8 100 151.54 - 1 6 
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Table 10: Parameters p1 and p2 estimated to fit different types of HK and gHK processes (for λ = 1) 

with a sum of Markov processes for n = 103. 

process b q/Δ p1 p2 N ×� (‰) 

HK 0.2 - 0.379 10.356 5 2 

HK 0.5 - 0.251 9.490 5 5 

HK 0.8 - 0.103 8.958 5 4 

gHK 0.2 1 2.656 11.873 4 3 

gHK 0.2 10 0.852 43.042 3 6 

gHK 0.2 100 111.54 27.331 2 1 

gHK 0.5 1 1.964 10.505 4 7 

gHK 0.5 10 8.744 5.801 4 2 

gHK 0.5 100 89.976 12.591 2 2 

gHK 0.8 1 1.362 8.240 4 7 

gHK 0.8 10 6.900 5.112 4 2 

gHK 0.8 100 74.712 8.861 2 3 

 

Table 11: Parameters p1 and p2 estimated to fit different types of HK and gHK processes (for λ = 1) 

with a sum of Markov processes for n = 104. 

process b q/Δ p1 p2 N ×� (‰) 

HK 0.2 - 0.665 18.217 5 7 

HK 0.5 - 0.200 11.400 6 6 

HK 0.8 - 0.053 17.044 5 8 

gHK 0.2 1 2.695 12.006 5 4 

gHK 0.2 10 20.809 12.793 4 5 

gHK 0.2 100 7.743 44.342 3 7 

gHK 0.5 1 2.226 12.176 5 10 

gHK 0.5 10 14.831 10.788 4 10 

gHK 0.5 100 84.308 5.835 4 2 

gHK 0.8 1 1.115 6.220 6 3 

gHK 0.8 10 10.132 8.149 4 9 

gHK 0.8 100 66.249 5.123 4 2 

 

3.3 Synthesis of a stochastic process through the (S)MA scheme 

In this section, we present an extension of the (symmetric) moving-average (S)MA generalized 

framework introduced by Koutsoyiannis (2000) and further advanced by Koutsoyiannis (2016) and 
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implemented within the Castalia computer package (Efstratiadis et al., 2014). Also, the SMA model 

for autocorrelation functions accounting for seasonal aspects is initially developed by Langousis 

(2003) and Langousis and Koutsoyiannis (2006). The generation scheme simultaneously preserves 

any type of (second order) dependence structure as well as an approximation of the marginal 

distribution function through the preservation of its statistical moments. Note that this scheme can 

be applied to any type of statistical moments such as raw, central, L-moments etc. as well as to any 

type of moving-average model such as backward (BMA), forward (FMA), symmetric (SMA) or 

mixed. More details about the computational scheme can be found in Dimitriadis and Koutsoyiannis 

(2017). 

3.3.1 The impracticality of using multi-parameter stochastic models in geophysics 

Several families of autoregressive models are used for stochastic generation with the most popular 

in literature to be the so-named AR, ARMA, ARIMA, FARIMA (cf., Koutsoyiannis, 2016). These 

models are easy to handle and fast in stochastic generation once their parameters are known and 

not too many. However, whenever the process exhibits long-range dependence these models 

require a large number of parameters to approximate the long-range dependence (except only in 

the FARIMA(0,d,0) case, where d = H - 0.5, with H the Hurst coefficient). 

An additional difficulty may arise when estimating the prediction intervals (P.I.) of a long-range 

process (Papoulis, 1990, pp. 240-242; Tyralis et al., 2013). Even if the model parameters are 

calculated with adequate accuracy, this does not guarantee an adequate approximation of the 

prediction intervals. Here, we apply various Monte-Carlo experiments and we show that even a 

small deviation of the true process from the model one, may cause a larger deviation in the 
prediction intervals. In Figure 7, we compare the 5% and 95% P.I. of the climacogram for a 

Gaussian HK process with n = 2×103, using a model consisted from the sum of three AR(1) models 

(through the SAR scheme) and the exact solution produced via the SMA model (Koutsoyiannis, 

2016). We observe that although the expected value is very well approximated by the SAR model 

with approximately a 99% correlation coefficient, the 5% P.I. deviates from the true one by 1% and 

the 95% P.I. by 10%. 
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Figure 7: Expected 5% and 95% quantiles of the climacogram for an HK process estimated from 

Monte-Carlo experiments using the SMA model (exact solution) and the sum of three AR(1) models 

(3AR1) through the SAR scheme. 

A practical solution could be to increase the number of AR(1) processes through the SAR scheme or 

to use higher order processes instead, such as ARMA models. However, in any case, it is often 

difficult to know a priori the true P.I. in order to decide whether the number of applied parameters 

is adequate. In Figure 8, we show that even when we extent the 3×AR(1) model to a 5×ARMA(1,1) 

model (through the SARMA scheme) for a simple HK process, the true 95% P.I. (defined through the 

SMA scheme) is still not reached (the fitting error is around 1%). 
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Figure 8: Expected 5% and 95% quantiles of the climacogram for an HK process estimated from 

Monte-Carlo experiments using the SMA model (exact solution) and the sum of five ARMA(1,1) 

models (5ARMA11) through the SARMA scheme. 

Another limitation may arise for more complicated processes than that of the HK one. For example, 

the GHK process, which is an HHK process with  = 1, can be somehow simulated through the SAR 

algorithm. However, this simple algorithm is based on the sum of Markov processes and therefore, 

it can only preserve stochastic structures with an exponential short-term behaviour at large scales. 

In other words, the SAR scheme cannot accurately synthesize a process with a powered-

exponential autocorrelation function, such as the HHK with � ≠ 1/2 (Figure 9). 

 

Figure 9: Expected 5% and 95% quantiles of the climacogram for two HHK processes, both with q = 

10, H = 5/6, n = 2×103 and one with M = 1/3 < 0.5 (left) and the other with M = 3/4 > 0.5 (right), 

estimated from Monte-Carlo experiments using the SMA model (exact solution) and the sum of five 

ARMA(1,1) models (5ARMA11) through the SARMA scheme. 

Additionally, another common practice is to use transformation schemes to indirectly simulate both 

the dependence structure and marginal distribution of a process. However, since the 

transformation of a Gaussian distributed process to a more complicated one is often non-linear, 
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there will be a non-linear distortion in the dependence structure especially in case of an HK 

process. In Figure 10, we show such a distortion in case of a Pareto distribution that leads to a non 

HK process resembling that of a cyclo-stationary HK process (i.e., causing a small increase of the 

climacogram at small scales) with the same Hurst parameter (observe that the log-log slope is 

identical and so, the resulted climacogram can no longer correspond to an HK process). 

  

Figure 10: Dimensionless climacogram vs. scale for a synthetic HK process with n = 105, H = 0.8 and 

distribution N(0,1) as well as its transformation to U(0,1) and Pareto distribution with shape 

parameter equal to 4. 

Finally, if the estimation of higher than the third moment is needed, for example the kurtosis, 

higher-order moments, i.e., EZ�c	c[, will emerge that are not possible to measure or handle for 

SARMA (or higher order) algorithms (Koutsoyiannis, 2016). In conclusion, the SMA algorithm 

overcomes all the above limitations and offers a strong tool for applying a Monte Carlo analysis. 

3.3.2 The impracticality of estimating higher-order moments in geophysics 

Non-Gaussianity of the marginal distribution is very common in geophysical processes. It has been 

shown (Lombardo et al., 2014) that the estimation of high raw moments corresponds to high 

uncertainty and thus, it is rather ambiguous to use the schemes described in the previous section to 

preserve higher moments for natural processes with only a few measurements, as for example in 

typical geophysical records. For example, in case of a continuous HK process the variance of the 

mean estimator is \8/"c6c� (e.g., Koutsoyiannis, 2003), where " is the sample size. Consequently, 
for estimating the true mean W of a process with a standard error ±×, we would require a timeseries 

of length of at least �ê/×�=/�=6
�, where ê = √\8 is the standard deviation at scale Δ (Figure 11). For 

an HK process with ¢ = 0.8, in order to estimate the mean of the process with an error × ≈ ±10%ê, 

we would need a timeseries of length at least n = 105. Such lengths are hardly available in 

observations of geophysical processes, which are not only often characterized by HK behaviour but 

also include sub-daily and seasonal periodicities (e.g., Hasson et al., 1990; Dimitriadis and 
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Koutsoyiannis, 2015b, for the atmospheric wind process) that complicate the estimation further. 

Therefore, the preservation of solely the second order joint statistics is often adequate for capturing 

the most important attributes of a geophysical process but also it is often impractical to estimate 

higher-order statistics from observations of hydrometeorological processes since, the typically 

available observation records cannot support the estimation of a few parameters (Koutsoyiannis, 

2016). 

 

Figure 11: Standard deviation of the mean estimator of an HK process standardized by σ vs. the 

sample size (n) for various Hurst coefficients. 

To give another example, we perform a Monte Carlo experiment for an HK process with ¢ = 0.8 
that follows a standard Gaussian distribution (i.e., W = 0 and ê = 1) and the results are shown in 

the Figure 12. For each synthetic timeseries we estimate the mean, standard deviation as well as 

skewness and kurtosis coefficients for six different lengths, i.e., " = 10, 102,…, and 106. This 

experiment shows that for " =106 the uncertainty (measured in terms of the standard deviation of 

each measure) is below 10% for all measures. Therefore, to adequately estimate these measures 

from data we would need timeseries with similar lengths. The same experiment must be repeated 

for the estimated set of parameters to verify that the observed length was adequate for such 

estimation. 
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Figure 12: Standard deviation of the sample estimates of the mean (μ), standard deviation (σ), 

skewness coefficient (Cs) and kurtosis coefficient (Ck) of an HK process with H = 0.8 and N(0,1) 

distribution vs. the simulation length. 

 

3.3.3 The (S)MA generation scheme 

Although there are several methods for simulation of an arbitrary stochastic process each one has 

its own limitations and advantages (Lavergnat, 2016 and references therein). For example, the 

method of de-normalization (i.e., a Gaussian distributed process with the desired dependence 

structure is produced and then it is transformed to the desired distribution through a non-linear 

transformation) is often applied for synthesis of long-term processes (e.g., Koutsoyiannis et al., 

2008) but it has a disadvantage of distorting the dependence structure (because of the 

transformation) as shown in previous section. A rigorous and general method is the SMA scheme 

that is able to fully preserve any (second order) dependence structure of a process and, 

simultaneously, the complete multivariate distribution function if it is Gaussian (because of the 

preservation of the Gaussian attribute within linear transformations). Koutsoyiannis (2000) also 

studied the application of the same scheme to non-Gaussian processes by preserving the skewness 

of the marginal distribution. In Dimitriadis and Koutsoyiannis (2017) the scheme is extended to 
precisely preserve the first four central moments of the distribution, while exactly and 

simultaneously preserving any type of (second-order) dependence structure, such as short-range 

(Markov) or long-range (Hurst-Kolmogorov, abbreviated as HK). In most problems preservation of 

four moments suffices for a very good approximation of the distribution function. In particular, the 

fourth moment has been regarded of great importance in some problems, e.g., in the 

characterization of intermittency in turbulence (Batchelor and Townsend, 1949). Alternative 

methods for simulating the turbulence intermittency are the multi-fractal ones (for an introduction 

see in Frisch, 2006). 
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In the SMA model, the simulated process is expressed through the sum of products of coefficients 

(not parameters) � and white noise terms vi, (Koutsoyiannis, 2000): 

�7 = y |�|�7>�
r

�t6r  �48� 
in which for simplicity and without loss of generality we assume that EZ�[ = EZ�[ = 0 and EZ�c[ = VarZ�[ = 1 and where j is an index ranging from 0 to infinity. 

Derivation of the SMA dependence structure parameters 

The dependence structure can be exactly preserved through the sum of independent AR(1) models 

(SAR model; Dimitriadis and Koutsoyiannis, 2015a) or through moving-average (MA) models of 

order l+1 (where l equals the number of the autocorrelation coefficients we wish to preserve). The 

general framework to estimate the coefficients of an AR(l) or an ARMA(p,q) model and a MA(l+1) in 

order to preserve exactly the first l autocorrelations terms of a process can be found in 

Koutsoyiannis (2000). However, the MA models are advantageous over the autoregressive models 

(such as SAR or higher-order of AR, ARMA, FARIMA etc. families) since they can preserve in an 

exact way any dependence structure (as for example models with a power-exponential 

autocorrelation function, see examples in Dimitriadis and Koutsoyiannis, 2017; or with a fractal 

parameter M ≠ ½, for proof see Koutsoyiannis et al. 2017). Also, the MA models are the most 

appropriate for the explicit schemes since the above families cannot explicitly preserve moments 

higher than two (with the exception of the AR(1) model as shown in previous section) and thus, 

they cannot be used for non-Gaussian distributions. 

This scheme can be used for stochastic generation of any type of second order process structure 

represented by functions such as the climacogram, the autocovariance function, the power 

spectrum, the variogram etc. We may easily employ the BMA instead of the SMA scheme but the 

latter has some advantages over the former. Particularly, for È → ∞ (Koutsoyiannis, 2000) or l finite, 

e.g. l = n (Koutsoyiannis, 2016), the coefficients can be analytically (numerically) estimated 

(calculated) through the Fourier transform of the discrete power spectrum of the coefficients which 
is directly linked to the analytically (numerically) expressed discrete power spectrum of the 

process (Koutsoyiannis, 2000): 

e����� = 2e}��� �49� 
where e�� and e} are the SMA coefficients and process power spectra in discrete time, respectively. 

As an example, for an HK process with H > 0.5, the SMA coefficients can be estimated from � = 1/2�2��2� + 1�sin�π��\8��c�2� + 1�I1 + sin�π��J S|£ + 1|�>�̂ + |£ − 1|�>�̂ − 2|£|�>�̂U as 

shown by Koutsoyiannis (2016). 
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The above solution requires an infinite number of coefficients in order to exactly preserve the 

dependence structure and so, Koutsoyiannis (2016) introduced a small adaptation to this 

framework to overcome this limitation and be able to use l+1 coefficients to exactly preserve the 

dependence structure up to the lth lag or scale. Another simple approach is to use the BMA (or the 

SMA) model with l+1 white noise terms (and thus, preserve in an exact way the dependence 

structure up to the lth lag or scale). However, this approach has the limitation of a non physically-

based solution through the power spectrum (but rather a mathematically-based one) and thus, if 

we require to go on beyond l, the physically-based solution will adequately preserve the 

dependence structure much further than l, whereas with the mathematically-based exact solution 

the model coefficients will have to be re-calculated (even if only one additional term is required). 

Derivation of the SMA distribution parameters 

The first applied schemes for a stochastic synthesis are the implicit ones, i.e. approximation of the 

distribution and dependence structure of a process through non-linear transformations. These non-

linear transformations are often based on the autocovariance function for any distribution function 

(Frechet, 1951; Sklar, 1959; Serinaldi, 2013 and references therein), where the uniform is usually 

preferred for reasons of simplicity, whereas for reasons of flexibility the Gaussian distribution can 

be also used (Nataf, 1962; Tsoukalas et al., 2018; Papadopoulos and Giovanis, 2018; Serinaldi and 

Lombardo, 2017a, and references therein), i.e.: 

±¬�êc + Wc = EZ�7��[ = E VD Sn7U D Sn�UX = m m D�n7�DIn�JO Sn7 , n�; ±ì¬ì�U dn7>Y
6Y dn�>Y

6Y  �50� 
where ±¬� and ±ì¬ì�  are the cross-correlations between �? and �£ as well as n? and n£, respectively; 

μ and σ are the process mean and standard deviation; O�n7 , n�; ±ì¬ì�� is the joint distribution 

between n? and n£; D�n7� and DIn�J are the transformations of the original known distribution of �? 
and �£ to the selected distribution of n? and n£, respectively (see below for an example of such 

transformations). In case that n is for example N(0,1) distributed, then the bivariate N(0,1) is used, 

i.e. O�n7 , n�; ±ì¬ì�� = e6=/c�n?2>n£26cì¬ì���¬���/�=6��¬��� �/�2π�1 − ±ì¬ì�c �=/c�. 

Similar implicit schemes are developed based on the power spectrum (Cugar, 1968; Papadopoulos 

and Giovanis, 2018; Lavergnat, 2016 and references therein). Recently, the implicit scheme has 

been also introduced through the climacogram, i.e.: 

\�]� + Wc]c = E VI��`�JcX]c = E ÜSD�n��`�UcÝ]c = 1]c m �m DIn�:�Jd:`
a �c O�n�dn>Y

6Y  �51� 
where ��`� ≔ ; ��:�d:à  is the scaled process of the continuous-time process ��:�, μ is the process 

mean, and D�n� is a transformation function of the original process n (with the selected uniform, 

Gaussian etc. distribution function and with an unknown \ì dependence structure) to the desired 
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one � (with known density distribution f(x) and dependence structure \ adjusted for bias, see 

section 2.2.5). For example, to transform a N(0,1) distributed y to a Pareto one x with distribution 

F(x)=1-(a/x)b, it can be easily found that ��:� = D�n�:�� = /�1 − �1/2�1 + erf �n�:�/√2���=/¡�. 

Note that this scheme has been applied to several (stationary and single/double cyclostationary as 

shown in the following section) processes, such as solar radiation (Koudouris et al., 2017), wave 

height and wind process for renewable energy production (Moschos et al., 2017), as well as for the 

wind speed using a special case of the PBF distribution (Deligiannis et al., 2016) but also a 

generalized non-linear transformation (equivalent to a distribution function) based on the 

maximization of entropy when the distribution function is unknown (Dimitriadis and 

Koutsoyiannis, 2015b). 

This scheme has some advantages over the implicit schemes applied for the autocovariance and 

power spectrum, since it does not involve joint-distributions (although, it still includes the 

probability function in state as a function of scale). Nevertheless, for non-linear D�n� (which is the 

usual case in geophysics) the inverse of the above expression is likely not solvable in an analytic 

way, and thus, the unknown \ì cannot be estimated in an exact way (similarly for the 

autocovariance-based implicit scheme). However, if we assume that we know the general 

expression of \ì , and thus, we can also theoretically (or numerically) estimate OID�n��`�J, one could 

apply numerical methods (using optimization and calibration techniques for the error 

minimization; see a review in Efstratiadis and Koutsoyiannis, 2010) or a Monte-Carlo analysis 

(using another generation scheme such as the one described below) to attempt for an 

approximation of \ì . For example, the GHK-Pareto process can be well approximated by a GHK-

Gaussian transformation process for several sets of parameters (see Koudouris, 2017). 

Some disadvantages of the in general implicit schemes are that they involve non-linear calculations 

and double integration (that both may highly increase the numerical burden; for some numerical 

techniques see in Tsoukalas et al., 2017; see methods for fast such algorithms in Serinaldi and 

Lombardo, 2017b), and that several exact solutions (of the implicit scheme) may exist or no exact 

solution may be possible for some processes. In addition to the above, the transformation cannot be 

invariant with respect to the time lag (Embrechts et al., 1999; Tsoukalas et al., 2018) or time scale 

(Lombardo et al., 2012; and as shown in the previous expression where the transformation 

depends on the scale for the climacogram-based implicit scheme). Some of these limitations can be 

dealt through a cautiously constructed binary scheme (e.g., Serinaldi and Lombardo, 2016, for the 

autocovariance-based implicit scheme), a Monte-Carlo approach to identify the unknown 

dependence structure (Tsoukalas et al., 2018, through the Nataf transformation) or a properly 

handled disaggregation scheme for generating events of the process (e.g. storm events coupling the 

Bartlett-Lewis model with adjusting procedures; Kossieris et al., 2016) or more generally, by 

adjusting any desired stochastic properties (dependence structure and distribution function) to 

each scale (Lombardo et al., 2017). 

An alternative to the implicit scheme approach is to use an explicit scheme for the marginal 

distribution through the preservation of moments. Koutsoyiannis (2000) estimated the first three 
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moments of the marginal distribution of the white noise process vi required to reproduce those of 

the actual process xi using the SMA scheme. With the conventions used here the mean and variance 

of vi are 0 and 1, respectively, while the third moment, which is equal to the coefficient of skewness 

is �º,Ù =  �º,I∑ |�|cr�t6r J�/c/ ∑ |�|�r�t6r , where �º, is the coefficient of skewness of xi. By expanding 

the calculations to include the coefficient of kurtosis (Appendix B; Dimitriadis and Koutsoyiannis, 

2017): 

��,Ù =  I∑ |�|cr�t6r Jc
∑ |�|�r�t6r ��, −  ∑ ∑ |�|cr̀ t6r |`|cr�t6r∑ |�|�r�t6r  �52� 

where ��, is the coefficient of kurtosis of xi. Note that the constant term in the right-hand side 

depends only on the SMA coefficients and not on the marginal distribution of the process. Also, note 

that the kurtosis of the white noise is not proportional to the kurtosis of the process, which makes a 

difference from the case of the skewness. Obviously, the same expressions hold for the BMA (or 

FMA, or mixed) scheme but j ranging from -l to 0 (or 0 to l, or respectively, for the mixed case). 

For the generation scheme we need distributions that: (a) contain at least four parameters, creating 

in such way a large variety of combinations between the first four moments; (b) have closed 

analytical expressions for the first four central moments; and (c) can easily and quickly generate 

random numbers. Here, we propose one distribution mostly appropriate for generating thin-tailed 

distributions and another one for heavy-tailed ones (see Appendix C for the tail-classification of the 

applied distributions). An alternative approach is to use the ME distribution to preserve up to any 

moment and the desired level of approximation through (Dimitriadis and Koutsoyiannis, 2017): 

EZ�7�[ = E �� y |�|�7>�
r

�t6r ��� = y S -]6r , ]=6r , … , ]rU E � � I|�|�7>�J`�
6r���r �`ÕÃ>`^ÕÃ>⋯>`Ãt�  �53� 

where S -]6r , ]=6r , … , ]rU = �!`ÕÃ!`^ÕÃ!…`Ã!, is a multinomial coefficient, and the total number of 

combinations satisfying ]6r + ]=6r + ⋯ + ]r = -, can be approximated by the formulae of Hardy 

and Ramanujan (1918; Nash and Rassias, 2016), i.e. e�c�/�/�4-√3� for - → ∞ (but note that the 

maximum number of elements for each partition is 2l+1, so for large p and small 2l+1, some 

partitions will have to be excluded). 

The limitations of the explicit scheme are the preservation of joint structures that extend beyond 

the second-order statistics (which is also a limitation of the implicit schemes), and the 

approximation of marginal distribution which can be bounded (hence, the bounds of the 

distribution will be also approximated through the preservation of moments) or non-divisible 

beyond a statistical moment (equivalently, the implicit schemes have the limitation of only 

approximating the dependence structure since no analytical solutions exist and hence, numerical 

double integration or Monte-Carlo techniques are required). However, these limitations rarely 
concern practical applications to geophysical processes and the simplicity of the scheme allows 
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controlling the degree of approximation of the distribution function. In other words, although the 

discussed explicit scheme can preserve in an exact way any second-order dependence structure but 

it cannot preserve the distribution in an exact way (whereas for the implicit schemes is the other 

way around), the degree of approximation can be controllable and fixed to the desired level through 

the selected number of moments we wish to preserve. Moreover, the explicit scheme has shown 

great results in preserving intermittency effects in turbulence (see application in section 5). 

For illustration, we apply the described SMA model for white noise processes with various marginal 

distributions often met in geophysics, such as Weibull, gamma, lognormal and Pareto. Also, we 

estimate the ME distribution up to the fourth moment and we compare it to the theoretical and 

modelled distribution (through the SMA algorithm). The coefficients 1/�=, 1/�c, 1/��, 1/�� of the 

ME distribution can be also regarded as weighting factors representing the dependence of the 

distribution on each raw moment. Interestingly, after standardizing these four parameters based on 

the sum of their absolute values, 1/�= contributes to the Weibull, gamma, lognormal and Pareto 
distributions in Figure 13, approximately 65%, 66%, 69% and 93%, respectively. Similarly, the 

contribution of 1/�c is approximately 20%, 20%, 18% and 4%, the contribution of 1/��, 11%, 10%, 

9% and 2% and the contribution of 1/��, 4%, 4%, 4% and 1%, respectively. Therefore, we can use 

the ME probability density to approximately determine the weight for each statistical moment and 

justify whether the preservation up to the fourth moment is adequate. Additionally in Figure 13, we 

observe that the goodness of fit highly depends on the weighting factors of the ME distribution. 

Particularly, large weighting factors of �= and small weighting factors of �c, �� and �� result in small 

fitting errors. 

Note that from the analysis of turbulent and several other processes (such key hydroclimatic 

processes) analyzed here, we observe that the preservation of the distribution up to the fourth 

moment corresponds to less than a 1‰ error (based on the R-squared coefficient; see sections 5 

and 6), whereas preservation up to the third moment fails to capture important aspects of 

intermittency (see application for grid-turbulence in Dimitriadis and Koutsoyiannis, 2017). 
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Figure 13: Various two-parameter distributions along with the fitted ME probability density 

function and the empirical probability density from one single simulation with n = 105 using the 

proposed generation scheme (Source: Dimitriadis and Koutsoyiannis, 2017). 

Handle single and double cyclostationary processes 

A usual difficulty met when modelling hydroclimatic processes is the handling of deterministic 

periodicities (e.g. diurnal and seasonal) that can explain a part of the unknown variability of the 

physical process. In such cases, we can apply a cyclo-stationary model (for an exhaustive literature 

review see Gardner et al., 2014; for an example of a cyclostationary approach using an implicit 

scheme through the Nataf transformation and the PAR model see in Tsoukalas et al., 2017) rather 

than a stationary one. For simplification, we may apply a pseudo-cyclo-stationary model, in the 

sense that we do not assume that the process is cyclo-stationary but rather a stationary one but by 

implicitly introducing the periodicities (for the implicit schemes see in previous sections). 

Particularly, we first cautiously select a marginal distribution model and we fit it separately to each 
periodic time series (e.g., to each hourly and/or monthly part of the original time series). Then, 

based on the expression of the selected distribution function, we homogenize the periodic time 

series, so at to all to follow a common version of the distribution function (e.g., with parameters 

equal to the mean ones from the periodic time series fitting). In other words, we assume that the 

parameters of the selected distribution vary deterministically with time (see next Eqn. for an 

example). Afterwards, we estimate the dependence structure (e.g. climacogram) of the 

homogenized times series, where we expect that the effect of periodicities has been smoothed out. 

