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The general framework: Seeking theoretical consistency in 
analysis of geophysical data (Using stochastics) 
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Why stochastics in geophysics and hydrofractals? 
 Geophysics is the branch of physics that relies most decisively on data. 

 Geophysical data are numbers but to treat them we need to use stochastics, not arithmetic. 

 Stochastics is the mathematics of random variables and stochastic processes. 

 These are abstract mathematical objects, whose properties distinguish them from typical 
variables that take on numerical values. 

 It is important to understand these properties before making calculations with data, otherwise 
the results may be meaningless (not even wrong). 

 The numerical data allow us to estimate (not to determine precisely) expectations.  

 Expectations are defined as integrals of products of functions. For a continuous random variable 
x with probability density function f(x), the expectation of an arbitrary function g of x (where g(x) 

is a random variable per se), the expectation of g(x) is defined as 𝜃 ≔ E[𝑔(𝑥)] ≔ ∫ 𝑔(𝑥)𝑓(𝑥)d𝑥
∞

−∞
. 

 Central among expectations are the moments, in which g(x) is a power of x (or a linear 
expression of x). 

 To estimate true parameters 𝜃 from data we need estimators; the estimator 𝜃 of θ is a random 

variable depending on the stochastic process of interest x(t) and is a model per se, not a number. 

 The estimate 𝜃 is a number, calculated by using the observations and the estimator. 

 Characteristic statistics of the estimator 𝜃 are its bias, E[𝜃] − 𝜃, and its variance var[𝜃]. When 

E[𝜃] = 𝜃 the estimator is called unbiased.  

 Estimation is made possible thanks to two concepts of stochastics: stationarity and ergodicity.  
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Memorable moments in the history of stochastics 

    

Ludwig Boltzmann 

(1844 –1906, Universities of 
Graz and Vienna, Austria, and 
Munich, Germany) 

George D. Birkhoff  

(1884 – 1944; 
Princeton, Harvard, 
USA)  

Aleksandr Khinchin 

(1894 – 1959; Moscow 
State University, 
Russia) 

Andrey N. Kolmogorov  

(1903 – 1987; Moscow State 
University, Russia) 

1877 Explanation of the 
concept of entropy in 
probability theoretic context.  

1884/85 Introduction of the 
notion of ergodic* systems 
which however he called 
“isodic”  

* The term is etymologized from 
Greek words but which ones 
exactly is uncertain (options: (a) 
έργον + οδός; (b) έργον + είδος; 
(c) εργώδης; see Mathieu, 1988). 

1931 Discovery of 
the ergodic 
(Birkhoff–
Khinchin) theorem 

1933 Purely measure-
theoretic proof of the 
ergodic (Birkhoff–
Khinchin) theorem 

1934 Definition of 
stationary stochastic 
processes and 
probabilistic setting of 
the Wiener-Khinchin 
theorem relating 
autocovariance and 
power spectrum  

1931 Introduction of the term 
stationary to describe a 
probability density function that is 
unchanged in time 

1933 Definition of the concepts of 
probability & random variable 

1937-1938 Probabilistic 
exposition of the ergodic 
(Birkhoff–Khinchin) theorem 
and stationarity  

1947 Definition of wide sense 
stationarity 
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Stationarity and nonstationarity 
Central to the notion of a stochastic process are the concepts of stationarity and 
nonstationarity, two widely misunderstood and broadly misused concepts 
(Koutsoyiannis and Montanari, 2015); their definitions apply only to stochastic 
processes (e.g., time series cannot be stationary, nor nonstationary).  

Reminder of definitions 

Following Kolmogorov (1931, 1938) and Khinchin (1934), a process is (strict-
sense) stationary if its statistical properties are invariant to a shift of time 
origin, i.e. the processes x(t) and x(t΄) have the same statistics for any t and t΄ (see 
further details in Papoulis, 1991; see also further explanations in Koutsoyiannis, 
2006, 2011b and Koutsoyiannis and Montanari, 2015).  

