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A stochastic process in continuous and discrete time 

 

Note that the graphs display a realization of the process (it is impossible to display the process as such) while the 
notation is for the process per se. 

(cumulative, nonstationary)

x(t) (instantaneous, 
continuous-time process)

t

t0 D 2D … (τ – 1)D τD (averaged at time scale D)
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Definitions and notation – continuous  time 
Name of quantity or 
characteristic 

Symbol and definition Remarks Ref. 

Stochastic process of interest x(t) Assumed stationary  

Time, continuous t Dimensional quantity   

Cumulative process 𝑋(𝑡) ≔ ∫ 𝑥(𝜉)d𝜉
𝑡

0
  Nonstationary (1) 

Variance, instantaneous  γ0 ≔ Var[x(t)] Constant (not a function 
of t) 

(2) 

Cumulative climacogram Γ(t) ≔ Var[X(t)] A function of t, Γ(0) = 0 (3) 

Climacogram γ(k) ≔ Var[(1/k)(X(t + k) – X(t))] 
= Var[X(k)/k] = Γ(k)/k2 

Not a function of t, γ(0) 

= γ0 
(4) 

Time scale, continuous k Units of time  

Autocovariance function c(h) := Cov[x(t), x(t + h)] c(0) = γ0 (5) 

Time lag, continuous h Units of time  

Structure function (or 
semivariogram or variogram) 

𝑣(ℎ) ≔
1

2
Var[𝑥(𝑡) − 𝑥(𝑡 + ℎ)]   (6) 

Climacostructure function  ξ(k) ≔ γ0 – γ(k)  (7) 

Power spectrum (or spectral 
density) 

𝑠(𝑤) ≔ 4 ∫ 𝑐(ℎ) cos(2π𝑤ℎ) dℎ
∞

0
   (8) 

Frequency, continuous w = 1/k Units of inverse time (9) 
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Definitions and notation – discrete  time 
Name of quantity or 
characteristic 

Symbol and definition Remarks Ref. 

Stochastic process, 
discrete time 

𝑥𝜏
(𝐷)

≔
1

𝐷
∫ 𝑥(𝑢)d𝑢

𝜏𝐷

(𝜏−1)𝐷
=

1

𝐷
(𝑋(𝜏𝐷) − 𝑋((𝜏 − 1)𝐷))   (10) 

Time unit = 
discretization time step 

D Length of time window 
of averaging 

 

Time, discrete  τ := t/D Dimensionless quantity, 
integer 

(11) 

Characteristic variance Var[𝑥𝜏
(𝐷)

] = γ(D)  (12) 

Climacogram 𝛾𝜅
(𝐷)

= 𝛾(𝜅𝐷) =
𝛤(𝜅𝐷)

(𝜅𝐷)2   𝛾1
(𝐷)

= γ(D) (13) 

Time scale, discrete κ = k/D Dimensionless quantity (14) 

Autocovariance function 𝑐𝜂
(𝐷)

≔ Cov[𝑥𝜏
(𝐷)

, 𝑥𝜏+𝜂
(𝐷)

] 𝑐0
(𝐷)

= 𝛾(𝐷)   

Time lag, discrete η = h/D Dimensionless quantity (15) 

Structure function 𝑣𝜂
(𝐷)

= 𝛾(𝐷) − 𝑐𝜂
(𝐷)

   (16) 

Power spectrum 𝑠d
(𝐷)(𝜔) =

1

𝐷
∑ 𝑠 (

𝜔+𝑗

𝐷
) sinc2(π(𝜔 + 𝑗))∞

𝑗=−∞      
 

(17) 

Frequency, discrete ω = wD = 1/κ Dimensionless quantity (18) 

Note: In time-related quantities, Latin letters denote dimensional quantities and Greek letters dimensionless 
ones. The Latin i, j, l may also be used as integers to denote quantities τ, η, κ, depending on the context.  
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Relationships between characteristics of a process in 
continuous and discrete time 
Related 
characteristics 

Symbol and definition Inverse relationship Ref. 