Finally, we generate a synthetic time series with the latter dependence structure and common 
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distribution function (using an explicit or even an implicit scheme as shown in previous sections) 

and then, we transform implicitly each part of the time series (that corresponds to each periodic 

time series) to the one with the desired periodic marginal characteristics. In case where for the 

generation scheme we apply the SAR (or SARMA) or SMA models we abbreviate this framework as 

pCSAR (or pCSARMA; for such application to the wind process see Dimitriadis and Koutsoyiannis, 

2015b; to solar radiation Koudouris et al., 2017; and to the wave height and wind speed Moschos et 

al., 2017) or pCSMA (see for such applications to precipitation in Dimitriadis and Koutsoyiannis, 

2017; and in Dimitriadis et al., 2018a), respectively. For an application to a proper cyclo-stationary 

scheme using the SMA model (i.e., abbreviated as CSMA) see in Dimitriadis et al. (2018a). Another 

simple and robust method is to directly generate the dependence structure of the periodic process 

using periodic stochastic models (for such applications in ecosystems see Pappas et al., 2017). 

In this way, we manage to preserve in an exact way the marginal characteristics of each periodic 

part and approximate the equivalent dependence structure. Interestingly, we manage to also 
adequately preserve the cross-correlations between each cycle, without introducing a cyclo-

stationary model (for more details on this method see Dimitriadis et al., 2018a). A useful remark is 

that the marginal characteristic of each period should follow a comprehensible periodic function 

(e.g., including sinus or cosines functions) as shown in Dimitriadis and Koutsoyiannis (2015b) for 

the wind process in Greece and through a global analysis in Deligiannis et al. (2016). In case where 

the periodic function of the parameters is not known or apparent it is advisable to use a 

parsimonious periodic function rather than use the empirical results that may be due to sample 

errors. A final remark is that the above pseuso-cyclo-stationary framework can be also applied in 

case where the marginal distribution is not fixed, by employing a more general one based on the 

maximization of entropy such as (Dimitriadis and Koutsoyiannis, 2015b): 
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where Ζ~N(0,1) is the normalization scheme of X (related to the inverse distribution function of X), 

μc(t) and σc(t) are the mean and standard deviation of each periodic process (i.e. one for each hour 

and month), and gc(t) is a parameter related to the distribution tail of the periodic process, all 

assumed to vary with time. 

3.4 Synthesis of a multiple dimensional process through SMA scheme 

Multi-dimensional stochastic processes are advantageous over multivariate ones in cases where the 

natural process is observed by images (e.g., produced by satellite or radar) rather than point 

measurements (e.g., temperature recorded at meteorological stations). In this section, we show the 

expansion of the 1d SMA algorithm to an �-dimensional (�d) based on mathematical reasoning as 
well as numerical validation (Dimitriadis et al., 2013). We denote with ����, the continuum random 

variable of a stochastic stationary and isotropic process of M dimensions with � a matrix of � 

variables and È varying from 1 to �, i.e., � ≔ �:=, … , : ! that is used to describe each dimension of the 
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process (e.g., := can be a temporal variable, :c a spatial one etc.). Note that in this analysis the M 

dimensions are considered independent to each other. Discretized processes are subject to a 

sampling frequency " ≔ �Ö=, … , Ö�! and a response time # ≔ �5=, … , 5 ! as in the 1d case. Both " 

and # have the same units with the corresponding variable � (e.g., if :=is a temporal variable 

measured in seconds then Ö$ and 5$ will be measured also in seconds). Here, we focus only in the 

case of "=#>0. Also, for simplicity, we assume that all elements in " have the same magnitude (e.g., Ö==1 sec, Öc=1 km etc.) and so, we can use a unique symbol for that magnitude, i.e., |Ö$| = Ö = 5. 

Finally, n denotes the total number of data in the �d field. Thus, the discretized stochastic process �7^,7�,…,7%�8^,8�,…,8%� ≔ �$�8�, for 5 >0, can be estimated from � as (Dimitriadis et al., 2013): 

�$�8� = ; ; …7�8�7�6=�8 ; �� =,  c, … ,   �d =d c … d  7%8�7%6=�87^8�7^6=�8 5  �55� 
where ?= ∈ [1, "=], ?c ∈ [1, "c], … , ?� ∈ [1, " ], are indices representing the serial number of each 

observation associated with the corresponding variable :&, 

In Tables 12 and 13, we provide all necessary definitions and equations for the true continuous, 

true discrete and most common estimators and estimations for the expected climacogram and 

autocovariance for an �d process (for the variogram and power spectrum see in Dimitriadis et al., 

2013). 

Table 12: Climacogram definition and expressions for an �d continue process, a discretized one, a 

common estimator for the climacogram and the estimated value, based on this estimator. 

Type Md climacogram  

continuous 

space \�'�: = Var V; … ; �I =, … ,  ¸Jd = … d  (%>`%(%(^>`^(^ X�]=]c … ] �c  

where ': = �]=, … , ]��, with ' ⋲ ℝ>, the vector of the scales. 

(T12-1) 

discretized 

space 

\�8��'�: = \�5]=, … , 5] �  

where ): = �b=, … , b �, with ) ⋲ ℕ>, the vector of all the dimensionless 

scales for a discretized process. 

(T12-2) 

classical 

estimator 
\v�8��)� = =z·/s·6= ∑ � =s· S∑ �$�#�sÃÆÃ7ÃtsÃ�ÆÃ6=�>= U − ∑ $�#�*Ã¬Ã¯ẑ· �cwzÃ/sÃxÆÃt=   

where "′ = "="c … " , b′: = b=bc … b  and l ranges from 1 to �  

(T12-3) 

expected value 

of estimator 
E V\v�8��)�X = 1 − \�8��+�/\�8��)�1 − b′/"′ \�8��)� 

(T12-4) 
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Table 13: Autocovariance definition and expressions for an �d continue process, a discretized one, a 

common estimator for the autocovariance and the estimated value, based on this estimator. 

Type Md autocovariance  

continuous 

space 

��,� ≔ CovZ����, ��� + ,�[ = dc ��ℎ=ℎc … ℎ �c\�,��2 dℎ=cdℎcc … dℎ c   
where ,: = �ℎ=, … , ℎ �, with , ⋲ ℝ, the lag vector for the continue process. 

(T13-1) 

discretized 

space 

���#��.�: = CovZ�$�#�, �$>.�#� [ = /�%V��^��…�%���0�#��.�Xc%/[�^�]/[���]…/[�%�]   

where .: = ��=, … , � �, with . ⋲ ℤ, the lag vector for the discretized process. 

(T13-2) 

classical 

estimator 
�̂��#��.� = =��.� ∑ …z^6�^7^t= ∑ ��$�#� − ∑ …*^¬^¯^ ∑ $�#�*%¬%¯^ñ � ��$>.�#� − ∑ …*^¬^¯^ ∑ $�#�*%¬%¯^ñ �z%6�%7%t=   

where ��.� is usually taken as: N or N-1 or ∏ �"Æ − �Æ� Æt= . 

(T13-3) 

expected value 

of estimator 

EZ�̂��#��.�[ = =��.� S���#��.�∏ �"Æ − £Æ� Æt= + ��z· \�.5� − �′\�.5� −
∏ �z26�2��%2¯^ z· \��+ − .�5�U, where �′ = �=�c … � . 

(T13-4) 

 

For example, the Ld HK process is subject to the equation below: 

I�$�s8� − WJ =} bc �=6��I�3�8� − WJ �56� 
where μ is the mean of the process �$�8� and �3�s8� the same process at scale κ. 

The �d climacogram and autocovariance in the continuous domain can be expressed as: 

\I]4J ≔ �I]4/Jc �=6�� �57� 
where ]4 is the geometric mean of scales ]=, ]c ,…, ]�, i.e., ]4 = ]=]c … ] , a is a scale parameter 

in units of ]4, so that \I]4J = �, and similarly, ℎ& = ℎ=c + ℎcc + ⋯ + ℎ c is the lag magnitude. 

Similarly, for the autocovariance we have that ��ℎ&� ≔ �I¢�2¢ − 1�J / S�5ë Uc �=6��
. 

For illustration we apply the HK process to the 2d climacograms of 2d images of sandstones 

depicted at different spatial scales (Figure 14), and we estimate a Hurst parameter equal to 0.83 

(Dimitriadis et al., 2017b). Note that the 2d SMA is initially suggested and implemented by 

Koutsoyiannis et al. (2011; and references therein). 
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Figure 14: Images of sandstone as seen from the SEM (50 μm), from a polarizing microscope, (3.5 

mm), from a hand specimen (with length approximately 5 cm) and a field outcrop (1 m). For more 

information on the source, description and processing of the images see in Dimitriadis et al., 

(2017b). 

 

 

Figure 15: Climacograms of sandstone images depicted at four different scales (source: Dimitriadis 

et al., 2017b). 

 

3.5 Prediction algorithms 

In this section, we apply two types of prediction algorithms, an analogue prediction algorithm 

based solely on observations without any use of models, and a stochastic prediction algorithm 
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based on the preservation of the marginal distribution and dependence structure of a process, 

permitting the prediction of unprecedented events such as extreme events. For other methods and 

a comparison with numerous machine-learning ones (such as neural networks and random forests) 

see Papacharalampous et al. (2017), and Tyralis and Papacharalampous (2017). 

3.5.1 Analogue prediction algorithm 

Here, we apply a deterministic data-driven model known as the analogue model (e.g., Koutsoyiannis 

et al., 2008), which is often used in chaotic systems. This model is purely data-driven, as it does not 

use any mathematical expression between variables. Specifically, to predict a state 6I�: + È�5J at 

future time lΔ and based on h past states 6I�: − Ç + 1�5J, for Ç varying from 1 to h, we search the 

database of all experiments or events to find k similar states (called neighbours or analogues), 6� SI:� − ℎ + 1J5U, so that for all £ and Ç: 

É6� SI:� − Ç + 1J5U − 6I�: − Ç + 1�5JÉ ≤ � �58� 
where � is an error threshold. 

Then, we find for each neighbour the state at time I:� + ÈJ5, i.e., 6� SI:� + ÈJ5U, and predicts the 

state at lead time È5 as (e.g., Dimitriadis et al., 2016b): 

6I�: + È�5J = 1] y 6� SI:� − ℎ + 1J5U`
�t=  �59� 

3.5.2 Stochastic prediction algorithm 

Here, we describe the stochastic prediction model (Dimitriadis et al., 2016b), which is a linear 

stochastic model that predicts the state at lead time È5, i.e., 6I�: + È�5J, based on the linear 

aggregation of weighted past states, ��6I�: − � + 1�5J, �� being the weighting factors. Before we 

calculate the weights, we need to assume a model for the stochastic structure of each process. For 

model fitting we choose the climacogram method since as already mentioned it results in smaller 

estimation errors in comparison to autocovariance (or autocorrelation) and power spectrum for 

this type of models. We then apply the best linear unbiased estimator (BLUE; (Koutsoyiannis and 
Langousis, 2011, pp. 56-58), assuming stationarity, to estimate the weighting factors ��: 

� ≔ Ü78 99÷ 0Ý6= V:81 X �60� 
where � = Z�=, … , ��, �[; represents the vector of the weighting factors �� (for q = 0,…,p) and ζ a 
coefficient related to the Lagrange multiplier of the method; 78 = CovZ�76�[, for all i, j = q is the 
positive definite symmetric matrix whose elements are the true (included bias) autocovariances of 
x, which represents the variable of interest (u, v, w, ξ or ψ) and now is assumed random (denoted by 
the underscore) for the application of this method; :8 = CovZ�r>�[ for all q; l is the index for the 
lead time (l > 0); the superscript T denotes the transpose of a matrix.  
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4 Uncertainty and HK dynamics 

Although a white noise process is considered as the most unpredictable of all the processes, this is 

true only for very short-term predictions. For long-term predictions, which are of high interest 

from an engineering point of view, the maximization of entropy, and thus the uncertainty, shows 

that the most unpredictable process is the HK one (Koutsoyiannis, 2011). Therefore, it is only 

natural to assume that, eventually, a stationary process will exhibit HK behaviour. In this section, 

we show that the HK dynamics can arise not only in complicated deterministic systems, but in 

geophysical ones such as high-frequency precipitation and surface wind and even in a simple game 

such as die throw. 

4.1 Complex natural systems 

In principle, one should be able to predict the trajectory and outcome of a die throw solving the 

classical deterministic equations of motion; however, the die has been a popular symbol of 

randomness. This has been the case from ancient times, as revealed from the famous quotation by 

Heraclitus (ca. 540-480 BC; Fragment 52) ‘Αἰών παῖς ἐστι παίζων πεσσεύων’ (‘Time is a child 

playing, throwing dice’). Die’s first appearance in history is uncertain but, as evidenced by 

archeological findings, games with cube-shaped dice have been widespread in ancient Greece, 

Egypt and Persia (often in dice shaped bones). Often in history dice games were restricted or even 

prohibited by law perhaps for the fear of gamblers’ growing passion to challenge uncertainty. Dice 

were also used in temples as a form of divination for oracles (Vasilopoulou, 2003). From ancient 

times, each side of the die represented one number from 1 to 6 so that the sum of two opposite 

sides was always seven. Despite dice games originating from ancient times, little has been carried 

out in terms of explicit trajectory determination through deterministic classical mechanics (cf., 

Kapitaniak et al., 2012; Nagler and Richter, 2008). Generally, a die throw is considered to be fair as 

long as it is constructed with six symmetric and homogenous faces (Diaconis and Keller, 1989) and 

for large initial rotational energy (Strzalko et al., 2010). However, statistical treatment of real 

experiments with dice has not been uncommon. In a letter to Francis Galton (1894), Raphael 

Weldon, a British statistician and evolutionary biologist, reported the results of 26,306 rolls from 

12 different dice; the outcomes showed a statistically significant bias toward fives and sixes with an 

observed frequency approximately 0.3377 against the theoretical one of 1/3 (cf., Labby, 2009). 

Labby (2009) repeated Weldon’s experiment (26,306 rolls from 12 dice) after automating the way 

the die is released and reported outcomes close to those expected from a fair die (i.e., 1/6 for each 

side). This result strengthened the assumption that Weldon’s dice was not fair by construction. 

More recently, Strzalko et al. (2010) studied the Newtonian dynamics of a three dimensional die 

throw and noticed that a larger probability of the outcome face of the die is towards the face 
looking down at the beginning of the throw, which makes the die not fair by dynamics. The 

probability of the die landing on any face should approach the same value for any face for large 

values of the initial rotational and potential energy and large number of die bounces. Similar 

experiments of coin tossing have also been examined in the past (Diaconis et al., 2007; Jaynes, 1957, 
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ch. 10). According to Strzalko et al. (2010), a significant factor influencing the coin orientation and 

final outcome is the coin’s bouncing. Specifically, they observed that successive impacts introduce a 

small dependence on the initial conditions leading to a transient chaotic behaviour. Similar 

observations are noticed in the analysis of Kapitaniak et al. (2012) in die trajectory, where lower 

dependency in the initial conditions is noticed when die bounces are increasing and energy status is 

decreasing. This observation allowed the speculation that as knowledge of the initial conditions 

becomes more accurate, the die orientation with time and the final outcome of a die throw can be 

more predictable and thus, the experiment tends to be repeatable. Nevertheless, in experiments 

with no control of the surrounding environment, it is impractical to fully determine and reproduce 

the initial conditions (e.g. initial orientation of the die, magnitude and direction of the initial or 

angular momentum). Although in theory one could replicate in an exact way the initial condition of 

a die throw, there could be numerous reasons the die path could change during its course and thus, 

so would the outcome. Since the classical Newtonian laws can lead to chaotic trajectories, this 
infinitesimal change could completely alter the rest of die’s trajectory and thus, the outcome. For 

example, the smallest imperfections in die’s shape or inhomogeneities in its density, external forces 

that may occur during the throw such as air viscosity or table’s friction and elasticity etc., could 

vaguely alter dice orientation. Strzalko et al. (2010) and Nagler and Richter (2008) describe the die 

throw behaviour as pseudorandom since its trajectory is governed by deterministic laws while it is 

extremely sensitive to initial conditions. However, Koutsoyiannis (2010) argues that it is a false 

dichotomy to distinguish deterministic from random. Rather randomness is none other than 

unpredictability, which can emerge even if the dynamics is fully deterministic (see in section 4.1.2 

for an example of a chaotic system resulting from the numerical solution of a set of linear 

differential equations). According to this view, natural process predictability (rooted to 

deterministic laws) and unpredictability (i.e., randomness) coexist and should not be considered as 

separate or additive components (see also section 1.2). A characteristic example of a natural system 

considered as fully predictable is the Earth’s orbital motion, which greatly affects the Earth’s 

climate (e.g., Markonis and Koutsoyiannis, 2013). More specifically, the Earth’s location can become 

unpredictable, given a scale of precision, in a finite time-window (35 to 50 Ma, according to Laskar, 

1999). Since die trajectory is governed by deterministic laws, the related uncertainty should 

emerge as in any other physical process and thus, there must also exist a time-window for which 

predictability dominates over unpredictability. In other words, die trajectory should be predictable 

for short horizons and unpredictable for large ones. 

Here, we reconsider the uncertainty related to dice throwing (section 4.1.1). We conduct dice throw 

experiments to estimate a predictability window in a practical manner without implementing 

equations based on first principles. Furthermore, we apply the same models to high temporal 

resolution series of rainfall intensity and wind speed (sections 4.1.2), occurring during smooth and 

strong weather conditions, to acquire an insight on their similarities and differences in the process 
uncertainty. The predictability windows are estimated based on the aforementioned two types of 

models, the stochastic model fitted on experimental data using different time scales and the 

deterministic-chaotic model that utilizes observed patterns assuming some repeatability in the 

process (section 4.1.3). For validation reasons, the aforementioned models are also compared to 
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benchmark ones. Certainly, the estimated predictability windows are of practical importance only 

for the examined type of dice experiments and hydrometeorological process realizations; 

nevertheless, this analysis can improve our perception of what predictability and unpredictability 

(or randomness) are. 

4.1.1 Experimental setup of dice throw 

A simple mechanism is constructed with a box and a high speed camera in order to record the die 

motion for further analysis. For this experiment we use a wooden box with dimensions 30 cm x 30 

cm x 30 cm and white colour painted to easily distinguish it from the die. The die is of acetate 

material with rounded corners, has dimensions 1.5 × 1.5 × 1.5 cm3 and weighs 4 g. Each side of the 

die has been painted with a different colour: yellow, green, magenta, blue, red and black, for 1, 2, …, 

6 pips, respectively. Instead of the primary colour cyan, we use black to be easier traceable 

contrasting to the white colour of the box. The height (30 cm) from which the die is released with 

zero initial momentum or thrown, remained constant for all experiments. However, the die is 

released or thrown with a random initial orientation and momentum, so that the results of this 

study are independent of the initial conditions. Specifically, 123 die throws are performed in total, 

52 with initial angular momentum in addition to the initial potential energy as well as 71 with the 

initial potential energy only (Figure 16). Despite the similar initial energy status of the die throws, 

the duration of each throw varied from 1 to 9 s, mostly due to the die’s cubic shape that allowed 

energy to dissipate at different rates. 

 

 

Figure 16: Mixed combination of frames taken from all die throw experiments for illustration 

(source: Dimitriadis et al., 2016b). 

 

Visualization of the die’s trajectory is done via a digital camera with 0.045 cm/pixel density of and 

frame resolution rate of 120 Hz. The camera is placed in a fixed location and symmetrically at the 

top of the box. The video is analysed to frame by frame and numerical codes are assigned to 
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coloured pixels (based on the HSL system) and die’s position inside the box. Specifically, three 

coordinates are recorded based on the Cartesian orthogonal system; the two horizontal ones are 

taken from the box’s plan view while the die’s height above the box bottom is estimated from die’s 

image size (the higher the die, the larger the die’s size in pixels). Moreover, the area of each colour 

traced by the camera is estimated and then is transformed to a dimensionless value divided by the 

total traced area of the die. In this manner, the orientation of the die in each frame can also be 

estimated (with some observational error) through the traced colour triplets. Note that pixels not 

assigned to any colour due to relatively low resolution and blurriness of the camera, are on average 

approximately 30% of the total traced die area in each frame. 

Finally, the audio signal is transformed to a dimensionless index from 0 to 1 (with 1 indicating the 

highest sound produced in each experiment) and can be used to record the times the die bounces 

colliding with the bottom or the sides of the box, contributing in this way to sudden changes in die’s 

orientation, to its orbit and thus, to the final outcome. We observe that die bounces decay faster 
than kinetic energy status (roughly estimated through linear velocity). Also, most of the die bounces 

and energy dissipation occur approximately during initial 1.5 s, regardless of the initial conditions 

of the die throw. Based on these observations, we expect predictability to improve after the first 1.5 

s (Figure 18). 
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Figure 17: Selected frames showing the die trajectory from experiments (a) 48 and (b) 78; (c, d) 

their three Cartesian coordinates (denoted xc, yc and zc for length, width and height, respectively); 

(e) standardized audio index representing the sound the die makes when colliding with the box; 

and (f) colour triplets (each of the 8 possible triplets corresponds to three neighbouring colours). 

Source: Dimitriadis et al. (2016b). 
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Figure 18: All experiments (a) standardized audios, showing the time the die collides with the box 

(picks) and (b) linear velocities. Source: Dimitriadis et al. (2016b). 

 

To describe the die orientation we use three variables (x, y and z) representing proportions of each 

colour, as viewed from above, each of which varies in [-1,1], with x, y, z = 1 corresponding to black, 

blue or green, respectively, and with x, y, z = -1 to the colour of the opposite side, that is yellow, 

magenta or red, respectively (Table 14). In Figure 19 we show two examples of dice orientation 

recorded through colour identification. 

 

Table 14: Definition of variables x, y and z that represent proportions of each pair of opposite 

colours (source: Dimitriadis et al., 2016b). 

Value → −1 +1 

Variable ↓ Colour Pips Colour Pips 

x yellow 1 black 6 

y magenta 3 blue 4 

z red 5 green 2 
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Figure 19: Time series of variables x, y and z for experiments 48 (a, b, c) and 78 (d, e, f); in both 

experiments the outcome was green. Source: Dimitriadis et al. (2016b). 

 

However, these variables are not stochastically independent to each other because of the obvious 

relationship: 

|�| + |n| + |;| = 1 �61� 
The following transformation produces a set of independent variables �, � and �, where � and � 

vary in [-1,1] and � is a two-valued variable taking either the value -1 or 1: 

� = � + n, � = � − n, � = sign�;� �62� 
The inverse transformation is: 
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� = �� + ��/2, n = �� − ��/2, ; = �I1 − max�|�| + |�|�J �63� 
In Figure 20, the plot of all experimental points and the probability density function (pdf) show that � and � are independent and fairly uniformly distributed except the more probable states where u 

± v = 0 (corresponding to one of the final outcomes). Note that � outcomes are also nearly uniform 

with L�� = −1� ≈ 54% and L�� = 1� ≈ 46%. 

 

 

Figure 20: Plot of (a) all (x, y) and (u, v) points from all experiments and (b) the probability density 

function of (u, v). Source: Dimitriadis et al. (2016b). 

 

4.1.2 Hydrometeorological processes of high resolution 

Here, we choose a set of high resolution time series of rainfall intensities (denoted by ξ and 

measured in mm/h) and wind speed (denoted by ψ and measured in m/s). The rainfall intensities 

data set consists of seven time series with a 10 s time step recorded during various weather states 

(such as low precipitation and storm events) and are provided by the Hydrometeorology 

Laboratory at the Iowa University (for more information regarding the database see Georgakakos 

et al., 1994). The wind speed database consists of five time series with a 1 min time step recorded 

during various weather states (such as strong breeze and storm events) by a sonic anemometer on 

a meteorological tower located at Beaumont KS and provided by NCAR/EOL 

(http://data.eol.ucar.edu/). We have chosen these processes as they are of high interest in 

hydrometeorology and often are also regarded as random-driven processes. For illustration we 

show in Figure 21 a couple timeseries drawn from the above datasets. 
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Figure 21: (a) Rainfall events 1 and 7 from Georgakakos et al. (1994) and (b) wind events 3 and 5 

provided by NCAR/EOL. 

4.1.3 Uncertainty evaluation and comparison 

Here, we apply two types of prediction algorithms in each case and we compare them to each other 
for the same process and to the other processes, in terms of the Nash and Sutcliffe (1970) efficiency 

coefficient defined as: 

H = 1 − ∑ ∑ I6��?� − 6v��?�Jc¡07taz�t=∑ ∑ S6v��?� − 6v=��?�Uc¡�7taz�t=  �64� 
where d is an index for the sequent number of the die experiments, rainfall or wind events; i 

denotes time; n is the total number of the experiments, or of recorded rainfall or wind events (n = 

123 for the die throw experiment, n = 7 for the rainfall and n = 5 for the wind events); �� is the total 

number of recorded frames in the dth experiment, rainfall or wind event; 6v is the vector I�v��?�, �v��?�, �Ï��?�J, transformed from the originally observed I�v��?�, nv��?�, ;̂��?�J, for the die 

throw, the 1d rainfall intensity  R��?� for the rainfall events and the 1d wind speed ~P��?� for the 

wind events, with 6v= the corresponding mean empirical discrete-time vector; and 6 is the discrete-

time vector estimated from the model. 