Following Kolmogorov (1947), a stochastic process is wide-sense stationary if its 
mean is constant and its autocovariance depends on time difference only, i.e.: 

 E[x(t)] = μ = constant,    Ε[(x(t) – μ) (x(t + τ) – μ)] = c(τ)  (1) 

Conversely, a process is nonstationary if some of its statistics are changing through 
time and their change is described as a deterministic function of time. 
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Ergodicity 
Stationarity is also related to ergodicity, which in turn is a prerequisite to make inference from 
data, that is, induction.  

By definition (e.g., Mackey, 1992, p. 48; Lasota and Mackey, 1994, p. 59), a transformation of a 
dynamical system is ergodic if all its invariant sets are trivial (have zero probability). In 
other words, in an ergodic transformation starting from any point, a trajectory will visit all other 
points, without being trapped to a certain subset. (In contrast, in non-ergodic transformations there 
are invariant subsets, such that a trajectory starting from within a subset will never depart from it). 

The ergodic theorem (Birkhoff, 1931; Khinchin, 1933; see also Mackey, 1992, p. 54) allows 
redefining ergodicity within the stochastic processes domain (Papoulis 1991 p. 427; 
Koutsoyiannis 2010) in the following manner: A stochastic process x(t) is ergodic if the time 
average of any (integrable) function g(x(t)), as time tends to infinity, equals the true (ensemble) 

expectation E[g(x(t))], i.e., lim𝑇→∞
1

𝑇
∫ 𝑔 (𝑥(𝑡)) 𝑑𝑡 = E[𝑔(𝑥(𝑡))]

𝑇

0
. 

If the system that is modelled in a stochastic framework has deterministic dynamics (meaning 
that a system input will give a single system response, as happens for example in most hydrological 
models) then a theorem applies (Mackey 1992, p. 52), according to which a dynamical system has a 
stationary probability density if and only if it is ergodic. Therefore, a stationary system is also 
ergodic and vice versa, and a nonstationary system is also non-ergodic and vice versa.  

If the system dynamics is stochastic (a single input could result in multiple outputs), then 
ergodicity and stationarity do not necessarily coincide. However, recalling that a stochastic 
process is a model and not part of the real world, we can always conveniently device a stochastic 
process that is ergodic (see example in Koutsoyiannis and Montanari, 2015).  
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Both stationarity and ergodicity are immortal!* 
From a practical point of view ergodicity can always be assumed when there is stationarity. 
Without stationarity and ergodicity inference from data would not be possible. Ironically, several 
studies use time series data to estimate statistical properties, as if the process were ergodic, while 
at the same time what they (cursorily) estimate may falsify the ergodicity hypothesis. 

Misuse example 1: By analysing the time series xτ (where τ denotes time), I concluded that it is 
nonstationary and I identified an increasing trend with slope b.  

Corrected example 1: I analysed the time series xi based on the hypothesis that the stochastic 
process xτ – bτ is stationary and ergodic, which enabled the estimation of the slope b. 

Misuse example 2: From the time series xτ, I calculated the power spectrum and found that its 
slope for low frequencies is steeper than –1, which means that the process is nonstationary.  

Possible correction (a) of example 2: I cursorily interpreted a slope steeper than –1 in the power 
spectrum as if indicated nonstationary, while a simple explanation would be that the frequencies on 
which my data enable calculation of the power spectrum values are too high.  

Possible correction (b) of example 2: I cursorily applied the concept of the power spectrum of a 
stationary stochastic process, forgetting that the empirical power spectrum of a stationary 
stochastic process is a (nonstationary) stochastic process per se. The high variability of the latter 
(or the inconsistent numerical algorithm I used) resulted in a slope for low frequencies steeper 
than –1, which is absurd. Such a slope would suggest a non-ergodic process while my calculations 
were based on the hypothesis of a stationary and ergodic process.  