𝛾(𝑘) ↔ 𝑐(ℎ)  𝛾(𝑘) = 2 ∫ (1 − 𝜒)𝑐(𝜒𝑘)d𝜒 
1

0
  

𝑐(ℎ) =
1

2
 
d2(ℎ2𝛾(ℎ))

dℎ2
  

(19) 

𝑠(𝑤) ↔ 𝑐(ℎ)  𝑠(𝑤) ≔ 4 ∫ 𝑐(ℎ) cos(2π𝑤ℎ) dℎ
∞

0
  𝑐(ℎ) = ∫ 𝑠(𝑤) cos(2π𝑤ℎ) d𝑤

∞

0
  (20) 

𝛾(𝑘) ↔ 𝑠(𝑤)  𝛾(𝑘) = ∫ 𝑠(𝑤) sinc2(π𝑤𝑘) d𝑤
∞

0
  

𝑠(𝑤) ≔ 2 ∫
d2(ℎ2𝛾(ℎ))

dℎ2
cos(2π𝑤ℎ) dℎ

∞

0
   

(21) 

𝑣(ℎ) ↔ 𝑐(ℎ)  𝑣(ℎ) = 𝛾0 − 𝑐(ℎ) 𝑐(ℎ) = 𝑣(∞) − 𝑣(ℎ) (𝑣(∞) = 𝛾0)  (22) 

𝜉(𝑘) ↔ 𝛾(𝑘)  ξ(k) ≔ γ0 – γ(k) γ(k) = ξ(∞) – ξ(k)  (𝜉(∞) = 𝛾0) (23) 

𝜉(𝑘) ↔ 𝑣(ℎ)  𝜉(𝑘) = 2 ∫ (1 − 𝜒)𝑣(𝜒𝑘)d𝜒 
1

0
  

𝑣(ℎ) =
1

2
 
d2(ℎ2𝜉(ℎ))

dℎ2
  

(24) 

𝛾𝜅
(𝐷)

≡ 𝛾(𝜅𝐷) ↔

𝑐𝜂
(𝐷)

  

𝛾𝜅
(𝐷)

=
1

𝜅
(𝑐0

(𝐷)
+  2 ∑ (1 −

𝜂

𝜅
) 𝑐𝜂

(𝐷)𝜅−1
𝜂=1 )  

Alternatively, 𝛾𝜅
(𝐷)

=
𝛤(𝜅𝐷)

(𝜅𝐷)2
 where, in recursive 

mode,  
𝛤(𝜅𝐷) =  

2𝛤((𝜅 − 1)𝐷) − 𝛤((𝜅 − 2)𝐷) + 2𝑐𝑗−1
(𝐷)

𝐷2  

with 𝛤(0) = 0, 𝛤(𝐷) = 𝑐0
(𝐷)

𝐷2 

𝑐𝜂
(𝐷)

= 

1

𝐷2 (
𝛤(|𝜂+1|𝐷)+𝛤((|𝜂−1|𝐷)

2
− 𝛤(|𝜂|𝐷))  

(25) 

𝑐𝜂
(𝐷)

↔ 𝑠d
(𝐷)(𝜔)  𝑠d

(𝐷)(𝜔) = 2𝑐0
(𝐷)

+ 4 ∑ 𝑐𝜂
(𝐷)∞

𝜂=1 cos(2π𝜂𝜔)  𝑐𝜂
(𝐷)

= ∫ 𝑠d
(𝐷)(𝜔) cos(2π𝜔𝜂) d𝜔

1 2⁄

0
  (26) 

𝑣𝜂
(𝐷)

↔ 𝑐𝜂
(𝐷)

  𝑣𝜂
(𝐷)

= 𝛾(𝐷) − 𝑐𝜂
(𝐷)

  𝑐𝜂
(𝐷)

≔ 𝛾(𝐷) − 𝑣𝜂
(𝐷)

  (27) 
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Asymptotic power laws and the log-log derivative 
It is quite common that functions f(x) defined in [0, ∞), whose limits at 0 and ∞ exist, are associated 
with asymptotic power laws as 𝑥 → 0 and ∞ (Koutsoyiannis, 2014b).  