Also, the prediction models described above are checked against two naïve benchmark models. At 

the first benchmark model (abbreviated B1), the prediction is the average state, i.e.: 

6I�: + È�5J = ó �65� 
where :5 is present time in s, È5 the lead time of prediction in s (È > 0) and 5 the sampling 

frequency (equal to 1/120 seconds per frame for the die throw game, 10 seconds per record for the 

rainfall events and 1 minute per record for the wind events). Although the zero state is not 

permissible per se, the B1 is useful, as any model worse than that is totally useless. At the second 

benchmark model (abbreviated B2), the prediction is the current state regardless of how long the 

lead time È5 is, i.e.: 

0

20

40

60

80

100

120

0 5 10 15 20 25

ra
in

fa
ll

 in
te

n
si

ty
 ξ

(m
m

/h
)

time (h)

1st

7th

(a)

0

4

8

12

16

20

24

0 5 10 15 20 25 30 35 40 45

w
in

d
 m

ag
ni

tu
de

 ψ
(m

/s
)

time (h)

3rd

5th

(b)



 

64 

6I�: + È�5J = 6�:5� �66� 
The observed climacograms of the processes under investigation show the strong dependence of 

the die orientation, rainfall intensity and wind speed in time (long-term, rather than short-term 

persistence). This enables stochastic predictability up to a certain lead time. Here, we choose the 

gHK model for the mathematical process, i.e., with climacogram \�b5� as in Table 8, where 5  is the 

time resolution parameter, i.e., 1/120 s for the die experiments, 10 s for the rainfall events and 1 

min for the wind events. For consideration of the bias effect due to varying sample sizes n of the die 

experiments and rainfall and wind events, we estimate the average of all empirical climacograms 

for experiments and events of similar sample size. However, due to the strong climacogram 

structure of all three processes, the varying sample size has small effect on the shape of the 

climacogram for scales approximately up to 10% of the sample size (following the rule of thumb for 

this type of models, as analysed by Dimitriadis and Koutsoyiannis (2015a). Thus, we consider the 

averaged empirical climacogram to represent the expected one. The fitted models are shown in 

Figure 22 in terms of their climacograms. Their parameters are: for the u and v symmetric variables 

of the dice process � = 0.6, � = 0.013 e and � = 0.83 (¢ = 0.6); for the w variable � = 1.635, � =0.0082 e and � = 1.0 (¢ = 0.5); for the rainfall process � = 12.874 mmc/hc, � = 130 s and � = 0.22 (¢ = 0.9); and for the wind process � = 65.84 mc/sc, � = 86 min and � = 0.09 (¢ =0.95). We observe that the scale parameter � and Hurst coefficient ¢ are largest in the wind process 

and smallest in the dice one. 

Note that two additional criteria for the two above model parameters is that firstly, they should give 

an efficiency coefficient greater than that of the B2 model (at least for most of the lead times) and 

secondly, their efficiency values are estimated from a reasonable large set of tracked neighbours 

(>10% of the total number of realizations for each process). Due to high variances of the time 

averaged process (which correspond to high autocorrelations), it is expected that the B2 model will 

work well, for fairly small lead times. Next, we depict the results for the four models for the 48th die 

experiment, the 1st rainfall event and the 3rd wind event (Figure 23). The stochastic model provides 
relatively good predictions (F ≳ 0.5 and efficiency coefficients larger than the B2 and B1 models) 

for lead times È5 ≲ 0.1 s for the die experiments (with a range of approximately 0.05 to 0.5 s), ≲ 5 

min for the rainfall events (with a range of approximately 1 min to 30 min) and ≲ 1 h for the wind 

events (with a range of approximately 0.1 h to 2 h). The analogue model gives smaller F values than 

the B2 model for the die experiments and the wind process and larger in case of the rainfall process 

(but smaller than the stochastic model). Predictability is generally good for small lead times; 

however, the situation deteriorates for larger ones. Finally, we define and estimate the 

predictability-window (that is the window beyond which the process is considered as 

unpredictable), as the time-window beyond which the efficiency coefficient F becomes negative. 

Specifically, predictability is superior to the case of a pure random process (B1) for lead times È5≲ 

1.5 s for the die throw process, È5≲ 1 h for the rainfall process and È5≲ 4 h for the wind process. 
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Figure 22: True, expected and averaged empirical climacograms for (a) u and �, (b) �, (c)   and (d) 

ψ. Source: Dimitriadis et al. (2016b). 

Next in Figure 24, we show the sensitivity analysis applied to each process and for both stochastic 

and analogue models. Specifically, we apply a variety of - values (i.e., number of past states that the 

model assumes the future state is depending on) for the stochastic model and combinations of h 
(same as p) and � (i.e., error threshold value for selecting neighbours) values for the analogue one. 

Employing a sensitivity analysis to the analogue model, we conclude that for the die process a value 

of - = 20 (which corresponds to time length ~0. 17 s) works relatively well (on the concept that it is 

a small value giving a large F), for È varying from 8 ms to 1.5 s (for larger values of - we have 

negligible improvement of the efficiency). Similarly, for the rainfall process, we concluded that p = 

150 s is adequate, for È varying from 10 s to 1 h (the variation of l is set equal to half the minimum 

duration between events). Finally, for the wind process, we concluded that p = 5 min works well, for È varying from 1 min to 6 h. Applying a sensitivity analysis for the stochastic model, we found that a 
number of past values h= 15 (which corresponds to time length ~0.125 s) and a threshold � = 0.5 

work relatively well for the die process. Similarly, for the rainfall process, we conclude that h = 15 
(which corresponds to time length 150 s) and a threshold � = 2 mm/h works well. Finally, we 

concluded that h = 5 (which corresponds to time length 5 min) and a threshold � = 0.5 m/s works 

well for the wind process. 
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Figure 23: Comparisons of B1, B2, stochastic and analogue models for the die experiment (a and b), 
the observed rainfall intensities (c and d) and the observed wind speed (e and f). The left column (a, 

c and e) represents the application of the models to all experiments and events and the right 

column (b, d and f) to individual ones. Source: Dimitriadis et al. (2016b). 
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Figure 24: Sensitivity analyses of the stochastic and analogue model parameters for the die 

experiment (a and b), the rainfall intensities (c and d) and the wind speed (e and f). Source: 

Dimitriadis et al. (2016b). 

 

4.2 Deterministic systems 

Here, we show various examples of deterministic systems and application to benchmark and real-

case scenarios. By definition, these systems will exhibit Markov behaviour rather than HK, and 

therefore, their window of predictability is expected to be short, a result which contradicts our 

experience and thus, reality. 
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4.2.1 A classical deterministic system 

As a prelude example, we apply all models described above to a set of timeseries produced by 

numerically solving the classical Lorenz (1963) chaotic system of differential equations. 

Specifically, using the Runge-Kutta integration approach (Press et al., 2007), we produce n = 100 

timeseries of the Lorenz-system dimensionless variables (denoted XL, YL and ZL), with randomly 

varying initial values of variables between -1 and 1, a time step of dt=Δ=0.01 (dimensionless), a 

total time length of TL=103 (so, each timeseries contains Ν = 105 data) and with the classical Lorenz-

system dimensionless parameters of σL=10, rL=8 and bL=8/3 (Lorenz, 1963): 

?@
A
@B �CD�: = êD�ED − CD��CD�: = ÇDCD − ED − CDFD�CD�: = CDED − �DFD G@

H
@I �67� 

The 5th timeseries is shown in Figure 25 along with the results from the stochastic and analogue 
models. The estimated parameters for the best fitted (Markov-type) stochastic model are � = 72.8, � = 0.13 for XL process, � = 93.1, � = 0.0836 for YL and � = 272, � = 0.0007 for ZL, with � = 1.0 (¢ = 0.5) for all processes. From the analysis, we concluded that the analogue model, with 
h = 2 (which corresponds to time length 0.02 s) and a threshold of � = 0.1, works very well as 

opposed to the stochastic model whose efficiency factor is always lower than the one 

corresponding to B2 model. We believe this is because the system’s dynamics is relatively simple 

and no other factors affect the trajectory. Such conditions are never the case in a natural process 

and thus, the performance of the analogue model is usually of the same order (given there are many 

data available, in contrast with the stochastic which can be set up with much fewer data). Finally, 

we can also see here, that predictability is generally superior to a pure random process (B1), for 

lead times È5≲ 1. 
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Figure 25: (a) Values of XL, YL and ZL, plotted at a time interval of 0.1, for the 5th timeseries produced 

by integrating the classical Lorenz’s chaotic system of equations, (b) observed climacogram as well 

as its true and expected values for the fitted stochastic gHK model (average of XL, YL and ZL 

processes), (c) sensitivity analysis of the analogue and stochastic models and (d) comparison of the 
optimum stochastic and analogue models with B1 and B2. Source: Dimitriadis et al. (2016b). 

 

4.2.2 Comparison between deterministic systems of high complexity 

Here, we show some examples of deterministic systems of simplified hydraulic wave inundation 

models. Although all parameters and equations are a priori selected and known in an exact way, we 

show that they exhibit a large sensitivity to initial and boundary conditions (e.g., Efstratiadis et al., 

2014) as well as to discretization schemes (Dimitriadis et al., 2016c; Papaioannou et al., 2016). 

In general, flood routing models solve part (e.g., Koussis, 2009) or the full one-dimensional (1d) 

Saint-Venant continuity and momentum depth-averaged equations in the longitudinal direction (1d 
models) or, additionally, in the lateral direction (quasi-2d or 2d models; e.g., Tsakiris and Bellos, 

2014). The 1d Saint-Venant continuity and momentum equations are (Chow et al., 1988, p. 279): 

∂K∂: + ∂!∂� = 0 �68� 
1K∂!∂: + 1K∂�!c/K�∂� + g ∂�∂� = g�LM − LN� �69� 
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where ! is the discharge, K is the wetted area, g is the gravity acceleration, � is the water depth, LM 

is the longitudinal bed slope (expressing the gravitational force), LN is the energy (or else friction) 

slope, and ∂�/ ∂�, 
=O ∂!/ ∂: and 

=O ∂�!c/K�/ ∂� represent the pressure gradient and the local and 

convective acceleration terms of the momentum equation. 

The three hydraulic tools that are used in next analyses are described briefly below. 

HEC-RAS 

HEC-RAS is a widely used hydraulic software tool developed by the U.S Army Corps of Engineers, 

which is usually combined with the HEC-HMS platform for hydrological simulations 

(hec.usace.army.mil). HEC-RAS employs 1d flood routing in both steady and unsteady flow 

conditions by applying an implicit-forward finite difference scheme between successive sections of 

flexible geometry. Due to the 1d nature of the model, the discharge is distributed within the whole 

cross section in the longitudinal direction. This can create difficulties when multiple flow directions 

are required or when the flow exchange between the channel and the floodplain cannot be 

neglected. However, it can sufficiently represent the topography since it is not raster-based, it has 
quite low computational cost and it is very powerful in 1d steady flow simulations. The steady flow 

scheme is based on the solution of the 1d energy equation (for gradually-varied conditions) or the 

momentum equation (for rapidly-varied conditions) between two successive cross sections: 

ΔE + c 	cc2g − = 	=c2g = �LN̅ + � �c 	cc2g − = 	=c2g � �70� 
�c !cKc − �= !=K= + g �KcE=c − K=E==�K̅� = g�LM − LN̅� �71� 

where E is the water surface elevation and ΔE is the residual between the upstream and 

downstream cross sections, !=, K= and !c, Kc are the discharge and wetted area of the upstream 

and downstream cross sections, =, �= and c, �c are velocity and momentum correction 

coefficients (for a non-uniform distribution), � is the flow-weighted reach length, LN̅ is the 
representative energy slope between two cross sections and � is the expansion or contraction loss 

coefficient (representing the magnitude of the loss of energy between two expanding or contracting 

cross sections). 

For unsteady conditions, the model uses the 1d Saint-Venant set of equations: 

∂K∂: + ∂�´!�∂�� + ∂I�1 − ´�!J∂�Q = 0 �72� 
∂!∂: + ∂�´c!c/K��∂�� + ∂��1 − ´�c!c/KQ�∂�Q + g�K� ¾∂E�∂�� + LN�¿ + KQ ¾∂EQ∂�Q + LNQ¿� = 0 �73� 

where the subscripts c and f refer to the channel and floodplain, a variable specifying how flow is 

partitioned between the channel and floodplain: 
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´ = 1/ ¾1 + "�"Q �KQ/K��R/��LQ/L��6c/�¿ �74� 
with K�, L� and KQ, LQ are the wetted area and perimeter, related to the channel and floodplain, 

respectively. Note that the energy slope is approximated by the Manning’s equation. 

Further details on the mathematical background of HEC-RAS are provided in the associated 
documentation manual (Brunner, 2010). 

LISFLOOD-FP 

LISFLOOD-FP (bristol.ac.uk) is a quasi-2d, raster-based model that is appropriate for both steady 

and unsteady flow conditions. It allows using a high resolution grid-based topographic terrain and 

is more suitable for large basins with wide and shallow channels, since it assumes a rectangular 

channel section and so, it approximates the wetted perimeter by the channel width. It can process 

up to 106 grid cells, thus being suitable for implementing probabilistic investigations based on 

Monte Carlo approaches. The channel’s flood routing is handled using the 1d kinematic wave (in 

case of positively varying channel gradient) or the diffusive wave (in case of negative channel 
gradient), which are solved with a backward-implicit numerical scheme. The diffusive wave scheme 

is also used for lateral flow propagation (floodplain inundation), where the 1d channel and 

floodplain routings are linked via a quasi, two-dimensional continuity equation (Bates et al., 2013): 

∂K∂: + ∂!∂� = � �75� 
∂�∂� + !c"cL�/�K=a/� − LM = 0 �76� 

where � is the flow exerting from the channel to the floodplain. In this approach, it is assumed that 
the flow between two adjacent cells is linearly interpolated between the known water depths of the 

cells. 

FLO-2d 

FLO-2d basic (flo-2d.com) is also raster-based and allows for flexible geometry of the channel and 

the floodplain terrain. It solves the 1d Saint-Venant set of equations using an explicit-central finite 

difference scheme and, thus, it can describe in a more detail the flow wave propagation along the 

channel and floodplain. It is more suitable for large grid cell size since it may be time consuming 

when processing a high number of cells. For the floodplain, the equations of motion are applied by 
computing independently the average flow velocity across each one of eight potential flow 

directions (O’brien, 2007): 

∂�∂: + ∂��	�∂� = 0 �77� 
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∂	∂: + 	 ∂	∂� + � ∂�∂� = ��LM − LN� �78� 
where 	 is the depth-averaged velocity in one of the eight flow longitudinal directions, while the 

energy slope component LN is based on the Manning’s equation. 

Flow and boundary conditions 

In all the above models, two boundary conditions are required, which are usually set at the 

upstream end of the channel through an imposed inflow as well as the assumption of uniform water 

depths at the upstream and downstream end (kinematic wave condition). Although an imposed 

depth would result in more stable solutions than the condition of uniform flow, we choose the latter 

since, in practice, it is rare to know the temporal evolution of the water depth at a specific location. 

The models compute the appropriate time step based on the Courant number stability criteria 

(Courant et al., 1959). 

It can be illustrated that the uncertainty of the flood volume (which can be regarded as the wetted 

area over length) corresponding to a triangular cross section is often larger than that of a 

rectangular one. This is due to the fact that the area of a triangular cross section is a function of the 
square of the water depth �, i.e., KS = ; �2, where ; is the tangent of the interior angle of the section, 

in contrast to the rectangular one which is linear function of �, i.e., KT=� �, where � is the section 

width. Considering the uncertainty associated to a random variable as being proportional to its 

variation coefficient �Ú  and the water depth as being stochastically independent of the geometrical 

characteristics of the channel, we get for the rectangular cross section that �ÚcZKT[ = VarZKT[/EcZKT[, which after algebraic manipulations �ÚcZKT[ = I�ÚcZ�[ + 1JEZ�c[/EcZ�[ − 1 and 

equivalently for the triangular cross section we get �ÚcZKS[ = I�ÚcZ;[ + 1JEZ��[/EcZ�c[ − 1. 

Furthermore, considering the water depth as being uniformly distributed, i.e., �~V�0,2W�, with W 

its mean value, we have that �ÚcZKT[ = �� I�ÚcZ�[ + 1J − 1 and equivalently, �ÚcZKS[ = WR I�ÚcZ;[ +1J − 1. Thus, if we assume that �ÚZ�[ ≈ �ÚZ;[, then �ÚZKT[ < �ÚZKS[. For this reason, we apply a 

triangular-like cross section (Figure 26), which appears quite often in field (compared to the 

rectangular one). Moreover, this type of section permits the development of lateral flow wave 

propagation (as opposed to the rectangular one) and thus, is convenient for observing the 

differences between 1d and 2d models. 

Benchmark experiments 

Initially, we test the above models in theoretical applications to identify the impacts of the different 

mathematical schemes and other assumptions in terms of uncertainty. In this respect, we employ 

sensitivity analysis against the most important hydraulic variables (inflow, channel and floodplain 

slope and roughness), as well as the model resolution (see Figure 26 and Table 15). 

We consider six model configurations, by running HEC-RAS and LISFLOOD-FP in both steady and 

unsteady conditions, and FLO-2d with including or not the wave propagation along the channel. 

Note that when we omit the channel’s flow propagation we still apply the channel’s friction at the 
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same cells that would be overlaid by the channel. Also, when we refer to unsteady conditions (but 

with constant inflow), we mean that at the beginning we apply an increasing (i.e., starting from 

zero) inflow and then we stabilize it to the desired constant value, in order to achieve steady state 

conditions (i.e., no change in the water surface profile). 

 

Figure 26: Layout of benchmark tests and associated input variables: (a) perspective view, (b) plan 

view, and (c) cross sectional view, where solid lines represent the continuous geometry, 

implemented within HEC-RAS, while dashed lines represent the raster-based geometry, 

implemented within LISFLOOD-FP and FLO-2d (dc represents the channel depth; for rest of symbols 

please refer to Table 15). Source: Dimitriadis et al. (2016b). 

 

Table 15: Variables used within sensitivity analysis and associated range of feasible values; all 

variables are uniformly distributed, except for the model resolution determined by the channel 

width, which takes three discrete values with equal probability (25, 50 or 100 m). 

variable symbol and units min max 

upstream flow ! (m3/s) 100 5000 

longitudinal gradient �l (%) 0.1 5 

lateral gradient �f (%) 0.1 5 

roughness coefficients (channel) "� 0.01 0.1 

roughness coefficients (floodplain) "Q 0.05 0.3 

model resolution (= channel width) � (m) 25, 50, 100 

 

Input data and model setup 

The channel and floodplain geometry are chosen in such a way to be similar in all models. We 

consider the mixed section shown above, which is a typical approximation of a river and its 
floodplains. Its geometry is defined by the channel width � and the lateral gradient �Q. The channel 

width is equal to the size of the model resolution and is allowed to take three values, i.e., 25, 50 and 
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100 m. For simplicity, the depth of the channel �� is determined by the intersection of the right and 
left floodplain section, thus it is set equal to �� = ��Q/2. The longitudinal gradient �Ó is constant 

along the channel and floodplain. The channel length is Lc = 3 km, in order to approximate uniform 

flow conditions downstream, while the floodplain width is Lf = 1.6 km, in order to ensure that it is 

never fully flooded, for the given geometry and the examined flow conditions. The representation of 

the actual layout differs according to the model structure. In HEC-RAS, we consider a discrete 

number of cross-sections at same distances, which are set equal to the channel width c, each one 

preserving the actual geometry. Therefore, the number of cross-sections is by definition Lc/c + 1. On 

the other hand, in LISFLOOD-FP and FLO-2d, the geometry is approximated by a grid of (Lc/c) × 

(Lf/c) cells, since the models are raster-based. 

The inflow ! is applied to the upstream section, in HEC-RAS, or cell, in the other two models. In 

order to assess the performance of the three models against multiple flow conditions, we 

investigate a large range of inflow values, employing the steady flow scheme as well as the unsteady 
one. In the second case, we assign a synthetic hydrograph of 48 h duration, in which discharge 

slowly increases from zero to the desired value, within first 24 h, and then remains constant until 

reaching steady state conditions. We remark that FLO-2d is only examined for non-steady 

conditions, assuming both the full structure as well as the simplified structure in which the channel 

flow propagation is omitted. Next, these two configurations will be marked as “with channel” and 

“no channel”, respectively. Finally, different Manning’s roughness coefficients are set for the 

channel and floodplain, symbolized "� and "Q, respectively. 

Setup of Monte Carlo simulations 

Sensitivity analysis in based on a Monte-Carlo approach, by generating 1500 random values for 

each of the six variables (resulting to 1500 parameter sets for each model configuration). For 

continuous variables, we generate independent random values from a uniform distribution in the 

range given in Table 15, while for the channel width, which also determines the model resolution, 

we generate three equally-distributed discrete values (25, 50 and 100 m). The number of 

simulations is chosen to ensure a satisfactory accuracy in statistical estimations. 

For each simulation and each model configuration we record the water depths at the upstream and 

downstream section (or cell), symbolized �X and �}, respectively. We also record the flood volume, 	Q, over the entire model domain. For each of the three output variables we employ typical 

statistical analysis, focused on the quantification of their uncertainty. In particular, we calculate the 

main statistical characteristics (mean, variance, skewness and kurtosis) and we extract their q-q 

and box-plots. Moreover, we calculate their cross-correlation coefficients with all inputs variables. 

Monte Carlo simulation results 

We chose to perform 1500 simulations for each one of the six model configurations, to balance the 

computational cost with an adequate quantitative analysis with an equivalent of more than three 

values per input variable (i.e., 15001/6 ≈ 3.4). In Figure 27, we show the moving average of the 

coefficient of variation �Ú (i.e., the ratio of standard deviation over mean) for the uniform depths 

upstream, �X, and downstream, w}, of the channel’s cell/section, as well as for the flood volume 	Q. 
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For comparison, we also show the depths estimated from the Manning’s equation, assuming a 

triangular cross section, i.e., �M = √2I!�Q"Q/�ÓJ�/Z
. We observe that all variables have nearly 

reached a constant value, which strengthens the fact that the chosen number of simulations is 

adequate. We also underline that the HEC-RAS w} and LISFLOOD-FP wX lines for the steady-state 

scheme coincide to the HEC-RAS and LISFLOOD-FP unsteady ones, respectively. Additionally, we 

remark that the HEC-RAS steady and unsteady 	Q lines coincide to each other. 

  

  

Figure 27: Moving average of (a) coefficient of variation, �v, for all model configurations of the 

water depth of the channels’ upstream and downstream cell/section, and (b) mean, μ, (c) standard 

deviation, σ, and (d) �v for the flood volume. Source: Dimitriadis et al. (2016b). 

In Table 16 we show the statistical characteristics (moment coefficients and cross correlations) of 

the examined output variables, estimated from the full samples (i.e., 1500 values per model 

configuration). The cross correlations between the input and output variables show that all output 

variables are an increase function of the inflow discharge and channel and floodplain roughness 

coefficients (same between the total flood volume and the lateral gradient) as well as a decrease 

function of the longitudinal gradient and model resolution (same between the upstream and 

downstream depths and the lateral gradient). Particularly, the largest correlations correspond to 

the inflow discharge, followed by the channel and floodplain slopes and roughness coefficients and 

with the model resolution having the smallest correlations. 
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Table 16: Central moments’ variation (denoted �v), skewness (denoted �s) and excess kurtosis 

(denoted �k) coefficients (using the unbiased classical estimators) for each model applied as well as 

cross correlation coefficients between the input and output variables. Source: Dimitriadis et al. 

(2016b). 

variable model �Ú �º �� ! �Ó �Q "� "Q � �M uniform depth 0.5 0.9 1.4 0.5 -0.3 0.5 0.4 ~ 0 ~ 0 

�X 

HEC-RAS (steady) 0.5 1.1 2.2 0.6 -0.4 0.3 0.4 0.1 -0.2 

HEC-RAS (unsteady) 0.6 1.4 4.0 0.5 -0.3 0.3 0.3 0.1 -0.2 

LISFLOOD-FP (steady) 0.7 1.8 5.1 0.6 -0.4 ~ 0 0.4 ~ 0 -0.3 

LISFLOOD-FP (unsteady) 0.7 1.8 5.1 0.6 -0.4 ~ 0 0.4 ~ 0 -0.3 

FLO-2d (no channel) 0.4 0.4 ~ 0 0.7 -0.2 0.3 ~ 0 0.5 -0.1 

FLO-2d (with channel) 0.5 0.3 ~ 0 0.8 -0.3 0.1 0.1 0.2 -0.4 

�} 

HEC-RAS (steady) 0.5 1.1 2.4 0.6 -0.4 0.3 0.3 0.1 -0.2 

HEC-RAS (unsteady) 0.5 1.2 2.4 0.6 -0.4 0.3 0.4 0.1 -0.2 

LISFLOOD-FP (steady) 0.7 1.8 5.0 0.6 -0.4 0.1 0.4 ~ 0 -0.3 

LISFLOOD-FP (unsteady) 0.6 1.4 3.2 0.6 -0.3 0.1 0.4 ~ 0 -0.3 

FLO-2d (no channel) 0.4 0.4 -0.5 0.7 -0.2 0.3 0.1 0.5 -0.2 

FLO-2d (with channel) 0.7 0.6 -0.1 0.6 -0.3 ~ 0 0.4 0.2 -0.4 

	Q 
HEC-RAS (steady) 1.0 2.5 9.7 0.5 -0.4 -0.3 0.3 0.2 -0.1 

HEC-RAS (unsteady) 1.2 6.4 89.6 0.4 -0.3 -0.3 0.2 0.1 -0.1 

LISFLOOD-FP (steady) 1.7 4.4 30.7 0.4 -0.4 -0.3 0.3 ~ 0 -0.3 

LISFLOOD-FP (unsteady) 1.5 4.3 29.0 0.4 -0.4 -0.2 0.3 ~ 0 -0.2 

FLO-2d (no channel) 0.7 1.5 3.6 0.7 -0.4 -0.2 ~ 0 0.4 0.1 

FLO-2d (with channel) 0.9 1.9 5.8 0.6 -0.4 -0.4 0.3 0.2 -0.1 

In Figure 28 we show the q-q and box-plots for each output variable and each model configuration. 

All variables are characterized by positive skewness, with the larger one corresponding to the total 

flood volume. Additionally, the latter variable exhibits heavy positive tails, as also indicated by the 

kurtosis values shown in Table 16. In particular, the more complicated the model structure is the 

less heavy is the positive tail of the empirical distribution. These outcomes are of major importance 

in hydrological design and therefore, the application of average values to crucial model inputs (e.g., 

discharge, roughness coefficients etc.) may lead to over-designing, while, in contrast, the 

application of the most probable values may result in severe underestimations. This can be even 

deteriorated when the above variables exhibit heavy tails, since the mean would further deviate 

from the mode value. Also, a heavy-tailed variable encloses higher uncertainty, since its prediction 

intervals are wider, thus there is a higher probability for extreme values to occur. 

In Figure 28 we also observe that the prediction intervals of LISFLOOD-FP (unsteady conditions) 

are 1.5 times wider than the other models for the upstream depth, whereas for the downstream 
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depth, HEC-RAS and LISFLOOD-FP (steady-state) intervals are approximately double more wide 

(compared to the upstream depth). Also, FLO-2d exhibits similar intervals, compared to the 

uniform depth ones, for the upstream depth and two times narrower for the downstream one. 