Possible correction (c) of example 2: I cursorily applied the concept of the power spectrum of a 
stationary stochastic process using a time series which is realization of a nonstationary stochastic 
process and I found an inconsistent result; therefore, I will repeat the calculations recognizing that 
the power spectrum of a nonstationary stochastic process is a function of two variables, frequency 
and “absolute” time.  *Montanari and Koutsoyiannis (2014) 
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Moments of what order? 
The classical definitions of raw and central moments of order p are:  

𝜇𝑝
′ ≔ E[𝑥𝑝], 𝜇𝑝 ≔ E[(𝑥 − 𝜇)

𝑝
]  (2) 

respectively, where 𝜇 ≔ 𝜇1
′ = E[𝑥] is the mean of the random variable x. Their standard 

estimators from a sample xi, i = 1, …, n, are  

�̂�𝑝
′ =

1

𝑛
∑ 𝑥𝑖

𝑝𝑛
𝑖=1 , �̂�𝑝 =

𝑏(𝑛,𝑝)

𝑛
∑ (𝑥𝑖 − �̂�)

𝑝𝑛
𝑖=1   (3) 

where a(n, p) is a bias correction factor (e.g. for the variance μ2 =: σ2, b(n, 2) = n/(n – 1)).  

The estimators of the raw moments �̂�𝑝
′  (as well as central moments 𝜇𝑝 if μ is a priori 

known) are in theory unbiased, but it is practically impossible to use them in estimation 
for p > 2. 

cf. Lombardo et al. (2014), “Just two moments”.  

The ergodic theorem enables, in theory, estimation of moments from data as n → ∞, but 
what happens for finite n? 
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Moments of what order?: Illustration of slow convergence 

  

Empirical central moments of order p from a 
single simulation of non-Gaussian white 
noise with lognormal distribution LN(0,1), 
standardized by the corresponding theoreti-
cal moment, versus the simulation length. 

The limit as the simulation length → ∞ is 1, 
but for relatively high p it deviates from the 
limit by many orders of magnitude and the 
convergence is slow. 

Same as in the left panel but from a single 
simulation of an exponentiated Hurst-Kolmogorov 
process with Hurst parameter H = 0.9; the marginal 
distribution is again with lognormal LN(0,1). 

The deviation of the empirical curves from the limit 
(i.e. 1) is even greater than in the white noise.  

The shape of the curves of empirical moments is 
similar to that of the maximum value as a function 
of simulation length. 

The Hurst-Kolmogorov process and the Hurst parameter will be explained soon. 
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Moments of what order?: The reason of slow convergence  
What is the result of raising to a power and adding, i.e. ∑ 𝑥𝑖

𝑝𝑛
𝑖=1  – like in estimating 

moments? 

Linear, p = 1 Pythagorean, p = 2 Cubic, p = 3 High order, p = 8 

3 + 4 = 7 32 + 42 = 52 33 + 43 = 4.53 38 + 48 ≈ 48 

3 + 4 +12 = 19 32 + 42 + 122 = 132 33 + 43 + 123 = 12.23 38 + 48 + 128 ≈ 128 

Symbolically, for relatively large p the estimate of 𝜇𝑝
′  is*: 

�̂�𝑝
′ =

1

𝑛
∑ 𝑥𝑖

𝑝

𝑛

𝑖=1

≈
1

𝑛
( max

1≤ 𝑖≤𝑛
(𝑥𝑖))

𝑝

 (4) 

Thus, for an unbounded variable x and for large p, we can conclude that �̂�𝑝
′  is not an 

estimator of 𝝁𝒑
′  but one of an extreme quantity, i.e., the nth order statistic raised to 

power p.  

Thus, unless p is very small, 𝝁𝒑
′  is not a knowable quantity: we cannot infer its value 

from a sample. This is the case even if n is very large! 

Also, the various �̂�𝑝
′  are not independent to each other as they only differ on the power 

to which the maximum value is raised. 

                                           
* This is precise if xi are positive; see also p. 27. Note that for large p the term (1/n) in the rightmost part of the equation 
could be omitted with a negligible error. 
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Moments of how many random variables? 
In stochastic processes we are interested not only about marginal moments but also joint ones. 

However, the estimation problems become more complicated in joint moments. 

Ideally, moments of a single variable are preferable, but how can we describe dependence based 
on one variable? 

Autocovariance and its equivalent standardized form, i.e., autocorrelation, have been the most 
customary tools to characterize dependence, but can they be described using a single variable? 

The variance of the process averaged at specified time scale k provides a mathematically 
equivalent but statistically more advantageous means to this aim.  