Power laws are functions of the form 

𝑓(𝑥)  ∝  𝑥𝑏  (28) 

A power law is visualized in a graph of f(x) plotted in logarithmic axis vs. the logarithm of x, so that 
the plot forms a straight line with slope b. Formally, the slope b is expressed by the log-log 
derivative (LLD): 

𝑓#(𝑥) ≔
d(ln 𝑓(𝑥))

d (ln 𝑥) 
=

𝑥𝑓 ′(𝑥)

𝑓(𝑥)
 (29) 

If the power law holds for the entire domain, then 𝑓#(𝑥) = 𝑏 = constant. Most often, however, 
𝑓#(𝑥) is not constant. Of particular interest are the asymptotic values for 𝑥 → 0 and ∞, 
symbolically f #(0) and f #(∞), which define two asymptotic power laws. 
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Definition and importance of entropy 
Historically entropy was introduced in thermodynamics but later it was given a rigorous definition 
within probability theory (owing to Boltzmann, Gibbs and Shannon). Thermodynamic and 
probabilistic entropy are essentially the same thing (Koutsoyiannis, 2013, 2014a; but others have 
different opinion). 
Entropy is a dimensionless measure of uncertainty defined as follows: 

For a discrete random variable z with probability mass function Pj ≔ P{z = zj} 

Φ[z] := E[–ln P(z)] = – ∑ P
j
ln P

j

w
j = 1  (30) 

For a continuous random variable z with probability density function f(z):  

Φ[z] := E [– ln
f(z)

m(z)
]  = – ∫ ln

f(z)

m(z)
f(z)dz

∞

-∞
  (31) 

where m(z) is the density of a background measure (usually m(z) = 1[z–1]). 

Entropy acquires its importance from the principle of maximum entropy (Jaynes, 1957), which 
postulates that the entropy of a random variable should be at maximum, under some conditions, 
formulated as constraints, which incorporate the information that is given about this variable. 

Its physical counterpart, the tendency of entropy to become maximal (2nd Law of 
thermodynamics) is the driving force of natural change. 
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Entropy production in stochastic processes 
In a stochastic process the change of uncertainty in time can be quantified by the entropy 
production, i.e. the time derivative (Koutsoyiannis, 2011): 

Φ΄[X(t)] := dΦ[X(t)]/dt (32) 

A more convenient (and dimensionless) measure is the entropy production in logarithmic time 
(EPLT): 

φ(t) ≡ φ[X(t)] := Φ΄[X(t)] t ≡ dΦ[X(t)] / d(lnt) (33) 

For a Gaussian process, the entropy depends on its variance Γ(t) only and is given as (cf. Papoulis, 
1991): 

Φ[X(t)] = (1/2) ln(2πe Γ(t)/m2) (34) 

The EPLT of a Gaussian process is thus easily shown to be: 

φ(t) = Γ΄(t) t / 2Γ(t) = 1+ γ’(t) t / 2γ(t) = ½ Γ#(t) = 1 + ½ γ#(t) (35) 

That is, EPLT is visualized and estimated by the slope of a log-log plot of the climacogram.  
When the past and the present are observed, instead of the unconditional variance γ(t) we should 
use a variance γC(t) conditional on the known past and present. This turns out to equal a 
differenced climacogram (Koutsoyiannis, 2017):  

𝛾C(𝑘) = 𝜀(𝛾(𝑘) – 𝛾(2𝑘)), 𝜀 =
1

1 − 2𝛾#(∞)
 (36) 

The conditional entropy production in logarithmic time (CEPLT) becomes: 

𝜑𝐶(𝑡) = 1 + ½𝛾𝐶
#(𝑡) (37) 
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Examples of stochastic processes and their entropy production 

 
Markov process, maximizing entropy production for small times (t → 0) but minimizing it for large times (t → ∞): 

𝑐(ℎ) = 𝜆e−ℎ/𝛼 , 𝛾(𝑘) =
2𝜆

𝑘 𝛼⁄
(1 −

1−e−𝑘 𝛼⁄

𝑘 𝛼⁄
)  (38) 

Hurst-Kolmogorov (HK) process, maximizing entropy production for large times (t → ∞) but minimizing it for 
small times (t → 0): 

𝛾(𝑘) = 𝜆(𝛼/𝑘)2−2𝛨 (39) 
Filtered Hurst-Kolmogorov process with a generalized Cauchy-type climacogram (FHK-C), maximizing entropy 
production for large (t → ∞) and small times (t → 0):  

𝛾(𝑘) = 𝜆(1 + (𝑘 𝛼⁄ )2𝑀)
𝐻−1

𝑀  (40) 

The parameters a and λ are scale parameters. The parameter H is the Hurst parameter and   determines the global 
properties of the process with the notable property 𝐻 = 𝜑(∞) = 𝜑C(∞). The parameter M (for Mandelbrot) is the 
fractal parameter. Both M and H are dimensionless parameters varying in the interval (0, 1] with M < ½ or > ½ 
indicating a rough or a smooth process, respectively, and with H < ½ or > ½ indicating an antipersistent or a 
persistent process, respectively (see also the graph in p. 12). 
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All three processes have same: 
variance γ(1) = 1;  

autocovariance for lag 1, 𝑐1
(1)