Regarding flood volumes, HEC-RAS (unsteady) and LISFLOOD-FP (steady-state) exhibit wider 

intervals while the rest are close to each other. It is noted that wider intervals enclose larger 

variability and therefore, uncertainty. The aforementioned differences are due to the different 

schemes, initial and hydraulic conditions made by each model and highlight the large uncertainty 

that one should encounter in flood modelling. 

Furthermore, in Figure 28 we observe that at the left and right tail of the flood volume distribution 

all models deviate from normality, with HEC-RAS exhibiting the largest deviation, followed by 

LISFLOOD-FP and FLO-2d. This can be explained by the fact that HEC-RAS is by construction 1d, 

while the other two models are quasi-2d. Therefore, they can better approximate the lateral flow 

attenuation along the floodplain, especially in mild topographic gradients, and thus, they would 
require less discharge to capture a target flooded area. Also, FLO-2d uses the dynamic wave and so, 

it can better approximate the floodplain attenuation in comparison to the diffusive wave of the 

LISFLOOD-FP, which omits the local and convective acceleration terms. However, the use of extra 

terms significantly increases the computational burden. In average, HEC-RAS (steady) requires 

approximately 1 s per simulation, HEC-RAS (unsteady) requires 5 s, LISFLOOD-FP (steady and 

unsteady) requires roughly 10 s for all cell sizes and FLO-2d requires up to 2 min, 15 min and 1.5 h 

for cell sizes 100, 50 and 25 m, respectively (all simulations are performed with an Intel Core i7-

2600 @ 3.40GHz processor). Note that HEC-RAS includes 30, 60 and 120 cross sections and both 

LISFLOOD-FP and FLO-2d include approximately 500, 2000 and 8000 grid cells, for cell sizes 100, 

50 and 25 m, respectively. 
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Figure 28: qq-plots and box-plots of the water depth of the channels’ (a-b) upstream and (c-d) 

downstream cell/section as well as of the (e-f) total volume of the flooded area. Note that the water 

depths and flood volume are first standardized (i.e., the residual from their average value is divided 

with their standard deviation). Source: Dimitriadis et al. (2016b). 

 

Model sensitivity against roughness coefficients 

It is well-known that the roughness coefficient is one of the most difficult parameters to estimate in 

hydraulic modelling. A major issue is the different sensitivity of each model against the roughness 
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assigned to the channel and the floodplain. In general, we expect the flood inundation to exhibit a 

larger sensitivity to the channel friction rather than to the floodplain one, since the wave is carried 

primarily by the channel while the floodplain acts merely as additional storage (Cunge et al., 1980; 

Hunter et al., 2005). The above statement is in accordance with the computed correlation 

coefficients between the three output variables (upstream and downstream depths and flood 

volume) and all the input variables. Specifically, we observe that for the flood volume, HEC-RAS 

exhibits the largest correlation to the floodplain friction, followed by FLO-2d. On the other hand, 

LISFLOOD-FP exhibits minor only correlation. For the channel friction, HEC-RAS flood volume’s 

correlation is larger than the floodplain one and similar for all models (except for the “no channel” 

configuration of FLO-2d, which is expected to be small). The differences in the sensitivity against 

the two roughness coefficients can be also illustrated through the estimation of the longitudinal and 

lateral momentums, where the former is expected to highly outrange the latter one. In Figure 29 we 

provide an example from LISFLOOD-FP, for the case of non-steady conditions. 

(a) (b) (c)  

Figure 29: Contour maps of (a) water depths, (b) lateral flows, and (c) longitudinal flows produced 

by LISFLOOD-FP (unsteady), for ! = 2500 m3/s, "f = 0.10, "c = 0.07, �l = 2.5%, �f = 2.8% and � = 

50 m. Source: Dimitriadis et al. (2016c). 

 

Evaluation of uncertainty issues 

In order to obtain a rough estimate on the uncertainty associated with the magnitude of each input 

variable, we calculate the variation coefficient for each model against clustered samples of each 

input variable. In particular, we formulate three equally sized clusters, with low, medium and high 

values. In Figure 30, we show the relationship between the flood volume uncertainty against each 

input variable and each model configuration. In general, we observe that for approximately all 
cases, uncertainty decreases with increasing !, �Ó and "�, while it increases with increasing �Q, "Q 
and �. The most important source of uncertainty is the channel’s roughness coefficient "�, followed 

by the floodplain’s one "Q and the inflow discharge !. Regarding the rest of the examined inputs, 
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their range of variability is quite similar to each other and slightly smaller than the aforementioned 

three variables one. Finally, in Figure 30, we also show the variability coefficients for each model as 

well as the overall one, which is larger than their average value. A direct outcome of the above 

investigations is that since the uncertainty related to an output variable (e.g., water depth) varies 

significantly, so will do the hydraulic profile. This can completely alter the whole behaviour of the 

flow if for example the profile includes a hydraulic jump from a switch of super-critical flow to sub-

critical one. It is interesting to remark that from the 1500 sets generated through the Monte Carlo 

method, we observe upstream sub-critical flow in 50% of simulations with HEC-RAS, 60% with 

LISFLOOD-FP (steady), 30% with LISFLOOD-FP (unsteady), 90% with FLO-2d (no channel) and 

65% with FLO-2d (with channel). An important conclusion is that the uncertainty related to a 

specific input variable can sometimes outperform the uncertainty related to different models, 

schemes or conditions. The latter statement can be important in flood risk assessment, since it 

raises the question whether saving computational time can always outbalance the cost of in situ 
measurements (e.g., for accurate representation of geometry) in estimating a narrower variability 

range for an input variable or in choosing which modelling scheme or flow condition is the most 

appropriate for a particular case study. 

As shown in the above analysis, uncertainty can be introduced in fully deterministic non-linear 

systems with however, a short-term persistent behaviour as shown in Table 17, where a strong lag-

one cross-correlation between different models and schemes is apparent with all the larger lags 

corresponding to approximately zero values. 

Table 17: First order correlation between various hydraulic models and schemes as estimated from 

the sensitivity analysis. Source: Dimitriadis et al. (2016c). 

ρ1 of downstream depth 
steady unsteady steady unsteady no channel with channel 

(HecRac) (HecRac) (Lisflood) (Lisflood) (Flo2d) (Flo2d) 

steady (HecRac) 1 0.998 0.510 0.519 0.455 0.484 

unsteady (HecRac) 0.998 1 0.512 0.521 0.452 0.485 

steady (Lisflood) 0.510 0.512 1 0.982 0.712 0.903 

unsteady (Lisflood) 0.519 0.521 0.982 1 0.733 0.922 

no channel (Flo2d) 0.455 0.452 0.712 0.733 1 0.799 

with channel (Flo2d) 0.484 0.485 0.903 0.922 0.799 1 
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Figure 30: Variation coefficients of the flood volume vs. grouped input variables (coloured solid 

lines), averaged per model (coloured dashed lines) and averaged (overall) for all models (black 

line). Note that each variation coefficient is estimated from 500 (=1500/3), 1500 and 9000 ( = 

1500×6) values, respectively. Also note that the overall variation coefficients of HEC-RAS, for steady 

and unsteady conditions, coincide with each other. Source: Dimitriadis et al. (2016c). 
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4.3 HK dynamic as a measure of uncertainty 

The importance of taking into consideration and robustly handling the HK behaviour in hydrology 

and beyond lies within the understanding and prediction of the interactions between the processes 

of climate dynamics (from microscale to macroscale) as well as between other fields such as society 

and water (Montanari et al., 2013). A key observation from the above analysis is that the more 

chaotic and complex a process is, the larger is the introduced uncertainty (unpredictability or 

equivalently the predictability time window) and the stronger is the HK behaviour (through the 

estimated Hurst parameter). Particularly, a die’s trajectory is fairly predictable for time windows of 

approximately 0.1 s, and this time window becomes 5 min for rainfall intensity and 1 h for wind 

speeds. Thus, dice seems to behave like any other common physical system: predictable for short 

horizons, unpredictable for long horizons. The main difference of dice trajectories from other 

common physical systems is that they enable unpredictability very quickly. Also, the largest Hurst 

parameter corresponds to the process of local wind events (H = 0.95), the intermediate to the 
process of local rainfall events (H = 0.9) and the smallest one to the die process (0.6 < H < 0.5). 

Conversely, if averages at large time scales are considered, then the dice will become more 

predictable as it will soon develop a time average of 3.5; this is also strengthened by the fact that 

die is orientation-limited to a combination of six faces, while rainfall and wind processes have 

infinite possible patterns and thus, can be more unpredictable for long horizons and long time 

scales. 

As far as the examined purely deterministic systems, it is well-known that solutions of stochastic 

differential equations (such as the Fokker–Planck; Papoulis, 1991) cannot result in an HK 

behaviour and can be adequately approximated by Markov chain Monte-Carlo algorithms (e.g., 

Infante et al., 2016, and references therein). However, natural processes with HK behaviour abound 

in literature. For example, turbulent processes exhibit such long-term persistent behaviour (e.g., 

Dimitriadis et al., 2016a, and references therein), recently in ecosystem variability (Pappas et al., 

2017) as well as most geophysical processes as verified in several cases (Koutsoyiannis, 2003; 

O’Connell et al., 2016; Sakalauskienė, 2003), and specifically in key hydrometeorological processes 

such as: river discharge and stage (Hurst, 1951; Koutsoyiannis et al., 2008; Markonis et al., 2017); 

solar radiation and wind speed (Koutsoyiannis et al., 2017; Tsekouras and Koutsoyiannis, 2014; 

Koudouris et al., 2017); precipitation (Iliopoulou et al., 2016; Dimitriadis et al., 2016a; Markonis 

and Koutsoyiannis, 2016); paleoclimatic temperature reconstructions (Markonis and 

Koutsoyiannis, 2013); temperature and dew point (Koutsoyiannis et al., 2017; Lerias et al., 2016) 

and thus, humidity; potential evapotranspiration which can be adequately evaluated only by 

temperature and deterministic extraterrestrial radiation (Tegos et al., 2017) and therefore, a 

similar Hurst parameter as in temperature is expected; but also other renewable-energy related 

processes, such as wave energy and period (Moschos et al., 2017), as well as processes used in 

energy production and management (Chalakatevaki et al., 2017; Papoulakos et al, 2017; Tyralis et 
al., 2017; Mayrogeorgios et al., 2017), but also weather finance models (Karakatsanis et al., 2017). 

Interestingly, in most of the aforementioned processes (if treated properly within a robust physical 

and statistical framework, e.g. by adjusting the process for sampling errors as well as discretization 

and bias effects) the Hurst parameter is estimated at the range 0.8 to 0.85, as indicated by Hurst 
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(1951) decades ago (Cohn and Lins, 2005), and particularly, around 5/6 as estimated for the grid-

turbulence process through one of the longest and freely available time series in geophysics 

(Dimitriadis et al., 2016a; see also the analysis in section 5). 

Classical statistics (such as the t-test for approximately normal distribution of the sample mean; the 

Mann-Whitney test for comparison of differences between two samples, e.g. see Dimitriadis D. et al., 

2016, for an application between a biomedical and a psychiatric process; the ANOVA test for 

analyzing the differences among various sample means, e.g. see Mitrou et al., 2015, for an 

application to diabetes) are useful for processes where there is no adequate information (due to the 

small sample sizes) and there are indications of close-to-normal distributions as well as short-term 

(regular and joint) correlations. However, the discussed uncertainty induced by each hydroclimatic 

processes can be even higher due to the cross-correlation in between these processes (e.g., see 

implication in trend test in Serinaldi et al., 2017; and to joint occurrence of extremes in Serinaldi, 

2015). In such cases, a modified test should be introduced that takes into account the possible long-
term dependency between the processes such as the one proposed in Koskinas et al. (2018) and 

references therein. 
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5 Application to microscale turbulent processes 

Stochastic modelling and probabilistic approaches in general, have been proven useful in the 

investigation of processes that resist a deterministic description, such as turbulence (e.g., 

Dimitriadis et al., 2016a; Frisch, ch. 3, 2006; Kraichnan, 1991, ch. 1; McDonough, ch. 1, 2004). For 

example, various physical interpretations of geophysical processes are based on the power 

spectrum and/or autocovariance behaviour (e.g., spectral density function of isotropic turbulence, 

see in Pope, 2000, p. 610), with both metrics belonging to the fields of Stochastics rather than 

classical mechanics. In this section, we apply the stochastic framework presented in the previous 

sections in microscale turbulent processes and we compare the results with the ones from 

applications in hydrometeorological processes in small scale and in larger scales. 

5.1 On the definition of turbulence 

Turbulence originates from the Greek word ‘τύρβη’ (cf. ‘…τὴν τύρβην ἐν ᾗ ζῶμεν’:‘…for the 

turbulence in which we live’, Isokrates, 15.130) which means disorder, confusion, turmoil etc. 

Turbulence is considered to generate and drive most geophysical processes, e.g., wind turbulence 

giving birth and spatiotemporal variability in cloud rainfall (Falkovich et al., 2002), yet it is 

regarded as mystery within classical physics (McDonough, 2004, ch. 1). Studying turbulent 

phenomena is of high importance in hydrology (Mandelbrot and Wallis, 1969; Rinaldo, 2006) since 

the microscopic processes (related to turbulence) can help understand the macroscopic ones 

(related to hydrology), since they enable the recording of very long time series and with a high 

resolution, a rare case for hydrological processes (Koutsoyiannis, 2014). The simplest case of 

turbulent state (in terms of mathematical calculations) is the stationary, isotropic and 

homogeneous turbulence. While this is a physical phenomenon that has been recognized hundreds 

of years ago, still there is no universally agreed mathematical definition for the so-called ‘turbulent 

state’ (Tessarotto and Asci, 2010). Leonardo da Vinci tried to give a definition 500 years ago, based 

on his observations that water falling into a sink forms large eddies as well as rotational motion 

(Pedretti, 1977). Interestingly, Heisenberg (1985) commented on the definition of turbulent state of 

flow that it is just the result of infinite degrees of freedom developed in a liquid flowing without 

friction and thus, by contrast, laminar flow is a turbulent state of flow with reduced degrees of 

freedom caused by the viscous action. In 1880, Reynolds introduced one of the most important 

dimensionless parameters in fluid mechanics, the ratio of momentum over viscous forces which is 

called Reynolds number ever since. Based on this dimensionless parameter, it was observed that 

irrotationality in the streamlines occurred for values much greater than 1 and led to somehow 

confine the occurrence of turbulence to Reynolds number values greater than approximately 1000 

to 2000. Richardson (1922) introduced the idea of turbulence ‘energy cascade’ by stating that 
turbulent motion, powered by the kinetic energy, is first produced at the largest scales (through 

eddies of size comparable to the characteristic length scale of the natural process) and then to 

smaller and smaller ones, until is dissipated by the viscous strain action. Taylor (1935) was the first 

to use stochastic tools to study this phenomenon modelling turbulence by means of random 
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variables rather than deterministic ones. Following this idea, Kolmogorov (1941a,b,c,d) managed to 

derive the famous ‘5/3’ law (also known as K41 theory) through the Navier-Stokes equations. That 

law describes the energy cascade from larger to smaller turbulence scales within the inertial 

wavenumber sub-range, with the power spectrum no longer dependent on the eddy size and fluid 

viscosity. Since then, many scientists (including Von Karman, 1948; Heisenberg, 1985; Kraichnan, 

1959; Batchelor, 1953 and Pope, 2000), have significantly contributed to the current power-

spectrum-based models of turbulence. A general view of the stochastic approach of stationary and 

isotropic turbulence (in which the random variables describing turbulence have the same statistical 

properties in all directions) can be seen in many text books (e.g., Pope, 2000). 

Following the stochastic framework in section 2, we derive in Table 18, the 1d and 3d isotropic 

power spectra as well as their LLD, for a Markov process, a special case of a powered-exponential 

process (e.g., Gneiting et al., 2012; Yaglom, 2004, ch. 10) and the gHK process. These positively-

correlated mathematical processes enclose possible asymptotic behaviours in large and small 
scales. In particular, a positively-correlated natural process may approach zero or infinite scale, by 

a powered-exponential (e.g., Markov process) or a power-type (e.g., HK process) rise or decay, 

respectively. The 1d power spectrum and the 3d one, denoted as e�[�\�, are related by (Batchelor, 

1953; Pope, 2000, pp. 226-227; Kang et al., 2003): 

e��� = m �c − 1�� e�[�‖\‖��Y
= d� �79� 

e�}��� = ��2 d � 1� dIe���Jd� �d�  �80� 
where \ is the isotropic 3d frequency vector (wavenumber), with ‖\‖ = � ≥ 0. 

As mentioned above, the most common used model for stationary and isotropic turbulence consists 

of the work of many scientists. Combining them into one equation, the power spectrum of isotropic 
and stationary turbulence can be expressed as (Pope, 2000; Kang et al., 2003): 

e�[��� = OÌ��, �Ì, -�Ô ��, �^�O[��, �[� �81� 
where, from the work of Von Karman (1948), for the energy containing eddies (large scales): 

OÌ��, �Ì, -� = � ��c + �Ì�R�>� �82� 
combined with the work of Kolmogorov (1941a,b,c,d) for the inertial range (intermediate scales): 

Ô ��, �^� = �^�6R� �83� 
and from the work of Kraichnan (1959) for the dissipation range (small scales): 
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O[��, �[� = e6��_  �84� 
where �Ì, -, �^, �[ are constants. 

Table 18: 1d and 3d power spectrum for Markov, powered-exponential and gHK processes as well 

as their LLD, where � is the parameter related to the true variance of the process, � the scale 

parameter and b is related to the power-type behaviour of the process (source: Dimitriadis et al., 

2016a). 

Markov 
 powered-exponential 

(special case) 
 gHK  

��4� = �e6|`|/� (T18-1) ��4� = �e6�`/���
 (T18-2) 

��4�
= � �1 − ���2 − ���1 + |4|/��¡  

with � ∈ �0,2� 

(T18-3) 

e��� = 4��1 + 4πc�c�c 

with lim�→a e# = 0 

and lim�→Y e# = −2 

(T18-4) 

e��� = ��√π2 e6������
 

with e#��� = −2���π�c, lim�→a e# = 0 and lim�→Y e# = −∞ 

(T18-5) 

lim�→a e~�¡6=, with lim�→a e# = � − 1 
(T18-6) 

lim�→Y e ~�6c, with lim�→Y e# = −2 
(T18-7) 

e�}���
= 4���2π�����1 + 4πc�c�c�� 

with lim�→a e�}# = 4 

and lim�→Y e�}# = −2 

(T18-8) 

e�[���~�R��e6������
 

with e#��� = 4 − 2���π�c lim�→a e�}# = 4 and 

 lim�→Y e�}# = −∞ 

(T18-9) 

lim�→ae�}~�¡6=, with 

lim�→ó e�}# = � − 1 
(T18-10) 

lim�→Ye�}~�6c, with 

lim�→Y e�}# = −2 
(T18-11) 

 

5.1.1 Stochastic properties of large-scale range 

For the 3d and 1d (derived from the 3d one) power spectra at the energy containing range, we have 

that: 

lim�→ó e�} = lim�→a e~�� �85� 
where Von Karman (1948) suggests - = 4 (or else known as ‘Batchelor turbulence’, cf., Davidson, 

2000), while other works result in different values, e.g., Saffman (1967) suggests - = 2. 

There are many arguments about the proper value of the p parameter and its relation to the 

Loitsyansky integral which controls the rate of decay of kinetic energy (Davidson, 2000). The main 

debate is whether points at a large distance in stationary, isotropic and homogeneous turbulent 

flow are statistically independent or show a correlation that decays either exponentially (e.g., Von 
Karman model for wind gust, cf., Wright and Cooper, 2008, ch. 16.7.1; Faisst and Eckhardt, 2004; 

Avila et al., 2010; Kuik et al., 2010; models for pipe flow) or with a power-type law. 
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Towards the stochastic properties of the aforementioned equation, we can see that the case - = 2 

does not correspond neither to exponential (Markov or powered-exponential) nor to power-type 

(i.e., HK) decay of autocovariance. Hence, this model cannot be applied to asymptotic zero 

frequencies (or infinite scales). Interestingly, the case - = 4 can be interpreted by a Markov or a 

special case of the powered-exponential decay of autocovariance. However, this case also excludes 

the HK behaviour, i.e., long-range dependence, where - now equals � − 1 and is bounded to [-1, 1]. 

Although the aforementioned models do not include a possible power-law decay of autocovariance 

(HK behaviour), several works show strong indication that turbulence natural processes can exhibit 

such behaviour rather than Markov. Such works are reported by e.g., Nordin et al. (1972) for 

laboratory turbulent flume and turbulent river velocities, Helland and Van Atta (1978) for grid 

turbulence velocities, Goldstein et al. (1995) for magneto-hydrodynamic turbulent solar wind, 

Chamorro and Porté-Agel (2009) for wind turbulent wakes and grid-turbulence, Dimitriadis and 

Papanicolou (2012) and Charakopoulos et al. (2014a,b) for turbulent buoyant jets, Dimitriadis et al. 
(2016a) for grid turbulence. 

We believe that the reason a possible HK behaviour is not detected in geophysical processes (which 

are often characterized by lack of measurements), is that mathematical smoothing techniques are 

applied, e.g., windowing or else Welch approaches, regression analysis, wavelet techniques (see 

other examples in (Stoica and Moses, 2005, ch. 2.6). Particularly, application of windowing 

techniques to any stochastic tool can be misleading since they eliminate a portion (depending on 

the type and length of the window applied) of the variance of the time series (which often is 

incorrectly attributed to ‘noise’, e.g., Koutsoyiannis, 2010). This elimination can lead to process 

misrepresentation in case of significant effects of discretization, small and/or finite record length 

and bias (examples of applications to the power spectrum can be seen in Lombardo et al., 2013; and 

Dimitriadis and Koutsoyiannis, 2015a). An example of smoothing out the HK behaviour by applying 

the Welch approach with a Bartlett window and no segment-overlapping to an observed time series 

is shown in Figure 31. Even though the smoothing technique decreases the variance of the power 

spectrum, it also causes low frequency loss of information. This loss of information may cause a 

process misinterpretation, as illustrated in Figure 31, where the autocorrelation function (derived 

from the 3D power spectrum model) exhibits a Markov-like decay, while the empirical one (derived 

from the windowed empirical power spectrum partitioned into 103 segments) exhibits HK 

behaviour. Also, this smoothing technique should be used in caution in strong-correlated processes, 

since an increase in the number of partitioned segments will cause an increase in their cross-

correlation. Finally, processes with HK behaviour have usually large bias and in case this is not 

included in the model, the empirical rapid decay of autocovariance in large scales (or equivalently 

lags) may be erroneously interpreted as short-range dependence. 
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Figure 31: (a) Example of loss of low frequency information caused by the application of the 

windowing technique, in a time-series provided by the Johns Hopkins University as well as the 

maximum cross correlations between the partitioned segments; (b) 1D autocorrelation function 

derived from the 3D power spectrum model (with parameters based on the fitting of the windowed 

1D power spectrum with 1000 segments: �Ì = 2.5 m6c, - = 4, �^ = 13.0 m�/sc, �[ = 2 × 106� 

m); a Markov autocorrelation function, i.e., 36�`/��, for reasons of comparison; and the 

corresponding (to the windowed 1D power spectrum with 1000 segments) empirical 

autocorrelation function. Source: Dimitriadis et al. (2016a). 

 

To incorporate possible HK behaviour in the model, we may assume an autocovariance power-type 

decay at large scales, where the 3d and 1d power spectra at asymptotically zero frequency are of 

the form �¡6=, with � bounded to �0, 2�, for positively correlated processes (i.e., 0.5 < ¢ < 1), 

negatively-correlated processes (i.e., 0 < ¢ < 0.5) and for a process with a white-noise-like decay 

in large scales (i.e., ¢ = 0.5). 

5.1.2 Stochastic properties of intermediate range 

One may observe that the power spectrum asymptotic LLD for various processes often coincident 

to each other. For example, for both a Markov and a gHK process with � =1, the power spectrum 

LLD is 0 for the low frequency tail and -2 for the high frequency one. This may be confusing and 

result in misinterpretation of the natural process. A solution to this may be to incorporate 

additional stochastic tools in the analysis. For the aforementioned example, if the autocovariance 

function asymptotic properties (local and global ones) are analyzed, one can decide upon powered-

exponential lag decay (as in the Markov process) and a power-type one (as in the gHK process). 

Similarly, when a power-type behaviour appears in the intermediate frequencies of a power 

spectrum (as in the case of a -5/3 LLD), it may be misleading to interpret it as a power-law function 

(and thus, a power-type autocovariance decay), since this can be derived from different kind of 

processes with no power-type expressions for the intermediate scale-range. An illustrative example 

is shown in Figure 32, where the -5/3 LLD in the intermediate frequencies of the power spectrum 

results from a simple combination of a Markov and a gHK process, both of which have a purely 

stochastic interpretation and they do not include power-type expressions in the intermediate 

frequency-range. 
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Figure 32: Expected power spectrum resulted from a combination of a Markov and a gHK process 

(source: Dimitriadis et al., 2016a). 

Note also, that the Kolmogorov (1941a,b,c,d) power-type power spectrum refers only to 

intermediate frequencies and should not be also applied arbitrarily to low frequencies, since the 
corresponding asymptotic large-scale behaviour of the autocovariance, i.e., ��4�~45/3-1, is equivalent 

to an erroneous ¢ = 4/3 > 1. 

5.1.3 Stochastic properties of small-scale range 

Similarly, for the 3d and 1d power spectra at the dissipation range, we have that (Figure 33): 

lim�→Y e�} ��� = lim�→Y e ���~e6�  �86� 
This corresponds to an autocovariance function of the form: 

��4�~ 14c + 1 �87� 
which corresponds to the Wackernagel (1995) process (also mentioned as an autocovariance-based 

Cauchy-class process resembling the Cauchy probability function). A generalized expression of this 

process can be found in Gneiting (2000), which we refer to it as the Gneiting process (Table 8): 

��4� = ��1 + �4/��c¸�=6
̧  �88� 
Note that for M = ½ we have the gHK process and that if this process is expressed based on the 

climacogram rather than the autocovariance; it corresponds to the HHK process. 

For small lags (and for q = λ = Μ= 1) this process behaves like (e.g., Gneiting and Schlather, 2004): 
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lim`→a � �4�~1 − 4c~36`�  �89� 
which corresponds to the special case of a powered-exponential process. Note that if this process is 

expanded directly to large scales it corresponds to an erroneous process with ¢ = 0. 