Consider the second-order dependence of any two random variables 𝑥1 and 𝑥2 with means 𝜇𝑖  and 

standard deviations 𝜎𝑖 , i = 1, 2. The variance of the average of the two variables contains the same 
information as the covariance thereof. We note, though, that if the variables denote different 
physical quantities, it is necessary to make them compatible before taking the average, which can 
be made by standardizing with their standard deviations. In other words, we define: 

𝜌12 ≔ var [
1

2
(

𝑥1

𝜎1
+

𝑥2

𝜎2
)] (5) 

which is related to the classical (Pearson) correlation coefficient by:  

𝜌12 =
1

2
+

1

2
cov [

𝑥1

𝜎1
,
𝑥2

𝜎2
] =  

1

2
+

1

2
𝑟12, 𝑟12 ∶=

Cov[𝑥1, 𝑥2]

𝜎1𝜎2
= cov [

𝑥1

𝜎1
,
𝑥2

𝜎2
] (6) 

where −1 ≤ 𝑟12 ≤ 1, while 0 ≤ 𝜌12 ≤ 1.  
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The notion of the climacogram 
Unlike 𝑟12, the notion of ρ12 could be readily expanded to many variables. Assuming that the 
variables 𝑥1, … , 𝑥𝜅 are identically distributed (and thus have common variance σ2, so that 

standardization is no longer needed before taking the variance), we define the so-called 
climacogram:  

𝛾𝜅 ≔ var[𝑋𝜅/𝜅], 𝑋𝜅 ≔ 𝑥1 + ⋯ + 𝑥𝜅 (7) 

so that 𝑋𝜅/𝜅 is the average, satisfying 0 ≤ 𝛾𝜅 ≤ 𝜎2. 

The climacogram is readily adapted to a continuous-time stochastic process 𝑥(𝑡):  

𝛾(𝑘) ≔  var[𝑋(𝑘)/𝑘], 𝑋(𝑘) ≔ ∫ 𝑥(𝑡)d𝑡
𝑘

0

 (8) 

It can also be expanded to describe the dependence of different processes, replacing the concept of 
cross-covariance of two stationary processes 𝑥(𝑡) and 𝑦(𝑡) by the cross-climacogram:  

𝛾𝑥𝑦
𝜂 (𝑘) ≔ 𝜎𝑥𝜎𝑦 var [

𝑋(𝑘)

𝑘𝜎𝑥
+

𝑌((𝜂 + 1)𝑘) − 𝑌(𝜂𝑘)

𝑘𝜎𝑦
] , 𝑋(𝑘) ≔ ∫ 𝑥(𝑡)d𝑡

𝑘

0

, 𝑌(𝑘) ≔ ∫ 𝑦(𝑡)d𝑡
𝑘

0

 (9) 

where η is time lag.  

Note: 𝑥(𝑘) and 𝑥𝜅 are assumed to be stationary stochastic processes, which entails that the 

cumulative processes 𝑋(𝑘) and 𝑋𝜅 are nonstationary. 
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Single-variable vs. multivariate characterization of dependence 

  

Simulation results for autocovariance and 
climacogram (standardized by their value at lag 1 
and scale 1, respectively) for sample size n = 100 for 
a Markov process with lag-one correlation r = 0.5 

As in left panel but for a Hurst-Kolmogorov 
process with Hurst parameter H = 0.8 
 
 

The sample estimates of autocovariance/autocorrelation have higher bias and higher variability 
than the climacogram estimates. Furthermore, the climacogram bias and uncertainty are easy to 
control as they can be calculated analytically (and be known a priori; see Koutsoyiannis, 2016). 

In single simulations the sample estimates of autocovariance/autocorrelation has a rougher and 
more scattered shape than that of the climacogram estimates. 

As will be seen soon, additional advantages of the climacogram are (a) its close relationship with 
entropy production and (b) its expandability to high-order moments. 
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Mathematical equivalence of climacogram, autocovariance 
and power spectrum 
 

Related characteristics Direct Relationship Inverse relationship Ref. 