 = 0.5;  
fractal parameter M = 0.5 

The HK and FHK processes have Hurst 
parameter H = 0.7925. 
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The climacospectrum 
By slightly modifying the differenced climacogram (in order to make it integrable in (0, ∞)), i.e. by 
multiplying with k, we can obtain an additional tool, which resembles the power spectrum and thus 
is referred to as the climacospectrum: 

𝜁(𝑘) ≔
𝑘(𝛾(𝑘)−𝛾(2𝑘))

ln 2
  (41) 

The climacospectrum is also written in an alternative manner in terms of frequency w = 1/k: 

𝜁(𝑤) ≔ 𝜁(1/𝑤) =
𝛾(1/𝑤)−𝛾(2/𝑤)

(ln 2)𝑤
  (42) 

The inverse transformation, i.e., that giving the climacogram 𝛾(𝑘) once the climacospectrum 𝜁(𝑘) is 
known, is  

𝛾(𝑘) = ln 2 ∑
𝜁(2𝑖𝑘)

2𝑖𝑘

∞
𝑖=0 = 𝛾(0) − ln 2 ∑

𝜁(2−𝑖𝑘)

2−𝑖𝑘

∞
𝑖=1   (43) 

As also happens with the power spectrum, the entire area under the curve 𝜁(𝑤) is precisely equal 
to the variance γ(0) of the instantaneous process. The climacospectrum has also the same 
asymptotic behaviour with the power spectrum, i.e.,  

𝜁#(0) = −𝜁#(∞) = 𝑠#(0), 𝜁#(∞) = −𝜁#(0) = 𝑠#(∞) (44) 

This property holds almost always, with the exception of the cases where 𝜁#(0) is a specific integer 
(𝜁#(∞) = −1 or 𝜁#(0) = 3).  

The climacospectrum is also connected with the CEPLT trough: 

𝜑𝐶(𝑘) = ½ (1 + 𝜁#(𝑘)) = ½ (1 − 𝜁#(1/𝑘)) (45) 
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The climacogram and the climacogram-based metrics 
compared to more standard metrics 
 In stochastic processes, almost all classical statistical estimators are biased and uncertain; in 

processes with LTP bias and uncertainty are very high. 

 In the climacogram (variance), bias and uncertainty are easy to control as they can be calculated 
analytically (and a priori known; see Koutsoyiannis, 2016).  

 The autocovariance function is the second derivative of the climacogram.  

o Estimation of the second derivative from data is too uncertain and makes a very rough 
graph.  

o Estimation of autocovariance is too biased in processes with LTP. 

 The power spectrum is the Fourier transform of the autocovariance and entails an even rougher 
shape and more uncertain estimation than in the autocovariance (see also Dimitriadis and 
Koutsoyiannis, 2015). 

 An additional advantage of the climacogram is its close relationship with entropy production. 

 A further advantage is its expandability to high-order moments (see part 3 of the Lecture Notes). 
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Asymptotic scaling of second order properties 
EPLT and the CEPLT are related to LLDs (slopes of log-log plots) of second order tools such as 
climacogram, climacospectrum, power spectrum, etc. With a few exceptions, these slopes are 
nonzero asymptotically, hence entailing asymptotic scaling or asymptotic power laws with the 
LLDs being the scaling exponents. It is intuitive to expect that an emerging asymptotic scaling law 
would provide a good approximation of the true law for a range of scales.  

If the scaling law was appropriate for the entire range of scales, then we would have a simple 
scaling law. Such simple scaling sounds attractive from a mathematical point of view, but it turns 
out to be impossible in physical processes (Koutsoyiannis, 2017; see also the graph in p. 12).  