 

 

Figure 33: (a) Power spectra and (b) corresponding autocovariances, in continuous time as well as 

their expected values, with varying number of records n for a gHK process (source: Dimitriadis et 

al., 2016a). 

 

Other models for the dissipation range are of the form of a powered-exponential power spectrum 

process that may result from a powered-exponential autocovariance function. However, there is 

evidence that these models cannot interpret the frequently observed spike in the high frequency 

power spectrum (e.g., Cerutti and Meneveau, 2000; Kang et al., 2003). This is usually ignored and 
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attributed to instrumental noise. In Figure 34, we show that this spike may appear in HK processes 

and is due to discretization and bias errors, in case the shape parameter �/5 takes large values. 

 

Figure 34: Expected power spectra of a gHK process, with varying �/5 (where Δ the sampling time 

interval). Source: Dimitriadis et al., 2016a. 

 

5.2 Proposed model for turbulence 

Here, we focus on the local and global stochastic properties of the most common three-dimensional 

power-spectrum-based models of stationary and isotropic turbulence in time domain and we detect 

some model weaknesses despite their widespread use. In the previous section, we present several 

limitations concerning the stochastic properties of proposed turbulent models from literature. 

Specifically, we see that they only include exponential decay in the energy containing area and thus, 

completely excluding possible HK behaviour. They also, describe the dissipation area decay with 

only a specific case of a powered-exponential process and thus, leaving out all other possible types 

of decay. Moreover, they interpret a possible power-type-like intermediate area (of the power 

spectrum) with power-type behaviour (and particularly, only that of the K41 theory) which can also 

result from intermediate non power-type processes. Furthermore, these models adequately 

represent only the power spectrum while failing to describe other tools like the climacogram and 

autocovariance. Moreover, these models are constructed based on multiplications between 

processes, an action with no mathematical or physical justification and which may cause numerical 

difficulties in stochastic generation. Since turbulence generates and drives most of geophysical 

processes, we expect geophysical processes to exhibit similar types of decay in small and large 

scales. Hence, a more robust, flexible and parsimonious model is required that can incorporate all 

the aforementioned microscale and macroscale behaviours linking turbulence to hydrology and 

beyond. Here, we choose the ergodic stochastic model that consists of two independent processes, 

these of a Markov and an HHK process (with H > 0.5 and M < 0.5), combined in such way to exhibit 

the desired behaviour in the intermediate scales. This model can describe a variety of combinations 
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between powered-exponential and HK processes, including the often observed intermediate quick 

drop of all the stochastic tools. This particular drop may be due to the interference of boundaries 

and/or the existence of multiple periodic functions, as for example in case of combinations of HK 

with cyclo-stationary processes (Dimitriadis and Koutsoyiannis, 2015b). Furthermore, although the 

proposed model results in a complicated expression for the power spectrum, it provides simpler 

expressions for the other tools. Additionally, the proposed model is also justified by the 

extremization of entropy production in logarithmic time, as shown in section 2. Finally, this model 

combines both fractal and HK dynamics using four parameters (Dimitriadis and Koutsoyiannis, 

2017): 

\�]� = �2�1 + �]/� + ¶�c��=6�̧  + �I] �⁄ + e6` �⁄ − 1J�] �⁄ �c  �90� 
where is comprised of a HMK process along with a Markov one that is used only to model the 

boundary effects in the experiment. Also, note that λ is not considered a model parameter since it is 

linked to the marginal distribution, which for this process we assume that: 

O��� = �′�1 + |�/ + �|���   �91� 
For the estimation of the distribution parameters we minimize the error introduced in Dimitriadis 

and Koutsoyiannis (2017) which is based on the absolute value of the difference between the 

empirical and modelled expression (e.g., marginal cumulative distribution, marginal density 

distribution, climacogram, autocovariance et.), i.e.: 

×a = y �1 − b���7�bN��7� �7 y|bN��7� − b���7�|7 y �1 − bN��7�b���7��7  �92� 
where b� and bN are the model and empirical values, respectively, (e.g. b� = H� and bN = HN for 

the marginal distribution function R = F, and b� = \� and bN = \N for the climacogram R = γ). 

5.3 Applications to laboratory microscale turbulent processes 

In this section, we use laboratory measurements of grid-turbulence velocities recorded within a 

wind-tunnel and of temperature differences recorded within a turbulent thermal jet. 

5.3.1 Laboratory measurements of grid-turbulence velocities 

As previously mentioned, high order moments cannot be reliably estimated from typically short 

time series of geophysical processes. However, in laboratory experiments with high sampling rates, 

very large time series of observations can be formed, which allow direct estimation of high order 

moments from data. Here, we use a grid-turbulence massive database provided by the Johns 

Hopkins University (www.me.jhu.edu/meneveau/datasets/datamap.html). This dataset consists of 
40 time series, each with n = 36×106 data points of longitudinal wind velocity along the flow 

direction, all measured by X-wire probes placed downstream of the grid and with a sampling time 
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interval of Δ = 25 μs. (Kang et al., 2003). Due to the laboratory nature of the experiment we may 

apply the Taylor’s hypothesis of frozen turbulence (Taylor, 1938) and shift from the spatial to the 

temporal domain (Castro et al., 2011). We then use a standardization scheme illustrated in Figure 

35 to homogenize all series (Dimitriadis et al., 2016a) and, by setting the empirical mean to zero, 
we calculate the standardized empirical variance as E[\v�Ö�] ≈ 1. By the standardization we are 

able to form a sample of 40 × 36 ×106 = 1.44 ×109 values for the estimation of the marginal 

characteristics of the process and an ensemble of 40 series, each with 36 ×106 values for the 

estimation of the dependence structure characteristics. 

It can be observed that the time series are not precisely Gaussian but rather nearly-Gaussian as 

shown in Figure 35. This is also verified by the skewness and kurtosis estimates of 0.2 and 3.1, 

respectively. If those values were estimated from a small sample, for example n = 100, then the 
probability density function of the process would be regarded Gaussian and the divergence from 

normality would be attributed to statistical error, since for n = 100 the uncertainty measured 

through the standard deviation of the skewness and kurtosis, is as high as 30% and 50%, 

respectively (Figure 12). However, for n ≈ 1.5×109 the uncertainty of the mean will drop below 1% 

for H = 0.8 and therefore, it is expected that the uncertainty of skewness and kurtosis will be low 

too. Moreover, there are some theoretical arguments justifying the divergence of fully developed 

turbulent processes from normality (Wilczek et al., 2011). 

  

Figure 35: [left] Standardization scheme for grid-turbulence data, where μ and σ are the mean and 

standard deviation, r is the distance from the grid, with the first 16 time series corresponding to 

transverse points abstaining r = 20S from the source, the second 4 to r = 30S, the third 4 to 40S and 

the last 16 to 48S, with S = 0.152 m the size of the grid; [right] empirical probability density 

function of the overall standardized time series (observed) along with that from a single synthetic 

time series produced by the SMA scheme to preserve the first four moments (simulation); for 

comparison the theoretical distributions N(0,1), skew normal, HMK (just for illustration) and ME 

constrained on the four moments (corresponding weights for the ME distribution: 15%, 51%, 21% 

and 13%). Source: Dimitriadis and Koutsoyiannis (2017). 

Note that here, the explicitly preservation up to the fourth moment is adequate, since preservation 

of additional moments slightly improve the distribution simulation (specifically, the R2 coefficient is 
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estimated for preservation of the 1st, 2nd, 3rd, 4th, 5th, and 6th moment as 0.0372, 0.990, 0.991, 0.998, 

0.999, and 0.999, respectively). 

For the estimation of the climacogram we apply the suggested methodology of fitting the expected 

model to the mean climacogram calculated from the 36 time series of identical length. However, to 

improve the fitting of the model, we include in the analysis the additional climacogram-based 

metrics such as the CBF and CBS (see section 2.5). The climacogram is more representative of the 

large and intermediate scales, the CBF of the small and intermediate scales and the CBS of small and 

large scales and thus, by combining all three of them we can achieve a better fitting of the model 

(Dimitriadis et al., 2016a). 

The model parameters are estimated as: � = 1, � = 1/3, ¢ = 5/6 and � = 14 ms (also, K = 5Δ/q ≈ 

9×10-3, is very small and is neglected in the next simulations, where the HHK model is used instead 

of the HMK). Here a large number of parameters could be justified due the large data size but the 

above model is quite parsimonious. Also, since the applied extended HMK model is theoretically 
justified through the maximization of entropy (as shown in section 2.4) each parameter has a 

physically-based interpretation. Moreover, we observe from Figure 36 that this model is also in 

agreement with the work on the turbulent power spectrum by Von Karman (1948) for the large 

scale range, by K41 model for the intermediate range and by Kraichnan (1959) for the dissipation 

range (cf., Pope, 2000, pp. 232-233), while here we also simulate the HK behaviour that clearly 

appears in the very small frequencies (very large scales) of the power spectrum and in the other 

stochastic tools. Additionally, certain aspects exhibited in the power spectrum such as the 

bottleneck effect (Kang et al., 2003) and the spike at large frequencies which is often ignored and 

attributed to instrumental noise (Cerutti and Meneveau, 2000) are also well represented. Finally, 

the preservation of kurtosis of the velocity increments (see below) enables to even simulate the 

effect that the intermittent behaviour of the process has on the marginal probability distribution, 

first discovered in turbulence by Batchelor and Townsend (1949). 
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Figure 36: The empirical, true and expected values of the climacogram [upper left], CBF [upper 

right], CBS [lower left] and power spectrum [lower right] along with some important logarithmic 

slopes. Source: Dimitriadis and Koutsoyiannis (2017). 

It is interesting to further investigate the latter issue through the behaviour of a generalized 

structure function 	��ℎ�: = EVc�7 − �7>�c�X and in particular the power-law behaviour for the 

intermediate range of lags, i.e., 	��ℎ� ≈ ℎ�³ . Such behaviours have been attributed to intermittency 

(Frisch, 2006, sect. 8.3) which initiated the need for exploring models different from the K41 such 
as the multifractal ones (Frisch, 2006, sect. 8.5 to 8.9). As shown in Figure 37, the increase of 	��ℎ� 

and the drop of kurtosis of the velocity increments for a wide range of lag (h), as well as the 

increase of the exponent ζp for a wide range of the p exponent, are impressively well preserved by 

the proposed model. This is achieved with no particular effort or provision (e.g., without using extra 

assumptions, parameters or models) but merely by simultaneously simulating the first four 

moments (with focus on the coefficient of kurtosis) and the stochastic structure of the process. 
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Figure 37: Empirical and simulated 3rd order structure function [left] and kurtosis coefficient [right] 

of the velocity increments vs. lag. Source: Dimitriadis and Koutsoyiannis (2017). Note that the small 

deviation at the small lags is due to the neglecting of the roughness parameter K ≈ 0. 

To further highlight this finding, we illustrate in Figure 38 that the HHK model alone cannot 

simulate the observed behaviour of the high order structure function but rather approaches the 

structure function as simulated by the K41 self-similarity model and reproduced by Frisch (2006, 

Fig. 8.8). Similar results are obtained in case a Markov dependence structure is adopted but by 

simultaneously preserving the empirical non-Gaussian marginal distribution. Interestingly, if both 

the proposed dependence structure and marginal distribution are combined, then the observed 
behaviour of the high order structure function is preserved and as a consequence the intermittent 

behaviour of turbulence. For comparison, we plot the She-Leveque model (She and Leveque, 1994) 

that behaves also exceptionally well and originates from the alternative assumption of independent 

identically distributed log-Poisson multiplicative factors (Frisch, 2006, sect. 8.6.4, 8.6.5). 

 

Figure 38: Empirical and simulated structure function for various orders of the velocity increments 

vs. lag. Source: Dimitriadis and Koutsoyiannis (2017). 
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5.3.2 Laboratory measurements of turbulent thermal jet temperatures 

For the analysis of turbulence micro-scale through the measurement of concentration, a laser-

induced fluorescence (LIF) technique is used, implemented at the laboratory of Hydromechanics 

and Environmental Engineering at the University of Thessaly and at the laboratory of Applied 

Hydraulics at the NTUA. The measurements are based on the Laser-Induced Fluorescence (LIF) 

technique (Papanicolaou and List, 1987; 1988). Particularly, the buoyant jet is dyed with a 

rhodamine 6G (R6G) dye with low concentration that does not affect the buoyancy forces. The jet 

flow field is illuminated with a thin (order of 1 mm) plane sheet of laser light. A DPSS 1 W laser 

beam at 532 nm (green) is converted to a thin laser light sheet via a rotating prism mirror at 20 

kHz. The rhodamine dye excited by the 532 nm wavelength emits (yellow) light at 556 nm, the 

intensity of which is proportional to the rhodamine concentration if it does not exceed 50 ppm, as 

indicated by Ferrier et al. (1993). Thus, laser based tomography of the buoyant jet flow-field can be 

obtained across any desired plane. Then, the experiment is videotaped using a high resolution 
video-camera pointing normal to the light sheet at 30 frames per second (fps). The experimental 

setup is illustrated in Figure 39. 

 

Figure 39: Photograph of the experimental set-up on turbulent buoyant jets at the laboratory of 

Hydraulics at NTUA. 

For larger than 50ppm concentrations of R6G, the attenuation factor can no longer be assumed 

negligible and it should be taken into account (as shown in the equations below; Dimitriadis and 

Papanicolaou, 2010): 

L��� = LMe6de�� �93� 
f��� = fMe6dg�� �94� 



 

98 

f��� = hL������� �95� 
ij��� = ijk + ×j���� �96� 
il��� = ilk + ×l���� �97� 

where Po and P is the, initial and at distance x(m) from the source laser power (W), 

Io and I is the initial, and at distance x(m) from the source, intensity of the radiation in units of 

wavelength (nm), 

C is the concentration (μg/l) of the fluorescence element at distance x, 

ηPw, ηIw and ηP, ηΙ are the attenuation parameters (m-1) of laser power and radiation intensity 

resulting from clear water and from concentration C of the fluorescence upstream of the element at 

distance x, respectively, 

εP and εI are coefficients (l/μg/m) that affect the attenuation of the laser power and radiation 

intension, respectively, 

β (l nm/W/μg) is a coefficient indicating the measure of efficiency. 

The coefficient ηIw can be experimentally determined by estimating (via image processing methods) 

the distribution of the intensity along the laser beam in the water tank. The same method can be 

applied for the determination of εΙ and β by taking a threshold value of fluorescence (uniformly 

distributed in the tank). Afterwards, the coefficients ηPw and εP can be also determined. The initial 

fluorescence light intensity Io is proportional to the R6G initial concentration Co if it does not 

exceed 50 ppm (or μg/L), as shown by Ferrier et al. (1993). Here, this is verified through the 

measurement of the intensity of several R6G concentrations samples fully mixed into the water-

tank, for two camera shutter speeds (sp).of 50 and 100 Hz (see Figure 40). The curves in Ferrier et 

al. (1993) are adjusted to the measurements by multiplying with an arbitrary factor since the 

applied intensity is arbitrary. Finally, the emitted yellow light can be split to its components red and 

green light  intensity (with the blue one being near zero), and therefore, to avoid the contribution of 

possible scattering from the green laser beam, one may compute the R6G concentration from the 

red light component intensity only. 
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Figure 40: Initial concentration Co vs. the initial intensity Io for the red (top) and green (bottom) 

RGB intensity. Source: Dimitriadis et al. (2010). 

A set of experiments is performed for buoyant jets discharging in the horizontal and vertical 

direction, for Richardson numbers in the range 0.01 to 0.20. Richardson number is determined 

from the initial jet volume, momentum and buoyancy fluxes Q, M and B, respectively, as QB1/2/M5/4 

(Table 19) and is a measure of the relative strength of initial buoyancy and inertial forces applied at 

the jet. Note that the effect of laser attenuation due to light absorption from diluted rhodamine dye 

is not taken into account in the data analysis of this set of experiments. An image processing code is 

created in MATLAB for estimating certain turbulent characteristics based only on the ratio of 
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concentrations. Initially, the model zooms in the area of interest and removes the background noise 

(by setting a threshold intension value of R6G coloured radiation). Then, all the static objects that 

are not of interest (i.e., the nozzle) are removed from the video frames. Next, the model smoothes 

the gridline areas and rotates/enlarges the frames to adjust them to the real dimensions. Finally, 

the blue hue (from the RGB values) is removed as explained above. Following this initial frame 

elaboration, the concentration values are analyzed to examine if they are compatible with 

theoretical relationships resulting from dimensional arguments. The temperature difference 

between jet and ambient fluid ratio is assumed to be proportional to the rhodamine concentration 

for uniformly distributed R6G. 

Table 19: Details of the experiments held at the Laboratory of Hydraulics at the NTUA on the period 

1/5/09 to 1/10/10 (where Co is the R6G initial concentration, D is the diameter of the nozzle, Q is 

the initial discharge of R6G, Tamb and Tjet are the ambient and jet temperature). Source: Dimitriadis 

and Papanicolaou (2010). 

no date 
direction 

of flow 
Co (mg/l) D (cm) 

Q 

(ccs) 

Tjet 

(oC) 

Tamb 

(oC) 

Reynolds 

number 

Richardson 

number 
lM  

type of 

flow 

TBHJ01 8/2/2010 horizontal 6000 1.0 20.00 40.00 16.00 3851 0.094 9.45 Jet 

TBVJ01a 9/7/2010 vertical 6000 1.0 15.26 38.50 25.10 2858 0.097 9.13 Jet 

TBVJ01b 9/7/2010 vertical 6000 1.0 18.62 38.70 25.10 3499 0.080 11.04 Jet 

TBVJ01c 9/7/2010 vertical 6000 1.0 21.97 38.80 25.10 4137 0.068 12.98 Jet 

TBVJ02a 9/7/2010 vertical 6000 0.5 11.91 33.40 25.20 4040 0.017 26.69 Jet 

TBVJ02b 9/7/2010 vertical 6000 0.5 18.62 33.40 25.20 6314 0.011 41.71 Jet 

TBVJ02c 9/7/2010 vertical 6000 0.5 8.56 33.40 25.20 2903 0.023 19.18 Jet 

TBVJ02d 9/7/2010 vertical 6000 0.5 5.21 33.40 25.20 1766 0.038 11.67 Jet 

 

First, we analyze the horizontal turbulent buoyant jet (experiment TBH01) following the above 

analysis (Figures 41 and 42). 
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Figure 41: From left to righr and top to bottom: (a) Raw picture taken from the video-camera for 

the TBJH01 experiment, (b) gray-scale and (c) RGB format of the raw picture, (d) average gray-scale 

and (e) RGB image of the experiment, and (f) average RMS image of the experiment. Source: 
Dimitriadis and Papanicolaou (2010). 

 

  

  

Figure 42: Time series of the excess temperature over the maximum temperature at the jet 

centerline for the TBHJ01 experiment (Table 19). Source: Dimitriadis and Papanicolaou (2010). 

The same analysis is repeated for the vertical jets (Figure 43). 
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Figure 43: Dimensionless average and standard deviation 

and of the red RGB intensity (2nd

and Papanicolaou (2010). 

We then examine the HK behaviour
Near the nozzle, the flow is dominated by the initial horizontal momentum and attains pure jet 

properties, while away from the nozzle the specific buoyancy flux dominates

does not longer behave as a jet but as a plume. 

the fluctuations caused by turbulence are large. As a resul

expected to have a low Hurst coefficient close to

is expected to behave as a positively correlated process and thus, to h

This state takes place for distances from the nozzle

Michas and Papanicolaou, 2009; Dimitriadis et al., 2012

is a characteristic length (indicating how far from the nozzle the buoyancy forces become 

significant), with a Hurst parameter ranges from 0.8 to 0.85 (mean 

Figure 44: True (unbiased, pink line) and empirical (biased, blue line)

axis. Source: Dimitriadis and Papanicolaou

 

 

H 

: Dimensionless average and standard deviation of the RGB intensity (1st

nd and 4th plots), for the experiment TBVJ01a. Source: 

xamine the HK behaviour of temperature as a function of the distance along the jet axis. 
the flow is dominated by the initial horizontal momentum and attains pure jet 
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longer behave as a jet but as a plume. At the jet regime, the flow behaves irrationally and 

the fluctuations caused by turbulence are large. As a result of this, the temperature time
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positively correlated process and thus, to have a larger Hurst coefficient

This state takes place for distances from the nozzle S/lM > 1.5 to 2 (Papanicolaou and List, 1987

; Dimitriadis et al., 2012), where S is the distance from the nozzle,

is a characteristic length (indicating how far from the nozzle the buoyancy forces become 

, with a Hurst parameter ranges from 0.8 to 0.85 (mean value around 0.83)

 

line) and empirical (biased, blue line) Hurst parameter
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5.4 Stochastic similarities between the microscale of turbulent processes and small-scale 

hydroclimatic ones 

In this section, we show the stochastic analysis of a time-series of one month (Figure 45), consisted 

of high resolution (Δ ≈ D = 0.1 s) atmospheric longitudinal wind speed (measured in m/s). This is 

recorded by a sonic anemometer on a meteorological tower, located at Beaumont KS and are 

provided by NCAR/EOL (http://data.eol.ucar.edu/). 

  

Figure 45: [left] Part of the wind speed time-series provided by NCAR/EOL 

(http://data.eol.ucar.edu/). [right] True, expected and empirical (averaged) climacogram values for 

the wind process stochastic simulation. 

First, we divide the time-series into three sets nearly Gaussian, each of which includes almost 1400 

time-series of 10 min duration and of marginal empirical variances 0.15, 0.5 and 1.4 m2/s2, 

respectively, and we estimate the climacogram and autocovariance based metrics for each set 

(Figure 46). Additionally, we apply the gHK model (for details see in Dimitriadis et al., 2016a) and 

we estimate the Hurst parameters for these short-time events as (Figure 45): ¢ = 0.99 (first set), ¢ = 0.98 (second set) and ¢ = 0.98 (third set). 

We also show the stochastic analysis of three time-series (Figure 47) with high resolution (Δ ≈ D = 

10 s) precipitation intensities (measured in mm/h). These episodes are recorded during various 

weather states (high and low rainfall rates) and provided by the Hydrometeorology Laboratory at 

the Iowa University (for more information concerning these episodes and various stochastic 

analyses, see Georgakakos et al. (1994) and Koutsoyiannis and Langousis (2011, ch. 1.5). 

Additionally, we estimate the climacogram and autocovariance based stochastic metrics for each 

time series (Figure 48). Finally, we apply a model with HK behaviour (for details see in Dimitriadis 

et al., 2016a) and we estimate the Hurst parameters as (Figure 49): ¢ = 0.94 (T1), ¢ = 0.95 (T2) 

and ¢ = 0.93 (T3). 
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Figure 46: From top to bottom and from left to right: Averaged empirical (a) climacograms and 

autocovariances, (b) CBV and variograms, (c) CBS and power spectra (for the three sets) and (d) 

qq-plot of empirical pdf vs standard Gaussian pdf (for the original time-series), along with modelled 

distribution density function (all parameters in m/s). 

 

Figure 47: Three precipitation episodes provided by the Hydrometeorology Laboratory at the Iowa 

University. 
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Figure 48: (a) Averaged empirical climacograms and autocovariances, (b) CBV and variograms, (c) 

CBS and power spectra for T1, T2 and T3, and (d) true, expected and empirical (averaged) 

climacogram values for the rainfall processes stochastic simulation. Source: Dimitriadis et al. 

(2016a). 

We choose these two processes (wind and precipitation events) since they are of high importance 
in hydrometeorology. One may observe the transition from a process with low marginal variance 

having a power spectrum with a drop in the intermediate scales (like in the turbulent applications), 

to the one with larger marginal variance power spectrum (with no drop). Moreover, the similarities 

between the climacogram (and autocovariance) based metrics are again obvious. Although the 

above analysis can be considered quite simple, it highlights the deviation from Markov and white 

noise behaviours of the high resolution wind and precipitation events (as in the case of the 

examined turbulent processes). Particularly, the HK behaviour is apparent to all examined 

processes with an interestingly small fitting error (for more details see in Dimitriadis et al., 2016a). 

Additionally, these precipitation and wind events exhibit a powered-exponential behaviour rather 

than a Markovian one with an M around 0.5 for the longest precipitation and 0.3 for the longest 

wind event (Dimitriadis et al., 2016a). Therefore, although the physical mechanisms are considered 

to be substantially different between a laboratory microscale turbulent process and an atmospheric 

small-scale hydrometeorological process, the stochastic properties, such as the HK behaviour, are 

similar. 
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6 Application to hydrometeorological processes 

In this section, we show how the proposed model that adequately describes the examined small 

scale processes in the previous sections can be applied to macroscale hydrometeorological 

processes. 

6.1 Stochastic analysis of a long daily precipitation timeseries 

In this application, we analyze one of the longest daily precipitation timeseries recorded for over 

130 years at the site of Hohenpeißenberg in Germany (latitude 47.801°N, longitude 11.011°E; data 

from www.gkd.bayern.de/). We apply the PBF marginal distribution (see section 2.4) introduced 

through a simpler version for its use in precipitation in Koutsoyiannis (2004a) and justified in 

Koutsoyiannis (2004b): 

H�Ç� = 1 − ¾1 + SÇ − ℎU�¿6� �98� 
where Ç > ℎ is precipitation;  > 0 is a dimensionless scale parameter; �, � > 0 are dimensionless 

parameters characterizing the right tail of the distribution and ℎ is a dimensionless parameter 

representing a threshold value. Theoretically, h = 0 but values slightly different from zero highly 

improve fitting (Figure 50), while after the simulation we can set to zero any negative values of the 

synthetic timeseries (Koutsoyiannis et al., 2003). With this technique, the probability of zero 

rainfall can be also adequately preserved, i.e., LIÇ ≤ 0J ≈ L�Ç = 0�. This technique can be justified 

through noticing that rainfall measurements are usually corrupted with significant uncertainties 

(Krajewski et al., 1998; Villarini et al., 2008) causing losses mainly due to wind effects (Sevruk and 

Nespor, 1998). 

Note that here we ignore the seasonal periodicity of precipitation, which causes only a small 

increase in the dependence structure as depicted in the climacogram of Figure 49. Since we have a 

single timeseries we wish to estimate the dependence structure of the process through the mode 

climacogram rather than the mean one (for more details see in Dimitriadis and Koutsoyiannis, 

2017). For this, we apply a Monte-Carlo analysis by generating one thousand daily timeseries of 

130 years following the fitted marginal distribution and an HK process. We use the ESK distribution 

to simulate the white noise of the SMA scheme (section 3.3). From the Monte-Carlo ensemble, we 

calculate the mode for each scale with three-digit accuracy and thus, constructing the mode 

climacogram for the specified process (see section 2.4.5). For the marginal distribution we use the 

same norm as in the previous section and for the climacogram we use its classical estimator in Eqn. 

T1-3 (referred in this section as the E1 estimator). 

The parameters related to the dependence structure via the climacogram are estimated from data, 

based on the fitting norm, as: � = Çºc, where Çº = 6.5 mm is the standard deviation of Ç, and ¢ =0.6, whereas those of the marginal distribution are:  = 38.6 mm, � = 6.9, d = 0.87 and ℎ = −0.11, 

corresponding to W = 2.1 mm, ê = 7.3 mm, �º = 3.2 and �� = 24 (all estimations are based on the 
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fitting norms in Equation 91). Also, we calculate their corresponding weights determined from the 

ME distribution (section 2.4.4) as 73%, 15%, 7% and 5%. Through a single synthetic timeseries of 

equivalent length and after setting any negative values to zero, the modelled marginal 

characteristics can be re-estimated as: W = 3.3 (3.1) mm, ê = 6.5 (6.5) mm, �º = 4.5 (4.4), �� = 36.4 (33.7) and dry probability 44% (43.5%), where inside parentheses are the empirical 

values that are adequately preserved. For illustration purposes, in Figure 49 we plot a 3000 days 

window of the observed vs. the simulated precipitation. Note that here, the explicitly preservation 

up to the fourth moment is adequate, since preservation of additional moments slightly improve the 

distribution simulation (specifically, the R2 coefficient is estimated for preservation of the 1st, 2nd, 

3rd, 4th, 5th, and 6th moment as 0.953, 0.985, 0.985, 0.9861, 0.9863 and 0.9864, respectively). 

  

  

Figure 49: Empirical, modelled and simulated marginal distributions [upper left] and climacograms 

[upper right] for the standardized precipitation process; the mode and several other essential 

statistical measures of the standardized climacograms estimated from 103 synthetic timeseries (in 

the figure we depict only 50 empirical climacograms) [lower left]; a 3000 days window of the 

observed precipitation record along with a simulated one [lower right]. Source: Dimitriadis and 

Koutsoyiannis (2017). 

Interestingly, the proposed probability function shows a very good agreement for a global network 

of daily precipitation records (see Figure 50 for the simulation of the skewness and kurtosis 

coefficients). This approach of mixing wet and dry events within a single distribution function is 

rather simple but can sometimes provide good results. For a more accurate approach, in terms of 

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 20 40 60 80 100

f (
r

)

r (mm) 

model
maximized entropy
observed
simulated

λ0=0.5; λ1=0.8; 
λ2=-4; λ3=9; λ4=13

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

γ
/r

s2

kΔ (days)

annual scale

Markov

white noise

model

empirical (E1)

simulated

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

γ
/r

s2

kΔ (days)

min

max

mean

median

mode

q25

q75
0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500 3000

r 
(m

m
)

time (days)

observed

simulated



 

108 

the simulation of the wet/dry probability, one could separate these events and model their joint 

distribution instead (Lombardo et al., 2017, and references therein). 

 

Figure 50: Application of the suggested probability density function to a global database of daily 

precipitation (www.nooa.gov; GHCN database; see Sotiriadou et al, 2015 for the selected stations) 

using the explicit scheme of Dimitriadis and Koutsoyiannis (2017), also described section 3.3. Note 

that the global minimum is also shown along with the Weibull, minimum NIG and lognormal 

distributions. 

 

6.2 Stochastic analysis of long hourly wind timeseries in Greece 

For the hourly wind process we adopt the GHK process for the dependence structure. For the 

probability function we apply a special case of the PBF marginal distribution (section 2.4) which 

approximates the Weibull distribution for small hourly velocities and the Pareto distribution for 

larger ones (e.g., Aksoy et al., 2004; Brano et al., 2011). The dependence structure, marginal 

distribution and standardization scheme of wind are based on the preliminary analysis from 

thousands of stations around the globe, performed by Dimitriadis et al. (2015); Deligiannis et al. 

(2016); and Koutsoyiannis et al. (2017). A more thorough analysis justifying the above choices can 

be seen in Koutsoyiannis et al. (2017) and in section 6.3. The three-parameter GHK process (see 
section 2.4.2) and a special case of the PBF probability function can be written for the wind as: 
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where � > 0 is the wind process; b = ]5 is the continuous time scale with Δ = 1 h the sampling time 

interval and ] the discrete time scale; � is the scale parameter of the process; � is the true variance 

of the continuous-time process; ¢ is the Hurst coefficient; �º is the standard deviation of the 

discretized process that should approximate the expected value of the square root of the 

climacogram for scale k = 1, i.e., \�5� = �1 + 5/���6=√�; and Ê is the scale parameter and b and � 

are the shape parameters of the marginal distribution, all dimensionless. Note that we standardize 
the wind process, in order to homogenize all timeseries recorded at different locations, altitude and 

climatic conditions. 

We choose to apply the above stochastic model to nine hourly wind timeseries of different lengths 

located in Greece (Table 20). The expression for the bias of the classical estimator of the 

climacogram is derived in Tyralis and Koutsoyiannis (2011) for an HK process and generalized for 

all processes in Koutsoyiannis (2011). Here, we use the general expression and, since the timeseries 

have different lengths n, we apply the estimator of the climacogram adjusted for n in Eqn. T1-5 

(referred in this section as the E2 estimator). 

The parameters related to the dependence structure via the climacogram are estimated from data 

as: � = 1.3, � = 5 h and ¢ = 0.75, whereas for the marginal distribution as:  = 6, � = 1.9 and � = 14.8, corresponding to μ = 1.9, σ = 1.1 (≈ √�), Cs = 1.2 and Ck = 4.8 (all estimations are based on 

the fitting norms in Equations 91 and 92). Also, we calculate their corresponding weights 

determined from the ME density function as 43%, 32%, 16% and 9%. Note that here, the explicitly 

preservation up to the fourth moment is adequate, since preservation of additional moments 

slightly improve the distribution simulation (specifically, the R2 coefficient is estimated for 

preservation of the 1st, 2nd, 3rd, 4th, 5th, and 6th moment as 0.936, 0.949, 0.977, 0.983, 0.984, and 

0.984, respectively). To emulate the observed wind timeseries one could set to zero any values of 

the synthetic timeseries that are below the corresponding recording threshold of an anemometer, 

which is in average around 0.5 m/s depending on the type of the anemometer (e.g., Conradsen et al., 

1984)). For illustration purposes, in Figure 51 we plot a 1000-day window of the observed vs. the 

simulated wind speed at Kos Island. The empirical and modelled probability of wind speed less 

than or equal to 0.5 m/s are both around 20%. 
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Table 20: General information of the meteorological stations and statistical characteristics of the 

hourly wind timeseries (downloaded from ftp.ncdc.noaa.gov). Source: Deligiannis et al. (2016). 

hourly wind 

station 

longitude 

(deg) 

latitude 

(deg) 

above sea 

elevation 

(m) 

no. 

years 

mean 

(m/s) 

stdev 

(m/s) 

missing 

values 

(%) 

zero 

values 

(%) 

Heraκleio 25.183 35.333 39 39 4.583 2.918 8.8 6.3 

N. Aghialos 22.8 39.217 15 17 3.258 2.331 28 19 

Karpathos 35.417 27.15 20 17 7.506 4.074 30.4 3.9 

Santorini 36.4 25.483 38 24 5.701 3.229 29.5 7.5 

Kos 36.8 27.083 125 33 4.805 2.7 15 7 

El. Venizelos 37.93 23.93 96 11 3.954 2.995 0.6 1.9 

Limnos 39.917 25.233 5 38 4.458 3.546 23 17.5 

Paros 37.02 25.13 36 11 5.567 3.265 46.8 6.5 

Meganissi 38.95 20.767 4 40 3.571 2.746 36.3 19.4 

Note that σ and λ should approximate unity but they are slightly larger due to the cyclo-stationary 

effect of the daily and seasonal periodicities of the wind process (Deligiannis et al., 2016; 

Dimitriadis and Koutsoyiannis, 2015b). These effects cause the small increase of climacogram 

around daily and annual scales. Here, for simplicity, we ignore these effects and we apply a 

stationary rather than cyclo-stationary model. 
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Figure 51:Empirical mean (vm) vs. standard deviation of the nine timeseries along with the fitted 

model [upper left]; the empirical, model and simulated marginal distributions [upper right] and 

climacograms [lower left] for the standardized wind process; a 1000-day window of the observed 

standardized wind process in Kos island along with a standardized simulated one [lower right]. 

Source: Dimitriadis and Koutsoyiannis (2017). 

6.3 Global stochastic analysis of the hourly wind process 

Understanding atmospheric motion in the form of wind is essential to many fields in geophysics. 

Wind is considered one of the most important processes in hydrometeorology since, along with 

temperature, it drives climate dynamics. Currently, the interest for modelling and forecasting of 

wind has increased due to the importance of wind power production in the frame of renewable 

energy resources development. For the investigation of the large scale of atmospheric wind speed, 

we use over 15000 meteorological stations around the globe recorded mostly by anemometers and 

with hourly resolution (www.nooa.gov; ISD database). In total, we analyze almost 4000 stations 
from different sites and climatic regimes by selecting time series that are still operational, with at 

least one year length of data, at least one non-zero measurement per three hours on average and at 

least 80% of non-zero values for the whole time series (Figure 52). This data set is referred below 

as “global”. 
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Figure 52: (upper) Distribution of the wind speed stations over the globe; (middle) sketch about the 

selection of the stations in the analysis; (lower) evolution of the frequency of measured extremes in 

the stations (where the ‘start’ year denotes the first operational year of the station and the ‘first’ 

and ‘last’ year denote the first and last year that an extreme valu

Source: Koutsoyiannis et al. (2017)

 

 

 

: (upper) Distribution of the wind speed stations over the globe; (middle) sketch about the 

stations in the analysis; (lower) evolution of the frequency of measured extremes in 

the stations (where the ‘start’ year denotes the first operational year of the station and the ‘first’ 

and ‘last’ year denote the first and last year that an extreme value was recorded, respectively).

2017). 

: (upper) Distribution of the wind speed stations over the globe; (middle) sketch about the 

stations in the analysis; (lower) evolution of the frequency of measured extremes in 

the stations (where the ‘start’ year denotes the first operational year of the station and the ‘first’ 

e was recorded, respectively). 
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By homogenizing all series (based on the selected distribution as shown in the following Eqn.101) 

we formed a sample of ~0.5×109 values to estimate the marginal distribution, and an ensemble of 

3886 series, each with ~105 values on average, to estimate the dependence structure through the 

climacogram. A known problem of field measurements of wind (particularly those originating from 

over 70 years ago), is that the technology of measuring devices has been rapidly changed (Manwell 

et al., 2010, sect. 2.8.3). For example, in Figure 52 we illustrate a rather virtual increase of extreme 

wind events after the 1970s which is mainly due to the inability of older devices to properly 

measure wind speeds over 30 m/s (i.e., category I of Saffir–Simpson hurricane wind scale). 

Furthermore, in common anemometer instrumentation there is a lower threshold of speed that 

could be measured, usually within the range 0.1 ⎼ 0.5 m/s (e.g., www.pce-instruments.com). It 

should be noted that, as the recorded wind speed decreases, so does the instrumental accuracy and 

it may be a good practice to always set the minimum threshold to 0.5 m/s to avoid measuring the 

errors of the instrument (e.g., zero or extremely low values) in place of the actual wind speed that 
can never reach an exact zero value. 

In an attempt to incorporate smaller scales, starting from the microscale of turbulence, we include 

again the dataset of the previous application of turbulence, using it as an indicator of the similar 

statistical properties of small scale wind (Castaing et al., 1990). In addition to the 40 time series of 

the longitudinal turbulent velocity in section 5.1, here we also use another 40 time series of 

transverse velocity, measured at the same points with the longitudinal one; again each time series 

has n = 36×106 data points with a sampling interval of 25 μs (Kang et al., 2003). The coefficients of 

skewness and kurtosis are estimated as 0.1 and 3.1 for the transverse velocity, respectively. 

Stochastic similarities between small scale atmospheric wind and turbulent processes abound in 

the literature as for example in terms of the marginal distribution (Monahan, 2013, and references 

therein), of the distribution of fluctuations (Böttcher et al., 2007, and references therein), of the 

dependence structure (Dimitriadis et al., 2016a, and references therein) and of higher-order 

behaviour such as intermittency (e.g., Mahrt, 1989). This data set is referred below as “small”. 

Finally, to link the large and small scale of atmospheric wind we analyse an additional time series, 

referred to as “medium”, provided by NCAR/EOL of one-month length and with a 10 Hz resolution. 

This time series has been recorded by a sonic anemometer on a meteorological tower located at 

Beaumont KS and it includes over 25×106 longitudinal and transverse wind speed measurements 

(http://data.eol.ucar.edu/; Doran, 2004). The statistical characteristics based on moments up to 

fourth order are shown in Figure 53; interestingly, there appears to be a rather well defined 

relationship between mean and standard deviation. The plot of coefficient of kurtosis vs. coefficient 

of skewness indicates that Weibull distribution falls close to the lower bound of the scatter of 

empirical points. 
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Figure 53: Standard deviation vs mean (upper) and coefficient of kurtosis vs. coefficient of 

skewness of all time series (source: 

 

Numerous works have been conducted for the distribution of the surface wind speed (

Koutsoyiannis et al., 2017, and references therein
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of wind speed. Through Monte-Carlo experiments we illustrate 

Gaussian components result in a distribution close to Weibull and is in agreement with small

medium scale observations. 

Figure 54: Probability density function of the medium scale time series along with theoretical and 

Monte Carlo generated distributions
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The distribution of the “global” time series appear to deviate from Weibull, gamma and log-normal 

, such as a special case of the 

�101� 
is the standard deviation of the wind speed process; Ê is a scale 

are the shape parameters of the marginal distribution, all three 

The fitted distribution to all data sets and the fitted parameters are α = 3.5, b = 1.9, c 
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Figure 55: Probability density function of the velocity of grid-turbulent data (small) and of the wind 

speed of the medium and global scale time series along with fitted theoretical distributions (source: 

Koutsoyiannis et al., 2017). 

The mean estimated climacograms from the data indicate that the model is also applicable for the 

wind speed at all scales with parameters estimated as λ ≈ 1, M = 1/3, H = 5/6 and α = 6 h (Figure 

56). 

 

Figure 56: Climacogram of the wind speed process estimated from the medium and global series 

(source: Koutsoyiannis et al., 2017). 
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6.4 Global stochastic analysis of the hourly temperature process 

In this last application we analyze the dependence structure of the air temperature process close to 

surface. For the microscale structure, we use a 10 Hz resolution timeseries recorded for a 2-month 

period by a sonic anemometer at Beaumont USA (https://data.eol.ucar.edu/dataset/45.910). For 

the macro-scale structure, we use a global database of hourly air temperature (www.nooa.gov; ISD 

database). In total, we analyze over 5000 stations from different sites and climatic regimes by 

selecting time series with at least 1 year length and at least one measurement per three hours 

(Figure 57). It can be assumed that the air temperature process follows a Gaussian distribution 

(Koutsoyiannis, 2005). Indeed, the 90% of the time series have coefficient of skewness around 0 

and of kurtosis around 3 with a standard deviation for both coefficients approximately equal to 1 

(Figure 58). We normalize all time series and we estimate the dependence structure through the 

climacogram, autocovariance and power spectrum (Figure 59 and 60) following the methodology in 

Dimitriadis et al. (2016a). 

 

 

Figure 57: Locations of the selected hourly time series of air temperature from the global database 

along with the Koppen climatic zones. Source: Lerias et al. (2016). 

 

The mean estimated climacograms and climacogram-based spectrum from the data indicate that, 

interestingly, the proposed mixed HHK model is also applicable here with parameters estimated as: 

λ ≈ 1, M = 1/3, H = 5/6 and α = 3.3 d (Figure 59). 
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Figure 58: Coefficient of skewness vs. coefficient of kurtosis for the 90% of the macro-scale 

temperature time series (source: Koutsoyiannis et al., 2017). 

Note that a ‘hydrological cycle of memory and extreme-tail’ is obvious (from a small to large sale 

parameter of the dependence structure, and from Gaussian to heavy-tail Pareto distribution) in 

Figures 58 (temperature; high scale parameter of the dependence structure and close-Gaussian 

distribution), 53 (atmospheric wind; medium scale parameter of the dependence structure and 

mild Pareto-like tail) and 50 (precipitation; small scale parameter of the dependence structure and 

strong Pareto-like heavy-tail). 

  

Figure 59: Climacogram of the normalized temperature for the micro-scale time series (small) and 

the set of hourly air temperature time series (global; upper: average climacogram; lower: 

climacograms of 100 different time series), compared to the fitted model (true and expected). 

Source: Koutsoyiannis et al. (2017). 
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Figure 60: Climacogram-based spectrum of the normalized temperature for the micro-scale time 

series (small) and the set of hourly air temperature time series (global; average from all time 

series), compared to the fitted model (true). Source: Koutsoyiannis et al. (2017). 

Note that similar analysis has been performed by Sakellari (2016) for the global dew-point and by 

Petsiou (2017) for a long time series of discharge (with similar results of H = 5/6 and M = 1/3). 

6.5 Global stochastic analysis of key hydrometeorological processes based on the Koppen-

Geiger climatic-classification 

An annual change in hydroclimatic processes is commonly attributed to anthropogenic climatic 

change. However, most of the studies have not taken into consideration the possibility of the Hurst 

phenomenon. Usually, high (low) values of a hydroclimatic process are followed by high (low) ones, 

meaning that observations appear in groups. In other words, the autocorrelation coefficient 

remains quite high as the scale increases due to this clustering effect. Here, we analyze (additional 

to the analyses of the previous sections) several hydroclimatic processes classified by the Koppen-

Geiger system of climatic zones and in terms of the climacogram in order to determine whether 

they exhibit such behaviours of Long-Term Persistence (LTP). Again, we use the hourly database 

GHCN with over 15,000 stations around the globe for the temperature, dew point, atmospheric 

wind, precipitation and atmospheric pressure. First, we estimate the Hurst parameter for various 
30-year time periods to test that there are no unexplained changes in LTP behaviour. The results 

from this analysis are shown in Lerias et al. (2016) for the temperature and dew point processes, in 

Sotiriadou et al. (2016) and Tyralis et al. (2017) for the precipitation process, in Deligiannis et al. 

(2016) for the wind process and in Dimitriadis et al. (2016e) for the atmospheric pressure. In the 

Table below we show the average Hurst parameter for each climatic-zone (see also the most recent 

analysis of Dimitriadis et al., 2018b). 
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Table 21: Hurst parameter under Köppen-Geiger classification (source: Dimitriadis et al., 2017b). 

Hurst parameter 

/ Koppen-Geiger 

classification  

temperature  
dew 

point 
wind Speed precipitation 

atmospheric 

pressure 

A 0.79 0.78 0.84 0.62 0.71 

B 0.73 0.77 0.82 0.59 0.72 

C 0.70 0.71 0.87 0.65 0.73 

D 0.72 0.68 0.85 0.66 0.65 

E 0.68 0.65 0.70 0.83 0.71 

 

Finally, we estimate the prediction intervals for the 30 year period as well as the corresponding 

error (prediction error) as shown in the next Figures 61 and 62. If the prediction error is small for 

all examined 30-year periods and each station, then the model can describe adequately the climatic 

variability of the process and so, the changes observed during the last decades can be attributed to 

the Hurst phenomenon and not to anthropogenic factors. This should not be confused with the 

urbanization factor. For example, the major cause for the deterioration of the natural defence 

mechanism against floods and hurricanes is the destruction of forests. Indeed the damages from 

severe flood events and hurricanes have increased over the last decades but that does not mean 

that the human-kind has increased the severe storm events nor has changed the annual trend of 

global climatic processes such as temperature, humidity (through the dew point), wind and 

precipitation (similar to the atmospheric pressure). 
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(a)   

(b)   

(c)   

(d)   

Figure 61: (a) temperature and (b) dew point timeseries and HK model for a station located in 

Dallas, USA; (c) wind speed timeseries and HK model for a station located in Winter Trail, Alaska; 

and (d) precipitation timeseries and HK model for a station located in North-East Australia. Source: 

Dimitriadis et al. (2016e) and references therein. Source: Dimitriadis et al. (2016d). 

 

-10

0

10

20

30

40

0 10 20 30 40 50 60 70

te
m

p
er

at
u

re
 (o

C
)

time (years)

monthly step annual mean

1.E-02

1.E-01

1.E+00

1.E+01

1 10

σ
k

(o
C

)

k (years)

mean (model) mean (observed)
q5% (model) q5% (observed)
q95% (model) q95% (observed)

-20

-10

0

10

20

30

0 10 20 30 40 50 60 70

d
ew

 te
m

p
er

at
u

re
 (

oC
)

time (years)

monthly step annual mean

1.E-02

1.E-01

1.E+00

1 10
σ

k
(m

/s
)

k (years)

mean (model) mean (observed)

q5% (model) q5% (observed)

q95% (model) q95% (observed)

0

5

10

15

20

0 10 20 30 40 50 60 70

w
in

d
 s

p
ee

d
 (m

/s
)

time (years)

monthly step annual mean

1.E-01

1.E+00

1.E+01

1 10

σ
k

(m
m

)

k (years)

mean (model) mean (observed)

q5% (model) q5% (observed)

q95% (model) q95% (observed)

0

50

100

150

200

250

300

350

0 20 40 60 80 100

d
ai

ly
 p

re
ci

p
it

at
io

n 
(m

m
)

time (years)

monthly step annual mean

1.E-02

1.E-01

1.E+00

1.E+01

1 10

σ
k

(o
C

)

k (years)

mean (model) mean (observed)
q5% (model) q5% (observed)
q95% (model) q95% (observed)



 

122 

(a)   

(b)   

(c)   

(d)   

Figure 62: Prediction intervals for the examined station described in the previous figure and the 

overall prediction error for (a) temperature, (b) dew point, (c) wind speed and (d) precipitation. 

Source: Dimitriadis et al. (2016e) and references therein. Source: Dimitriadis et al. (2016d). 
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Overall, the Hurst parameter and the prediction errors are estimated from this analysis (following 

an atmospheric circulation pattern) as: (a) Η = 0.85 for the temperature process, with a prediction 

error lower than 10% for the 73% of stations, (b) Η = 0.83 for the wind process, with a prediction 

error lower than 10% for the 71% of stations, (c) Η = 0.80 for the dew point process, with a 

prediction error lower than 10% for the 80% of stations, and (d) Η ≈ 0.67 for the precipitation and 

atmospheric pressure processes, with a prediction error lower than 20% for the 86% of stations. 
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7 Conclusions and summary of thesis major innovations 

The deeper understanding of the high complexity of atmospheric dynamics has been the key factor 

towards the further enhancement of predictability of hydrometeorological processes. Although in 

the last decades there has been a substantial increase of measurements and of the number of 

meteorological stations, technological and theoretical advances on the recording devices, 

breakthroughs on the mathematical techniques etc., the predictability has not significantly 

improved. The latter conclusion is based on the simple observation that (extreme or mild) weather 

phenomena most of the times still remain unpredictable. Hurst-Kolmogorov dynamics, i.e., the 

dynamics causing random changes on the behaviour of a process that result in a clustering of 

events, maybe a simple but rather a vital explanation of this inability of accurate predictions. In this 

thesis, we analyze numerous of processes originating from the microscale of turbulence and 

extending to macroscale hydrometeorological processes and we identify stochastic similarities 

between them such as the HK behaviour with Hurst parameters considerably above 0.5. For this, 

we first develop the stochastic framework for the empirical as well as theoretical estimation of the 

marginal characteristic and second order dependence structure of a process, and by also 

developing algorithms for stochastic synthesis of mathematical processes as well as stochastic 

prediction of physical ones. 

The major innovations of the thesis are (a) the further development and extensive application to 

numerous stationary and isotropic processes of the second-order stochastic framework including 

models in continuous and discrete time, expected values and classical estimators; (b) the estimation 

of the dimensionless statistical error (due to discretization and bias) through Monte-Carlo analysis 

of a variety of Markov and HK models, for the power spectrum, autocovariance and climacogram, 

with the latter exhibiting the smaller error and the former the larger one for all examined 

processes; (c) the analytical mathematical expression of the statistical bias of the autocovariance 

and power spectrum classical estimators, for an unknown mean and a known variance of the 

process, as a function of the climacogram and the theoretical autocovariance; (d) the study of the 
Markov process for time interval different than response time, and the expressions for its 

generation through an ARMA(1,1) model; (e) the further development of the Sum of Autoregressive 

(SAR) and Moving Average (SARMA) schemes that can generate a large variety of Gaussian 

processes approximated by a finite sum of AR(1) or ARMA(1,1) processes; (f) the further 

development of the Symmetric-Moving-Average (SMA) scheme that can generate any process 

second-order dependence structure as well as certain aspects of the intermittent behaviour, and 

any marginal distribution by approximating a finite number of statistical moments; (g) the 

introduction and application of an extended Hybrid HK model (with an innovative identical 

expression of a four-parameter marginal distribution density function and correlation structure, i.e. ���; �� = �/�1 + |�/ + �|���, with � = [�, , �, �, �], that encloses a large variety of distributions 

ranging from Gaussian to powered-exponential and Pareto, as well as dependence structures such 
as white noise, Markov and HK), that is in agreement (in this form or through more simplified 

versions of it) with an interestingly large variety of turbulent flows, such as grid-turbulence 
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(analyzing ~1.5 billion of data) and turbulent thermal jets of positive buoyancy (by performing 

several laboratory experiments following the laser-induced-fluorescence technique, and by 

analyzing ~15,000 data), as well as hydrometeorological processes, such as atmospheric wind and 

temperature (analyzing ~0.5 billion of data for each process and at various micro and macro 

scales), where interestingly, most of them exhibited (when parsimoniously handled and adjusted 

for physical characteristics, sample errors, discretization effects and statistical bias) a mean value 

of the long-term parameter H = 5/6 (for most where the macroscale is analyzed) and a fractal 

parameter of M =1/3 (for most where the microscale is analyzed); (h) estimation of the Hurst 

parameter based on the Köppen-Geiger climatic-classification for numerous hydrometeorological 

processes, such as temperature, atmospheric wind, precipitation, atmospheric pressure and dew 

point (analyzing almost 5000 stations for each process with at least 30 years of records); and (i) the 

further development of the multi-dimensional classical second-order stochastic framework and HK 

process, and application to turbulence and geostatistics. 