It is thus physically more realistic to expect two different types of asymptotic scaling laws, one in 
each of the ends of the continuum of scales. The respective scaling exponents are the following: 

Local scaling or smoothness or fractal behaviour, when k → 0 or w → ∞:   

𝛾C
#(0) = 𝜉#(0) =  𝑣#(0) = 𝜁#(0) − 1 =  2𝜑𝐶(0) − 2 = −𝑠#(∞) − 1 =  2𝑀 (46) 

Global scaling or persistence or Hurst- Kolmogorov behaviour, when k → ∞ or w → 0:    

𝛾C
#(∞) = 𝛾#(∞) = 𝑐#(∞) = 𝜁#(∞) − 1 =  2𝜑𝐶(∞) − 2 = −𝑠#(0) − 1 = 2𝐻 − 2 (47) 

Here, the emergence of scaling has been related to maximum entropy considerations, and this may 
provide the theoretical background in modelling complex natural processes by such scaling laws. 
Generally, scaling laws are a mathematical necessity and could be constructed for virtually any 
continuous function defined in (0, ∞). In other words, there is no magic in power laws, except that 
they are, logically and mathematically, a necessity.  
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Bounds of scaling 
Bounds of asymptotic values of 
CEPLT, 𝜑𝐶(0) and 𝜑𝐶(∞), and 
corresponding bounds of the log-
log slopes of power spectrum 
and climacospectrum.  
The “green square” represents 
the admissible region (note that 
s# can, by exception, take on 
values out of the square when 
φC(0) = 2 or φC(∞) = 0). The 

reasons why a process out of 
the square would be impossible 
or inconsistent are also marked. 
The lines 𝜑𝐶(0) = 3/2 and 
𝜑𝐶(∞) = 1/2 define “neutrality” 
(which is represented by a 
Markov process) and support 
the classification of stochastic 
processes into the indicated 
four categories (smaller 
squares within the “green 
square”). 
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Stochastic simulation 
The so-called symmetric moving average (SMA) method (Koutsoyiannis, 2000) can directly 
generate time series with any arbitrary autocorrelation function provided that it is mathematically 
feasible. It consists of the following generation equation which transforms white noise 𝑣𝑖 averaged 

in discrete time (and not necessarily Gaussian), to a process 𝑥𝑖 with the specified autocorrelation: 

𝑥𝑖 = ∑ 𝑎|𝑙|𝑣𝑖+𝑙
𝑞
𝑙=−𝑞   (48) 

In theory, the limit q should be ∞ but in practice a truncation to a specific finite q is made (see 
Koutsoyiannis, 2016, for methods to handle the truncation error).  

To calculate the series of coefficients 𝑎𝑙  we first determine their Fourier transform 𝑠d
𝑎(𝜔) from the 

power spectrum of the process, i.e., 

𝑠d
𝑎(𝜔) = √2𝑠d(𝜔) (49) 

and then we inverse the transform and get the coefficients 𝑎𝑙 . Note that the coefficients are internal 
constants of the model, not model parameters. 

For the HK process with H > 0.5, there is an explicit analytical solution (Koutsoyiannis, 2016): 

𝑎𝑙 = √
2Γ(2𝛨+1) sin(π𝐻)𝛾(𝛥)

Γ2(𝛨+3/2) (1+sin(π𝐻))
(

|𝑙+1|𝐻+0.5+|𝑙−1|𝐻+0.5

2
− |𝑙|𝐻+0.5)  (50) 

By properly calculating the high-order moments of 𝑣𝑖 , we can preserve any moment of 𝑥𝑖 that we 

wish (Dimitriadis and Koutsoyiannis, 2018). Thus, the scheme can handle any marginal distribution 
of 𝑥𝑖 . 
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Some results of simulations 

 

  
The first fifty terms of times series at time scales k = 1 and 20 of time series produced by various models, along 
with “stamps” of the models (green lines plotted with respect to the secondary axes) represented by the CEPLT, 
φC(k). In all cases the discretization time scale is D = 1, the characteristic time scale a = 10, and the characteristic 

variance scale λ is chosen so that for time scale D, γ(D) = 1. The mean is 0 in all cases and the marginal distribution 
is normal (see details in Koutsoyiannis, 2017).  
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(a) 

(a) Markov;  

(b) FHK, with CEPLT 
close to the 
absolute maximum 
(H = M = 0.97); 

(c) FHK, close to 
“red noise”, i.e., 
with CEPLT close to 
the absolute 
maximum for large 
scales (H = 0.99) and 
close to the absolute 
minimum for small 
scales (M = 0.01);  

(d) process with the 
blackbody 
spectrum, i.e. with 
CEPLT equal to the 
absolute minimum 
(0) for large scales 
and to the absolute 
maximum (2) for 
small scales. 

(a) (b) 

(c) (d) 
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