Incidental contributions and moderate innovations of this thesis are: (a) several illustrative 

comparisons between complex natural as well as purely deterministic processes; (b) the further 

development of analogue and stochastic prediction algorithms based on the climacogram; (c) the 

estimation of the most uncertain parameters in flood inundation modelling based on commonly-

used hydraulic models and on benchmark geometries; (d) the introduction of an optimization 

target function and the further development of the climacogram-based estimators, for the 

identification of the dependence structure of a process, in case of the analysis of a single time series 

and of several time series of the same process with different lengths and identical lengths. 

An overall conclusion is that a simple model (from the view of Stochastics) can adequately explain 

(and thus, predict) several aspects of turbulence in microscale and hydroclimatic processes in the 

macroscale. Although the processes may be different in a physical basis, if they are properly 

handled and analyzed, they seem to exhibit interesting stochastic similarities. 

 

Some scientific and philosophical questions to the Readers (and myself) are: 

� Will Determinism ever be able to fully describe (and predict) Natural phenomena? 

� Will Stochastics ever be acceptable by scientists as well as non-scientists? 

� Is Stochasticity an intrinsic property of Nature? 
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Appendix A 

In this Appendix, we investigate and compare the climacogram, autocovariance and power 

spectrum of the Markov process and gHK one for M = 0.5 in terms of their behaviour and of their 

estimator performance for different values of their parameters (Dimitriadis and Koutsoyiannis, 

2015a). The methodology we use to produce synthetic time series is through the SAR scheme (see 

in section 3.2). 

Graphical investigation 

We start our comparison with graphical investigations, which are actually very common in model 

identification. We compare the true, continuous-time stochastic tools, along with their discrete-time 

versions as well as their expectation of classical estimators. For the estimator, a medium sample 

size n = 103 is used (apparently, as n increases the bias will decrease). In particular, we investigate 

the climacogram, autocovariance and power spectrum for a Markov processes with q = 1, 10 and 

100, and λ = 1 (Figure A-1). Additionally, we investigate the climacogram, autocovariance and 

power spectrum for a gHK processes with q = 1, 10 and 100, b = 0.2 and λ = q-b, all with D = Δ = 1 

(Figure A-2). 

Comparison of statistical estimators 

Thus, we produce synthetic time series for Markov processes with q = 1, 10 and 100 and gHK ones 

with q = 1, 10 and 100 and b = 0.2, all with D = Δ = 1. Then, for each scale, lag and frequency and 

each synthetic timeseries, we calculate the mean, variance, mean of the NLD, and variance of the 

NLD, for the climacogram, autocovariance and power spectrum, as well as their corresponding 

errors (Figure A-3). Note that, on one hand, as n decreases, both bias and variance increase and 

thus, for the point estimate and variance to be closer to the expected ones, we need more time 

series. On the other hand, as n increases, more Markov processes have to be added and with a 

larger bias and variance (due to larger q). So, for the examined processes, we conclude that in order 

to achieve a maximum error of about 1‰ between scales 1 and n/2, we have to produce 

approximate 104, 103 and 102 timeseries for n = 102, 103 and 104, respectively. The error is 

calculated as the absolute difference between the estimated and expected value, and divided by the 

expected value. Furthermore, the 1‰ error refers to the climacogram and corresponds to a gHK 

process with b = 0.2 and q = 100, which is considered the more adverse of the examined processes. 

Note that in the Figures below, we try to show all estimates within a single plot for comparison to 

each other. The inverse frequency in the horizontal axis is set to 1/(2ω), in order to vary between 1 

and n/2 and the lag to υ+1 and for the estimation of variance at υ = 0 to be also included in a log-log 

plot. 

Moreover, we investigate the shape of the probability distribution density function for each 

stochastic tool, which, in many cases, differs from a Gaussian one, resulting in deviations between 

the mean (expected) and mode (Figure A-4). To measure this difference, we use the sample 

skewness (denoted g), where for g ≈ 0, the difference is small and for any other case, larger. We 
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show for each stochastic tool and for a gHK process with b = 0.2 and q/Δ = 10, an example of their 

95% upper and lower prediction intervals (corresponding to exceedence probabilities of 2.5% and 

97.5%), as well as their pdf for a specific scale, lag and frequency. 

 

 

 

 

 

Figure A-1: True values in continuous and discrete time and expected values of the climacograms 

(a), autocovariances (c) and power spectra (e) as well as their corresponding NLDs (b, d and f, 

respectively) of Markov processes with q = 1, 10 and 100, λ = 1 and n = 103. Note that the 

continuous and discrete values of the climacogram are identical for Δ = D > 0. 
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Figure A-2: True values in continuous and discrete time and expected values of the climacograms 

(a), autocovariances (c) and power spectra (e) as well as their corresponding NLDs (b, d and f, 

respectively) of gHK processes with b = 0.2 and q = 1, 10 and 100, λ = q-b (not λ = 1, for 

demonstration purposes) and n=103. Note that the continuous and discrete values of the 

climacogram are identical for Δ = D > 0. 
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Figure A-3: Dimensionless errors of the climacogram estimator (continuous line), autocovariance 

(dashed line) and power spectrum (dotted line), calculated from 104 Markov synthetic series with n 

= 103 (for b = 0.2, q = 1, 10 and 100 and λ = q-b): (a) ×Ú (dimensionless MSE of variance); (b) ×Û 

(dimensionless MSE of bias); (c) ε (total dimensionless MSE); and (d) ×# (total dimensionless MSE 
of NLD); as well as the sample skewness of each of the stochastic tools and their NLDs are also 

shown (e) and (f). 
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Figure A-4: Dimensionless errors of the climacogram estimator (continuous line), autocovariance 

(dashed line) and power spectrum (dotted line), calculated from 104 gHK synthetic series with n = 

103 (for b = 0.2, q = 1, 10 and 100 and λ = q-b): (a) ×Ú (dimensionless MSE of variance); (b) ×Û 

(dimensionless MSE of bias); (c) ε (total dimensionless MSE); and (d) ×# (total dimensionless MSE 
of NLD); as well as the sample skewness of each of the stochastic tools and their NLDs are also 

shown in (e) and (f). 
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Appendix B 

Here, we estimate several statistical characteristics of the ESK and NIG distributions such as the 

mean, variance, and coefficients of skewness and kurtosis, as well as the minimum and maximum 

kurtosis as a function of skewness. 

For random number generation from thin-tailed distributions we adopt an extended standardized 

version of the Kumaraswamy (1980) distribution (abbreviated as ESK) with probability 

distribution function: 

H��;m�: = 1 − ¾1 − S� − �� Uë¿¡ �B-1� 
where � ∈ [�, � + �], m = [, �, �, �], the parameters of the distribution (see also Table C-1 and C-2), 
with �, � ∈ ℝ (location and scale parameters, respectively, with units same as in x) and , � > 0 

(dimensionless shape parameters). 

Below, we estimate several statistical characteristics of the ESK distribution such as the mean, 

variance, and coefficients of skewness and kurtosis, as well as the minimum and maximum kurtosis 

as a function of skewness. A detailed analysis on the general expansion of the Kumaraswamy 

distribution can be found in Cordeiro and de Castro (2011), and Shuaib et al. (2016). The ESK 

distribution has simple, analytical and closed expressions for its statistical central moments. 

Notably, we find through numerical investigation that ESK has a low kurtosis boundary based on its 

skewness and approximately expressed by �� ≥ �ºc + 1, which is also the mathematical boundary 

for the sample skewness and kurtosis (Pearson, 1930). 

The central moments of the ESK distribution can be expressed as (Dimitriadis and Koutsoyiannis, 

2017): 

EZI� − WJ�[ = �� y ¾�−1��>=6o ¾ - − 1¿ í=�>=6oío6=¿�>=
ot=  �B-2� 

for - > 1 and where W = � + �í=, S �o6=U the binomial coefficient and ío = �B�1 +  /, ��, with B 

the beta function. 

Thus, the variation, skewness and kurtosis coefficients can be expressed as (Dimitriadis and 

Koutsoyiannis, 2017): 

�Ú = p�6p^��p^>�/��� , �º = cp^À6�p^p�>pÀIp�6p^�JÀ/� , �� = 6�p^Á>qp^�p�6�p^pÀ>pÁIp�6p^�J�  �B-3� 
respectively. After the numerical estimation of  and �, the parameters � and � can be analytically 

calculated as (Dimitriadis and Koutsoyiannis, 2017): 
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� = ê/ ��B S1 + cë , �U − �cBc S1 + =ë , �U,  � = W − ��B S1 + =ë , �U �B-4� 
Therefore, we can use the ESK distribution to approximate a variety of thin-tailed distributions 

based on the estimation of , �, �  and � parameters from data. 

For heavy-tailed distributions we use the Normal-Inverse-Gaussian (abbreviated as NIG) 

distribution with probability density function (cf., Barndorff-Nielsen, 1978): 

O��;m� ≔ √c + �ce¡>ë�6���
π�ð1 + ¾�� − ��� ¿c ¶= �c + �c�1 + I�� − ��/�Jc� �B-5� 

where � ∈ ℝ, m = [, �, �, �], the parameters of the distribution with � ∈ ℝ,  ≠ 0 and �, � > 0 (see 

also Table C-1 and C-2); again �, � are location and scale parameters, respectively, with units same 

as in x, and , � > 0 are dimensionless shape parameters. 

The NIG distribution has similar advantages to the ESK, such as closed expressions for the first four 

central moments. Also, it enables a large variety of skewness-kurtosis combinations and its random 

numbers can be generated almost as fast as the ESK ones through the normal variance-mean 

mixture: 

� = � + � ; + √;� �B-6� 
where 

�~é�0,1�,  ;~O�n; �/� , �� = �/√2π��e6r���/0Õ0/r����  �B-7� 
The latter is the Inverse Gaussian distribution which can be easily generated (e.g., Chhikara and 

Folks, 1989, ch. 4.5). 

Below, we estimate the statistical characteristics of the NIG and we justify the use of the NIG 

distribution as a heavy-tailed distribution. Note that the central moments of the NIG function 

cannot be expressed as closed and analytical forms and thus, we can estimate them through the NIG 

characteristic function (cf., Barndorff-Nielsen, 1978): 

´s�:� = E[e7(s] = e7�(>¡6ðS¡�U�67cë� (67(� �B-8� 
where the -th raw moment corresponds to 

E[C�] = �−?�� lim(→a �d�´s�:�d:� � �B-9� 
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Particularly, the first moment and the sequent three central moments are given by: 

W = � + �/� �B-10� 
E VI� − WJcX = �c + �c��c/�� �B-11� 

E VI� − WJ�X = 3I�c + �c��c/��J�/c
��c + �c�  �B-12� 

E VI� − WJ�X = 3I�c + �c��c/��Jc� ¾1 + 41 + ��/�c¿ + 3I�c + �c��c/��Jc �B-13� 
After algebraic manipulations the coefficients of variation, skewness and kurtosis can be expressed 

as (Dimitriadis and Koutsoyiannis, 2017): 

�Ú = ë�>¡�¡�ë>¡�/���, �º = �ë¡�ë�>¡�� , �� = �¡ S1 + �=>�¡/ë��U + 3 �B-14� 
respectively. The NIG parameters can then be calculated from these equations as: 

� = �t��uv6Ruw�6W�uv6�uw�6W , � = �t� �uv6xÀuw�6�,  = ¡�uwt�� ,  � = W − �/� �B-15� 
Also, we can derive theoretically the maximum kurtosis of NIG for a given skewness: 

�� ≥ 53 �ºc + 3 �B-16� 
For the classification of tails we use the test based on the functions proposed by (Klugman et al. 

2012, sect. 3.4.3; see also Halliwell, 2013) and here defined as: 

4T ≔ − lim→Y S }Ô�;m�Ô�;m�}U, 4Ó ≔  lim→6Y S }Ô�;m�Ô�;m�}U �B-17� 
After calculations we get: 

4T = √c + �c/� − /� ≥ 0,  4Ó = √c + �c/� + /� ≥ 0 �B-18� 
and hence the NIG is expected to represent a large variety of heavy-tailed distributions. 

In Fig. B-1 and B-2, we observe that the smaller possible kurtosis of the ESK distribution for a given 

skewness coincides with the theoretical limit defined by Pearson (1930). Also, the larger kurtosis of 

the ESK includes a variety of sub-Gaussian and thin-tailed distributions. On the contrary, the 
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smaller kurtosis of the NIG distribution is very close to the larger one of the ESK and thus, it can 

include a variety of heavy-tailed distributions. 

 

Table B-1: Mean, variance, and coefficients of skewness and kurtosis for the ESK and NIG 

distributions. Note that í7 = �B�1 + ?/, ��, where B��, n� is the beta function and i an integer. 

Source: Dimitriadis and Koutsoyiannis (2017). 

 ESK NIG W � + �í=  � + �/� 

êc �cIíc − í=cJ 
�c + �c��c��  

�º 
2í=� − 3í=íc + í�Iíc − í=cJ�/c  

3��c + �c� 

�� 
−3í=� + 6í=cíc − 4í=í� + í�Iíc − í=cJc  

3� ¾1 + 41 + ��/�c¿ + 3 

min �� ≈ �ºc + 1 = 53 �ºc + 3 

max �� ≈ R� �ºc + 3 * +∞ 

* This is a fair approximation only for �º ≤ –2. A more exact but empirical approximation for −10 ≤ �º ≤ 10, can be given by: 0.039�º� + 1.724�º� + 0.032�º� + 2.7. Note that the max kurtosis for the ESK for a given skewness coincides with the kurtosis of the 
Weibull distribution (Fig. B-1). 

Table B-2: Parameters of the ESK and NIG distributions in terms of the mean, standard deviation, 

and coefficients of skewness and kurtosis (see also Fig. B-2). Source: Dimitriadis and Koutsoyiannis 

(2017). 

distribution ESK4 NIG 

 non-analytical * 
�c�ºê3�  

� non-analytical * 
�√3

ê��� − 53 �ºc − 3 

� W − �í=  W − �/� 

� 

ê
�Iíc − í=cJ 3ê�3�� − 5�ºc − 93�� − 4�ºc − 9  

* The two parameters of the ESK distribution  and � can be found by solving numerically the equations: �º = I2í=� − 3í=íc + í�J/Iíc − í=cJ�/c
, �� = I−3í=� + 6í=cíc − 4í=í� + í�J/Iíc − í=cJc

. 
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Figure B-1: Combinations of skewness and kurtosis coefficients for various two-parameter 

(Weibull, GEV, lognormal, generalized normal I, skew-exponential-power —SEP— and gamma), 

three-parameter (generalized normal II and skew normal) and the four-parameter PBF (see section 

6) distribution functions, along with the thin-heavy tailed separation based on the ESK and NIG 

functions, respectively. Source: Dimitriadis and Koutsoyiannis (2017). 

 

Figure B-2: Isopleths for estimated coefficients of skewness and kurtosis for the specified values of 

parameters  and � of the ESK and NIG distributions. Source: Dimitriadis and Koutsoyiannis (2017). 
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Appendix C 

Here, we describe how the SMA scheme can preserve an approximation of the marginal distribution 

of a process through the preservation of its first four moments. Although this scheme can be 

extended to preserve any number of moments, here we present the solution for preservation up to 

the fourth moment corresponding to kurtosis. The -th raw moment that coincides with the 

corresponding central moment for EZ�[ = 0, can be expressed through the SMA scheme as 

(Dimitriadis and Koutsoyiannis, 2017): 

The raw moments of order p can be estimated from (Dimitriadis and Koutsoyiannis, 2017): 

EZ�7�[ = E �� y |�|�7>�
r

�t6r ��� = y S -]6r , ]=6r , … , ]rU E � � I|�|�7>�J`�
6r���r �`ÕÃ>`^ÕÃ>⋯>`Ãt�  �C-1� 

where S -]6r , ]=6r , … , ]rU = �!`ÕÃ!`^ÕÃ!…`Ã!, is a multinomial coefficient. 

Therefore, assuming that EZ�c[ = 1, the second and third raw moments can be expressed as 

(Koutsoyiannis, 2000): 

EZ�c[ = �ac + 2 y �cr
�t= � �C-2� 

EZ��[ = �a� + 2 y ��
r

�t= � EZ��[ �C-3� 
For the fourth raw moment (- = 4) we use the multinomial theorem: 

EZ�7�[ = E y� y |�|�7>�
r

�t6r ��z = y ¾ 4]6r , ]=6r , … , ]r¿ E � � I|�|�7>�J`�
6r���r �`ÕÃ>`^ÕÃ>⋯>`Ãt�  �C-4� 

where the multinomial coefficient can be expressed as: 

¾ 4]6r , ]=6r , … , ]r¿ = 4!]6r!]=6r!… ]r! �C-5� 
We notice that all combinations with ]� = 1 are zero and thus, after algebraic manipulations we 

obtain: 
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EZ��[ = EZ��[ �a� + 2 y ��
r

�t= � + y y |�|cr
`t6r |`|cr

�t6r  �C-6� 
Thus, the skewness and kurtosis coefficients can be estimated as (Dimitriadis and Koutsoyiannis, 

2017): 

�º, = �º,Ù Ia� + 2 ∑ ��r�t= JIac + 2 ∑ �cr�t= J�/c �C-7� 
��, = ��,ÙIa� + 2 ∑ ��r�t= J + 6 ∑ ��r�t= + 12ac ∑ �cr�t= + 24 ∑ ∑ �c�7t= c̀r�t7>=Iac + 2 ∑ � cr�t= Jc  �C-8� 
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Appendix D 

In this Appendix we perform several benchmark experiments following the methodology described 

in the previous section but for Gaussian distributions. First, we generate N = 1000 time series with 

(normally distributed) record length and mean value of N (μΝ) 100 and standard deviation (σΝ) 20, 

for an HK process, with H ranging from 0.5 to 0.95. 

  

Figure D-1: Probability density function of H for a white noise process (H = 0.5) [left] and an HK 

process (H = 0.8) [right], both with μΝ = 100 and σΝ = 20. Source: Dimitriadis et al. (2018b). 

From the results, we see that the pooled approach performs exceptionally well whereas the 

classical approach deviates from the true value as the H increases. 

 

Figure D-2: Overall results from the Monte Carlo analysis of the HK process with μΝ = 100 and σΝ = 

20. Source: Dimitriadis et al. (2018b). 
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pooled approach performs satisfactory whereas the classical approach exhibits an almost fixed 

deviation (due to the bias effect) from the true value. 

  

Figure D-3: Probability density function of H for an HK process (H = 0.8) and for N = 10 [left] and N 

= 1000 [right], with μΝ = 100 and σΝ = 20. Source: Dimitriadis et al. (2018b). 

Finally, we generate N = 1000 time series with (normally distributed) record length, with μΝ 

ranging from 10 to 103 and σΝ = 20, for an HK process (H = 0.8). Again, the pooled approach 

performs satisfactory whereas the classical approach deviates more from the true value as μΝ 

decreases. 

  

Figure D-4: Probability density function of H for an HK process (H = 0.8) and for μΝ = 20 [left] and μΝ 

= 1000 [right]. Source: Dimitriadis et al. (2018b). 
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Figure D-5: Overall results from the Monte Carlo analysis for N ranging from 2 to 104 and μΝ = 100 

[left] and for μΝ ranging from 10 to 103 and with N = 1000 [right], both with σΝ 20. Source: 

Dimitriadis et al. (2018b). 
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Appendix E 

Here we describe how the SMA model can be used to cope with non-stationary processes. The 

general idea is to convert non-stationary processes to stationary ones, so that eventually the 

simulation is made for a stationary process. This conversion is achieved by appropriate 

transformations or by separating them into segments, as for example in the case of cyclostationary 

processes. While in the recent literature there is no shortage of publications seeking or assuming 

non-stationarity, this may just reflect incomplete understanding of what stationarity is 

(Koutsoyiannis and Montanari, 2015). A common confusion is that non-stationarity is regarded as a 

property of the natural process, while in fact it is a property of a mathematical (stochastic) process. 

In non-stationary processes some of the statistical properties change in time in a deterministic 

manner. The deterministic function describing the change in the statistical properties is rarely 

known in advance and, in studies claiming non-stationarity, is typically inferred from the data. 

However, it is impractical or even impossible to properly fit a non-stationary mathematical process 

to time series, as in nature only one time series of observations of a certain process is possible, 

while the definition of stationarity or non-stationarity relies on the notion of an ensemble of time 

series (for practical implications and difficulties of using non-stationary models see Serinaldi and 

Kilsby, 2015). 

A simple example of how we can deal with a non-stationary process through a stationary one 

follows. We consider an HK process (denoted as x) with H = 0.8 μ = 0 and σ = 1 and by aggregation 

we also take the cumulative process (denoted as y, i.e. yi = yi – 1 + xi). Figure E-1 shows a time series 

generated from x and the corresponding time series from y. Clearly, x is stationary and y is non-
stationary (the so-called fractional Brownian noise). If we have the information about the 

theoretical basis of the two processes, then it is trivial to correctly model them (Koutsoyiannis, 

2016). In particular, we will know that the mean of the process y is constant (zero, not a function of 

time) while its variance is an increasing function of time (a power-law function of i). Otherwise, if 

the only available information is the time series of y, then we may be tempted to assume a linear 

trend for the mean of y and express the mean of the process as a linear function of time, μi = a i + b 

(with a and b the parameters of the slope and intercept of a regression line on the time series). This, 

however, would be plain wrong as in fact (by construction) the mean of y is zero for any time i. In 

addition, the introduction of the two extra parameters (i.e., a and b) has negative implications in 

terms of the overall uncertainty of the model, which would cease to be parsimonious. But again, 

even with this wrong assumption, the next step would be to construct a stationary model, i.e., zi = yi 

– a i – b and use that model in simulations. The correct approach for this case would be to construct 

the time series of x by differentiation of y (i.e., xi = yi – yi-1), which is stationary, and use the 

stationary process x for stochastic simulation; then a synthetic time series of the non-stationary 

process y will be constructed from a time series of x. Thus, in all cases, whether with correct or 

incorrect assumptions, the stochastic simulation is always done for a stationary process.  
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Figure E-1: Time series with length 1000 from the example processes x and y. 
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Extended Abstract in Greek 

Περίληψη 

Η υψηλή πολυπλοκότητα και αβεβαιότητα της δυναμικής της ατμόσφαιρας έχει από καιρό 

αναγνωρισθεί μέσα από την εμπειρία και ανάλυση των υδρομετεωρολογικών διεργασιών, όπως 

θερμοκρασία, υγρασία, άνεμος, βροχόπτωση, ατμοσφαιρική πίεση, παροχές ποταμού κτλ. 

Συγκεκριμένα, όλες αυτές οι διεργασίες φαίνεται να εμπεριέχουν μεγάλη αβεβαιότητα στην 

πρόβλεψη που επιτείνεται λόγω της ομαδοποίησης ομοειδών φαινομένων. Αυτή η συμπεριφορά 

είναι πολύ διαφορετική από την εποχική περιοδικότητα που συμβαίνει σε υπο-ετήσια κλίμακα. Η 

ομαδοποίηση αυτή των φαινομένων ανιχνεύτηκε πρώτα από τον H.E. Hurst το 1951 στο πλαίσιο 

μελέτης έργων στον ποταμό Νείλο. Η μαθηματική έκφραση αυτής της συμπεριφοράς αποδίδεται 

στον A.N. Kolmogorov που την ανέπτυξε ενώ μελετούσε τυρβώδη φαινόμενα το 1940. Για να δοθεί 

εξίσου αναγνώριση και στους δύο επιστήμονες, το φαινόμενο και η δυναμική αυτή ονομάζεται 

Hurst-Kolmogorov (HK). 

Για την σωστή μελέτη αυτής της ομαδοποίησης των φαινομένων και γενικά την στοχαστική 

συμπεριφορά των υδρομετεωρολογικών διεργασιών, θα χρειαζόμασταν άφθονες μετρήσεις σε 

ετήσια κλίμακα. Δυστυχώς, μεγάλα μήκη και υψηλής ποιότητας δεδομένα είναι δύσκολο να 

βρεθούν για υδρομετεωρολογικές διεργασίες. Ωστόσο, οι φυσικές διεργασίες μικρής κλίμακας που 

δημιουργούν και οδηγούν τις υδρομετεωρολογικές, διέπονται από τυρβώδη συμπεριφορά. 

Μελετώντας την μικροκλίμακα τυρβωδών φαινομένων σε εργαστήριο, μπορούμε να 

κατανοήσουμε ορισμένες εκφάνσεις των συγγενών μακροσκοπικών διεργασιών στο πεδίο. 

Υπάρχουν ορισμένες ομοιότητες μεταξύ της μικροκλίμακας της ταχύτητας του ανέμου και της 
θεωρίας τυρβώδους οριακού στρώματος. Επίσης, το μέγεθος των σταγόνων βροχής, που είναι 

συνυφασμένο με την μορφή και ένταση επεισοδίων βροχόπτωσης, επηρεάζεται από την τυρβώδη 

κατάσταση της μικροκλίμακας του ανέμου. Ορισμένα ισχυρά πλεονεκτήματα της μελέτης στη 

μικροκλίμακα τύρβης στο εργαστήριο είναι η καταγραφή χρονοσειρών μεγάλου μήκους, η υψηλή 

συχνότητα καταγραφής και το ελεγχόμενο περιβάλλον του εργαστηρίου. Η ανάλυση αυτών των 

χρονοσειρών μας δίνει τη δυνατότητα καλύτερης κατανόησης, ελέγχου και σύγκρισης των δύο 

επιστημονικών μεθόδων, της ντετερμινιστικής και της στοχαστικής ανάλυσης. 

Σε αυτή την διατριβή, αναπτύσσουμε το πλαίσιο της στοχαστικής ανάλυσης για την εμπειρική 

αλλά και θεωρητική εκτίμηση περιθώριων χαρακτηριστικών και δομής συσχέτισης μιας 

διεργασίας. Επίσης, αναπτύσσουμε και εφαρμόζουμε αλγορίθμους στοχαστικής σύνθεσης 

μαθηματικών ανελίξεων αλλά και στοχαστικής πρόβλεψης φυσικών διεργασιών. Επίσης, 

συζητούμε και προτείνουμε έναν χαρακτηρισμό της τυρβώδους συμπεριφοράς μέσα από την 

παράμετρο Hurst και την φυσική εξήγηση της διασποράς με την αύξηση της χρονικής κλίμακας με 

βάση εργαστηριακά πειράματα θερμαινόμενης τυρβώδους φλέβας. Επιπρόσθετα, προτείνουμε ένα 

στοχαστικό μοντέλο συμπεριφοράς μιας διεργασίας από μικρές σε μεγάλες κλίμακες, που 

προκύπτει από την μεγιστοποίηση της εντροπίας. Τέλος, εφαρμόζουμε αυτό το μοντέλο και σε 

άλλες διεργασίες μικροκλίμακας τύρβης αλλά και σε χρονοσειρές θερμοκρασίας, βροχόπτωσης, 
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υγρασίας, ατμοσφαιρικής πίεσης, παροχών ποταμού και ανέμου, από χιλιάδες σταθμούς ανά τον 

κόσμο. 

Εισαγωγή 

Η τυχαιότητα και ο ντετερμινισμός συνήθως θεωρούνται εσφαλμένα ως διαφορετικές εκφάνσεις 

ενός φαινομένου. Ακόμα όμως και αν μπορούσαμε να εκφράσουμε κάποιους φυσικούς νόμους για 

ένα φαινόμενο που να περιέγραφαν με πλήρη λεπτομέρεια πολύ-σύνθετα φαινόμενα, όπως αυτά 

της κλιματικής δυναμικής, θα ήταν αδύνατο να προβλέψουμε ή απλά να εξηγήσουμε (μέσα από 

αυτές τις εξισώσεις) τη μελλοντική διακύμανση του φαινομένου. Για παράδειγμα, η ανάλυση του 

Poincaré (1890) για το σύστημα τριών σωμάτων, έδειξε πως η χαοτική συμπεριφορά μπορεί να 

αναδυθεί και από τις εξισώσεις της κλασσικής μηχανικής. Παρόμοια αποτελέσματα προέκυψαν και 

από την ανάλυση του Lorenz (1963) σε απλοποιημένες εξισώσεις της ατμοσφαιρικής δυναμικής, 

όπου εκτιμήθηκε ένα χρονικό παράθυρο προβλεψιμότητας ίσο με 2 εβδομάδες, ακόμα και αν το 

μοντέλο μας είναι τέλειο με γνωστές αρχικές συνθήκες. 

Το αρχικό ενδιαφέρον για την στοχαστική ανάλυση έχει αυξηθεί τις τελευταίες δεκαετίες σαν ένας 

εναλλακτικός (ή καλύτερα συμπληρωματικός) τρόπος του ντετερμινισμού για την μοντελοποίηση 

των τυχαίων (δηλαδή, σύνθετων, πολύπλοκων, ανεξήγητων και απρόβλεπτων) διακυμάνσεων που 

καταγράφονται στις γεωφυσικές διεργασίες. Όμως, μιας και η τυχαιότητα αυτή μπορεί να 

προκύψει από ένα πλήρως ντετερμινιστικό, μη γραμμικά δυναμικό, σύστημα, είναι εσφαλμένη η 

διχοτομία μεταξύ τυχαιότητας και ντετερμινισμού. Αντιθέτως, φαίνεται πως αυτές οι δύο 

συμπεριφορές συνυπάρχουν σε ένα φυσικό φαινόμενο, και διαχωρίζονται μόνο από τον χρονικό 

ορίζοντα πρόβλεψης (και άρα επεξήγησης) της διακύμανσης του φαινομένου αυτού (Dimitriadis et 
al., 2016b). Η γραμμή αυτή διαχωρισμού είναι άμεσα συνδεδεμένη με το παράθυρο πρόβλεψης 

χρονικού μήκους l(ε), όπου η μελλοντική κατάσταση δεν μπορεί πλέον να εξηγηθεί από ένα 

ντετερμινιστικό νόμο μέσα σε κάποιο περιθώριο λάθους ε. Σε όρια λάθους μικρότερα από ε το 

σύστημα θεωρείται προβλέψιμο ενώ για μεγαλύτερα σφάλματα απρόβλεπτο (Dimitriadis and 

Koutsoyiannis, 2017). Μέσα από τη στοχαστική ανάλυση λοιπόν, αναγνωρίζουμε την 

παρατηρημένη τυχαιότητα του συστήματος μέσα από μια στοχαστική διεργασία. Με αυτή τη 

μαθηματική διεργασία (ή αλλιώς ανέλιξη) μπορούμε να δημιουργήσουμε πολλαπλές 

πραγματοποιήσεις ενώ από τη φυσική διεργασία (ή απλώς διεργασία) μπορούμε να 

παρατηρήσουμε μόνο μια πραγματοποίηση του συστήματος (ή πολλαπλά μόνο μέσα από 

εργαστηριακά πειράματα). 

Ο A.N. Kolmogorov (1931) ήταν ο πρώτος που όρισε με μαθηματικό τρόπο τη στοχαστική ανέλιξη 

βασισμένος στη κατανομή πιθανότητας συνεχούς χρόνου (και όχι διακριτού), μια ιδέα που είχε 

οραματιστεί και εφαρμόσει ο Bachelier (1900) καθώς εργαζόταν στην εξέλιξη της οικονομίας στη 

διδακτορική του διατριβή (Koutsoyiannis and Dimitriadis, 2016). Ο Kolmogorov (1931) 

διαφοροποιεί μια καθαρά ντετερμινιστική από μια στοχαστική ανέλιξη, με το να ορίζει με μοναδικό 

τρόπο μια μελλοντική κατάσταση του συστήματος από μια προηγούμενη του. Εναλλακτικά, η 

αλλαγή ενός φυσικού συστήματος είναι με ντετερμινιστικό (στοχαστικό) τρόπο ορισμένη εάν η 

(πιθανότητα κατανομής) κάθε επόμενη(ς) κατάσταση(ς) είναι απόλυτα καθορισμένη από την 

(πιθανότητα κατανομής) (της) προηγούμενη(ς) κατάσταση(ς). Επομένως, από ένα ντετερμινιστικό 
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(στοχαστικό) φυσικό σύστημα μπορεί να προβλεφθεί με ακρίβεια η (πιθανότητα κατανομής) (της) 

μελλοντική(ς) κατάσταση(ς) με δεδομένη την τωρινή. Ο απώτερος σκοπός της Στοχαστικής 

ανάλυσης είναι να προβλέψει μια φυσική διεργασία μέσω μια μαθηματικής στοχαστικής ανέλιξης 

(όχι δηλαδή καθαρά ντετερμινιστικής). 

Δύο έννοιες που προκύπτουν από τον παραπάνω ορισμό της Στοχαστικής ανάλυσης, είναι αυτό της 

στασιμότητας και εργοδικότητας, που είναι και οι δύο ιδιότητες της ανέλιξης και όχι μιας 

χρονοσειράς (Koutsoyiannis and Montanari, 2015). Ενώ μια ανέλιξη μπορεί να είναι (με την ευρεία 

έννοια) στάσιμη (δηλαδή, τα περιθώρια χαρακτηριστικά και η δομή εξάρτησης να μην αλλάζουν με 

τον χρόνο) αλλά μη εργοδική, μια εργοδική ανέλιξη (δηλαδή, να μπορούν τα περιθώρια και 

χαρακτηριστικά εξάρτησης να υπολογιστούν από μία χρονοσειρά άπειρου μήκους) πρέπει να είναι 

απαραιτήτως και στάσιμη, αλλιώς δεν είναι δυνατή η εκτίμηση αυτών των χαρακτηριστικών, και 

άρα, δεν υπάρχει φυσικό νόημα εφαρμογής αυτής της ανέλιξης. Με πιο απλά λόγια, ο βασικός 

στόχος της Στοχαστικής ανάλυσης είναι η αναγνώριση της πιο φειδωλής (στάσιμης και εργοδικής) 
ανέλιξης σε συνεχή χρόνο που μπορεί να διατηρήσει τα φυσικά χαρακτηριστικά της φυσικής 

διεργασίας (αφού πρώτα έχει αφαιρεθεί οποιαδήποτε ντετερμινιστική, δηλαδή απόλυτα 

προβλέψιμη, συμπεριφορά) σε διακριτό χρόνο, μαζί με τις στατιστικές εκτιμήσεις, από τις 

παρατηρημένες χρονοσειρές, ώστε να μελετηθεί η μελλοντική διακύμανσή της (αφού πρώτα έχουν 

προστεθεί και πάλι οι ντετερμινιστικές σχέσεις), μέσα από την γέννηση συνθετικών χρονοσειρών 

(Γράφημα 1). 

 

Γράφημα 1: Τα βήματα μα στοχαστικής ανάλυσης, αφού πρώτα έχουμε αφαιρέσει (πριν από την 

ανάλυση) και προσθέσει πίσω (μετά την ανάλυση) όποιες απόλυτα γνωστές ντετερμινιστικές 

συμπεριφορές (Πηγή: Koutsoyiannis and Dimitriadis, 2016). 

Μεθοδολογία 

Η μεθοδολογία που χρησιμοποιούμε για την μοντελοποίηση της δομής εξάρτησης δευτέρου 

βαθμού (που από εδώ και στο εξής θα αναφερόμαστε σε αυτή ως δομή εξάρτησης) βασίζεται στο 

κλιμακόγραμμα \�]�, δηλαδή η διασπορά ως συνάρτηση της κλίμακας της διεργασίας δηλαδή, 

_̂ ; ��:�d:à  συναρτήσει κλίμακας ], όπου ] = b5 είναι η συνεχούς χρόνου κλίμακα σε μονάδες 

χρόνου και b η αδιαστατοποιημένη, θεωρώντας πως Δ = D είναι η χρονική μονάδα μέτρησης που 

χρησιμοποιείται για τη διακριτοποίηση (Γράφημα 2). Το κλιμακόγραμμα είναι απευθείας 

εξαρτώμενο από την αυτοσυνδιασπορά c(h), i.e., ��ℎ� = =c dcIℎc\�ℎ�J/dℎc, όπου h είναι η συνεχούς 
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χρόνου υστέρηση σε μονάδες χρόνου, και από το φάσμα ισχύος e���: = 2 ; ��ℎ� cos�2π�ℎ� dℎY6Y , 

όπου � είναι η συχνότητα σε συνεχή χρόνο με μονάδες μέτρησης αντίστροφες του χρόνου 

(Koutsoyiannis, 2013). Οπότε, κάθε ένα από αυτά τα τρία στοχαστικά εργαλεία εμπεριέχει ακριβώς 

την ίδια πληροφορία δομής εξάρτησης, αλλά έχει δειχθεί ότι το πρώτο εμπεριέχει μικρότερη 

στατιστική αβεβαιότητα από τα άλλα δύο (Dimitriadis and Koutsoyiannis, 2015a) και οπότε, όλες 

οι εφαρμογές εδώ βασίζονται στο κλιμακόγραμμα (δείτε τις σχέσεις εκτίμησης και μεροληψίας 

όλων των παραπάνω εργαλείων στην εργασία των Dimitriadis et al., 2016a). 

 

Γράφημα 2: Ένα παράδειγμα πραγματοποίησης μιας ανέλιξης  σε μία χρονοσειρά συνεχούς 

χρόνου (μπλε γραμμή) και ένα δείγμα  πραγματοποιήσεων (μαύρα σημεία) μιας ανέλιξης 

μέσου όρου  σε διακριτό χρόνο Δ, με χρονικά διαστήματα D και συνολικής περιόδου T (πηγή: 

Dimitriadis et al., 2016a). 

Μια παρατήρηση της παραπάνω ανάλυσης είναι ότι όσο πιο χαοτική και σύνθετη είναι μια 

διεργασία, τόσο και πιο μεγάλη είναι η αβεβαιότητα που εμπεριέχει. Αυτό το φαινόμενο μπορεί να 

εκφραστεί και μαθηματικά μέσω της τυχαίας ομαδοποίησης που εμφανίζεται σε πολλές 

γεωφυσικές διεργασίες. Η ομαδοποίηση αυτή μπορεί να εκτιμηθεί μέσω της παραμέτρου Hurst 

(1951) και η συμπεριφορά αυτή ονομάζεται Hurst-Kolmogorov (ΗΚ) προς τιμή και του 

Kolmogorov (1940) που την εξέφρασε με μαθηματικό τρόπο (Koutsoyiannis, 2010). Ένα 

παράδειγμα τέτοια αβεβαιότητας μπορεί να δοθεί από τη τροχιά του ζαριού όπως αναλύθηκε από 

τους Dimitriadis et al. (2016b) όπου το παράθυρο πρόβλεψης υπολογίστηκε ίσο με 0.1 s, ενώ τα 

παράθυρα πρόβλεψης για διάφορα επεισόδια βροχής και ανέμου εκτιμήθηκαν (από την ίδια 

ανάλυση) ίσα με 5 min και 1 h, αντίστοιχα. Η παράμετρος Hurst υπολογίστηκε αντίστοιχα ίση 0.6 < 

H < 0.5, Η = 0.9 και Η = 0.95, αντίστοιχα. Οπότε, εξαιτίας της ΗΚ συμπεριφοράς (σε αντίθεση με 

συμπεριφορές λευκού θορύβου ή και Markov), η διεργασία με μεγάλη τιμή της παραμέτρου Η 

γίνεται πιο προβλέψιμη σε μικρούς χρονικούς ορίζοντες ενώ γίνεται πιο απρόβλεπτη σε μεγάλους 

ορίζοντες. 
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Επίσης, η συμπεριφορά ΗΚ έχει ανιχνευθεί σε πολλές γεωφυσικές διεργασίες, όπως σε τυρβώδεις 

(π.χ., Dimitriadis et al., 2016a), πρόσφατα σε οικοσυστήματα (Pappas et al., 2017) αλλά και σε 

πολλές υδρομετεωρολογικές διεργασίες (Koutsoyiannis, 2003; O’Connell et al., 2016; 

Sakalauskienė, 2003), και πιο συγκεκριμένα σε παροχές και στάθμη ποταμού (Hurst, 1951; 

Koutsoyiannis et al., 2008; Markonis et al., 2017), ηλιακή ακτινοβολία και ταχύτητα ανέμου 

(Koutsoyiannis et al., 2017; Tsekouras and Koutsoyiannis, 2014; Koudouris et al., 2017), σε 

βροχόπτωση (Iliopoulou et al., 2016), ανακατασκευασμένες παλαιοκλιματικές θερμοκρασίες 

(Markonis and Koutsoyiannis, 2013); θερμοκρασία και σημείο δρόσου (Koutsoyiannis et al., 2017; 

Lerias et al., 2016), και σε ύψος κύματος (π.χ., Moschos et al., 2017). Είναι ενδιαφέρον ότι οι 

περισσότερες από τις προαναφερθείσες διεργασίες (αν επεξεργαστούν σωστά, λαμβάνοντας 

υπόψη τα φυσικά και στατιστικά χαρακτηριστικά της καθεμιάς, όπως τον τρόπο μέτρησης, 

διακριτοποίηση και στατιστική μεροληψία) εμφανίζουν παράμετρο Hurst στο εύρος 0.8 με 0.85, 

όπως είχε εκτιμηθεί και από τον ίδιο τον Hurst (1951) δεκαετίες πριν (Cohn and Lins, 2005). 

Αποτελέσματα 

Το πιο σημαντικό αποτέλεσμα αυτής της εργασίας, κατά τη γνώση του συγγραφέα, για πρώτη 

φορά στη στοχαστική ανάλυση παρουσιάζεται ένα καινοτόμο πλαίσιο (μέσα από την 

μοντελοποίηση μιας κοινής συνάρτησης περιθώριας πυκνότητα κατανομής και δομής εξάρτησης 

δευτέρου βαθμού) για την διατήρηση και παραγωγή επίδρασης της διακριτοποίησης, στατιστικής 

μεροληψίας, ορισμένες εκφάνσεις της διαλείπουσας (ή αλλιώς φράκταλ) τυρβώδους 

συμπεριφοράς (στην μικροκλίμακα της δομής εξάρτησης) και της μακροπρόθεσμης συμπεριφοράς 

(στην μακροκλίμακα της δομής εξάρτησης), ακραία γεγονότα (στο αριστερό και δεξί όριο της 
περιθώριας κατανομής πυκνότητας πιθανότητας), αλλά ακόμα και εφαρμογές σε 13 τυρβώδη και 

υδροκλιματικές διεργασίες συμπεριλαμβάνοντας πειραματικά δεδομένα και παγκόσμιες αναλύσεις 

επίγειων σταθμών (συνολικά, αρκετά δις παρατηρήσεων). 

Συγκεκριμένα, έγιναν εφαρμογές με το παραπάνω μοντέλο (ή απλές εκφάνσεις αυτού) σε 

πλεγματική τύρβη (Γράφημα 3), εργαστηριακά πειράματα κατακόρυφων και οριζόντιων φλεβών 

θετικής άνωσης (Γράφημα 4), βροχόπτωση σε μια μεγάλου μήκους χρονοσειρά και σε παγκόσμια 

κλίμακα (Γραφήματα 5 και 6), ταχύτητα ανέμου σε πολλές χρονοσειρές στον Ελλαδικό χώρο και σε 

παγκόσμια κλίμακα (Γραφήματα 7 μέχρι 11), θερμοκρασία σε παγκόσμια κλίμακα (Γραφήματα 12 

και 13) και σε παγκόσμια κλίμακα θερμοκρασίας, σημείου δρόσου, ταχύτητας και ατμοσφαιρικής 

πίεσης κατηγοριοποιημένες σε κλιματικές κλάσεις Koppen-Geiger (Πίνακας 1). Ενδιαφέρον είναι 

ότι όλες οι προαναφερθείσες διεργασίες εμφάνισαν συμπεριφορά ΗΚ, και μάλιστα οι περισσότερες 

με κοινή παράμετρο Hurst 5/6 και παράμετρο φράκταλ 1/3 (σε όσες μελετήθηκε η συμπεριφορά 

τους στην μικροκλίμακα). 
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Γράφημα 3: Εμπειρική και αναπαραγόμενη

διαφορικών ταχυτήτων. Πηγή: Dimitriadis and Koutsoyiannis

 

Γράφημα 4: Πραγματική (προσαρμοσμένη

λαμβάνοντας υπόψη την μεροληψία
Πηγή: Dimitriadis and Papanicolaou
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Γράφημα 5: Εμπειρικές, μοντελοποιημένες και παραγόμενες περιθώριες κατανομές [πάνω 

αριστερά] και κλιμακογράμματα [πάνω δεξιά] για την αδιαστατοποιημένη διεργασία της 

βροχόπτωσης; η πιθανότερη τιμή και διάφορα άλλα σημαντικά στατιστικά χαρακτηριστικά των 

αδιαστατοποιημένων κλιμακογραμμάτων για 103 συνθετικές χρονοσειρές (στο γράφημα 

δείχνουμε μόνο 50) [κάτω αριστερά]; Ένα παράθυρο 3000 ημερών της παρατηρημένης και 
παραγόμενης βροχόπτωσης [κάτω δεξιά]. Πηγή: Dimitriadis and Koutsoyiannis (2017). 

 

Γράφημα 6: Εφαρμογή της προτεινόμενης συνάρτησης πιθανότητας στην παγκόσμια βάση 

ημερησίων βροχοπτώσεων (www.nooa.gov; GHCN database; δείτε Sotiriadou et al, 2015 για τους 

επιλεγμένους σταθμούς) χρησιμοποιώντας το άμεσο σχήμα των Dimitriadis and Koutsoyiannis 

(2017). 
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Γράφημα 7: Εμπειρικός μέσος (vm) έναντι τυπικής απόκλισης των εννέα χρονοσειρών μαζί με το 

προσαρμοσμένο μοντέλο [πάνω αριστερά]; οι εμπειρικές, μοντελοποιημένες και παραγόμενες 

περιθώριες κατανομές πυκνότητας [πάνω δεξιά] και κλιμακογράμματα [κάτω αριστερά] για τις 

αδιαστατοποιημένες διεργασίες ταχυτήτων ανέμου; Ένα παράθυρο 1000 ημερών των 
παρατηρημένων ταχυτήτων στην Κω μαζί με μια παραγόμενη χρονοσειρά [κάτω δεξιά]. Πηγή: 

Dimitriadis and Koutsoyiannis (2017). 
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Γράφημα 8: (πάνω) Κατανομές ταχυτήτων

ως προς την επιλογή των σταθμών

στους σταθμούς. Πηγή: Koutsoyiannis
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σταθμών στην ανάλυση; (χαμηλά) εξέλιξη της συχνότητας

Koutsoyiannis et al. (2017). 
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Γράφημα 9: Τυπική απόκλιση έναντι

από όλες τις επιλεγμένες χρονοσειρές 

 

 

 

έναντι μέσης (πάνω) και συντελεστές κύρτωσης έναντι ασυμμετρίας 

από όλες τις επιλεγμένες χρονοσειρές (πηγή: Koutsoyiannis et al., 2017). 
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Γράφημα 10: Πυκνότητα πιθανότητας της ταχύτητας της πλεγματικής τύρβης (small) και αυτής 

της ταχύτητας του ανέμου της μέσης (medium) και παγκόσμιας (global) κλίμακας μαζί με τις 

προσαρμοσμένες κατανομές (πήγη: Koutsoyiannis et al., 2017). 

 

Γράφημα 11: Κλιμακόγραμμα της ταχύτητας του ανέμου εκτιμώμενο για το σετ της μέσης και 

παγκόσμιας κλίμακας. (πηγή: Koutsoyiannis et al., 2017). 
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Γράφημα 12: Τοποθεσίες των επιλεγμένων σταθμών των ωριαίων χρονοσειρών θερμοκρασίας σε 

παγκόσμια κλίμακα μαζί με τις κλιματικές ζώνες κατά Koppen. Πηγή: Lerias et al. (2016). 

 

  

Γράφημα 13: Κλιμακογράμματα των κανονικοποιημένων θερμοκρασιών για την μικροκλίμακα και 

μερικά (για επίδειξη) των ωριαίων χρονοσειρών, μαζί με το προσαρμοσμένο μοντέλο. Πηγή: 

Koutsoyiannis et al. (2017). 

 

1.E-02

1.E-01

1.E+00

1.E-01 1.E+02 1.E+05 1.E+08

γ

k (s)

small

global

true 
1.E-02

1.E-01

1.E+00

1.E-01 1.E+02 1.E+05 1.E+08

γ

k (s)

global
small
true 
expected



 

168 

Πίνακας 1: Εκτιμώμενες παράμετροι Hurst κατηγοριοποιημένοι σε ζώνες Köppen-Geiger (πηγή: 

Dimitriadis et al., 2017b). 

Hurst parameter 

/ Koppen-Geiger 

classification  

temperature  
dew 

point 
wind Speed precipitation 

atmospheric 

pressure 

A 0.79 0.78 0.84 0.62 0.71 

B 0.73 0.77 0.82 0.59 0.72 

C 0.70 0.71 0.87 0.65 0.73 

D 0.72 0.68 0.85 0.66 0.65 

E 0.68 0.65 0.70 0.83 0.71 

 

Συμπεράσματα 

Συγκεντρωτικά, οι σημαντικότερες καινοτομίες αυτής της εργασίας είναι: (α) η ανάπτυξη και 

εφαρμογή σε διάφορες διεργασίες, του κλασικού στοχαστικού πλαισίου δευτέρου βαθμού, 

συμπεριλαμβάνοντας μεθοδολογίες για την διαλείπουσα συμπεριφορά, διακριτοποίηση και 

στατιστικής μεροληψίας, (β) η περαιτέρω ανάπτυξη σύνθεσης στοχαστικών σχημάτων, όπως το 
άθροισμα αυτοπαλινδρομικών μοντέλων (SAR), όπως AR(1) ή ARMA(1,1); ο συμμετρικός 

κινούμενος μέσος (SMA) σε πολλές διαστάσεις (που μπορεί να αναπαραγάγει οποιαδήποτε δομή 

εξάρτησης δευτέρου βαθμού και να προσεγγίσει οποιαδήποτε κατανομή μέσω της διατήρησης των 

ροπών της, αλλά και να μοντελοποιήσει κάποιες εκφάνσεις της τυρβώδους διαλείπουσας 

συμπεριφοράς); και ένα άμεσο και έμμεσο (ψευδο) κυκλο-στάσιμο (pCSAR και pSMA) σχήμα για 

μοντελοποίηση της ντετερμινιστικής περιοδικής συμπεριφοράς, και (γ) η εισαγωγή και εφαρμογή 

ενός γενικευμένου στοχαστικού μοντέλου (με μια όμοια τετραπαραμετρική συνάρτηση πυκνότητα 

πιθανότητας αλλά και δομής συσχέτισης ���; �� = �/�1 + |�/ + �|���, με � = [�, , �, �, �], που 

περικλείει ένα μεγάλο εύρος κατανομών από Gaussian έως δυναμικής εκθετικής και Pareto, αλλά 

και συσχετίσεων λευκού θορύβου, Markov και HK), που είναι σύμφωνο με μια μεγάλη ποικιλία 

τυρβωδών (σε οριζόντιες και κατακόρυφες φλέβες αλλά και πλεγματικής τύρβης), αλλά και 

υδροκλιματικών διεργασιών (όπως θερμοκρασία, σημείο δρόσου και άρα υγρασία, βροχόπτωση, 
ατμοσφερική πίεση, παροχές ποταμών και ηλιακής ακτινοβολίας σε παγκόσμια κλίμακα, αλλά και 

πολύ μεγάλες χρονοσειρές στάθμης ποταμών, και κυματικού ύψους και περιόδου). Εντυπωσικό 

είναι το γεγονός ότι όλες οι παραπάνω διεργασίες (συνολικά 13) εμφάνισαν μακροπρόθεσμη 

εμμονή και συγκεκριμένα (εάν αναλυθούν σωστά μέσα από ένα φυσικό και στατιστικό πλαίσιο, 

προσαρμοσμένες σε λάθη καταγραφών αλλά και επιδράσεις της διακριτοποίησης και της 

στατιστικής μεροληψίας) με μέση παράμετρο Hurst ίση με H ≈ 5/6 και φράκταλ παράμετρο ίση με 

M ≈ 1/3 (όπως στην περίπτωση της ισοτροπικής τύρβης). 
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