Climacogram 𝛾(𝑘) ↔ 
Autocovariance 𝑐(ℎ)  𝛾(𝑘) = 2 ∫ (1 − 𝜒)𝑐(𝜒𝑘)d𝜒 

1

0
  𝑐(ℎ) =

1

2
 
d2(ℎ2𝛾(ℎ))

dℎ2   (10) 

Power spectrum 𝑠(𝑤) ↔ 
Autocovariance 𝑐(ℎ) 

𝑠(𝑤) ≔ 4 ∫ 𝑐(ℎ) cos(2π𝑤ℎ) dℎ
∞

0
  𝑐(ℎ) = ∫ 𝑠(𝑤) cos(2π𝑤ℎ) d𝑤

∞

0
  (11) 

Climacogram 𝛾(𝑘) ↔ 
Power spectrum 𝑠(𝑤) 

𝛾(𝑘) = ∫ 𝑠(𝑤) sinc2(π𝑤𝑘) d𝑤
∞

0
  

𝑠(𝑤) ≔

2 ∫
d2(ℎ2𝛾(ℎ))

dℎ2 cos(2π𝑤ℎ) dℎ
∞

0
  

(12) 

The autocovariance function is the second derivative of the climacogram. The fact that the 
estimation of the second derivative from data is too uncertain explains why the shape of the 
empirical autocorrelation function is very rough.  

The power spectrum is the Fourier transform of the autocovariance and entails an even 
rougher shape and more uncertain estimation than in the autocovariance (Dimitriadis and 
Koutsoyiannis, 2015). 

See more advantages of the climacogram over autocovariance and power spectrum in Dimitriadis 
and Koutsoyiannis (2015) and Koutsoyiannis (2016).  
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Asymptotic power laws and the log-log derivative 
It is quite common that functions f(x) defined in [0, ∞), whose limits at 0 and ∞ exist, are 
associated with asymptotic power laws as 𝑥 → 0 and ∞ (Koutsoyiannis, 2014b).  

Power laws are functions of the form 

𝑓(𝑥)  ∝  𝑥𝑏  (13) 

A power law is visualized in a graph of f(x) plotted in logarithmic axis vs. the logarithm 
of x, so that the plot forms a straight line with slope b. Formally, the slope b is expressed 
by the log-log derivative (LLD): 

𝑓#(𝑥) ≔
d(ln 𝑓(𝑥))

d (ln 𝑥) 
=

𝑥𝑓 ′(𝑥)

𝑓(𝑥)
 (14) 

If the power law holds for the entire domain, then 𝑓#(𝑥) = 𝑏 = constant. Most often, 
however, 𝑓#(𝑥) is not constant. Of particular interest are the asymptotic values for 
𝑥 → 0 and ∞, symbolically f #(0) and f #(∞), which define two asymptotic power laws. 
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Definition and importance of entropy 
Historically entropy was introduced in thermodynamics but later it was given a rigorous 
definition within probability theory (owing to Boltzmann, Gibbs and Shannon). 
Thermodynamic and probabilistic entropy are essentially the same thing 
(Koutsoyiannis, 2013, 2014a; but others have different opinion). 

Entropy is a dimensionless measure of uncertainty defined as follows: 

For a discrete random variable z with probability mass function Pj ≔ P{z = zj}: 

Φ[z] := E[–ln P(z)] = – ∑ P
j
ln P

j

w
j = 1  (15) 

For a continuous random variable z with probability density function f(z):  

Φ[z] := E [– ln
f(z)

m(z)
]  = – ∫ ln

f(z)

m(z)
f(z)dz

∞

-∞
  (16) 

where m(z) is the density of a background measure (usually m(z) = m = 1[z–1]). 

Entropy acquires its importance from the principle of maximum entropy (Jaynes, 
1957), which postulates that the entropy of a random variable should be at maximum, 
under some conditions, formulated as constraints, which incorporate all 
knowledge that is deduced (deterministically) about this variable. 

Its physical counterpart, the tendency of entropy to become maximal (2nd Law of 
thermodynamics) is the driving force of natural change. 
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Entropy production in stochastic processes 
In a stochastic process the change of uncertainty in time can be quantified by the entropy 
production, i.e. the time derivative (Koutsoyiannis, 2011a): 

Φ΄[X(t)] := dΦ[X(t)]/dt (17) 

A more convenient (and dimensionless) measure is the entropy production in logarithmic time 
(EPLT): 

φ(t) ≡ φ[X(t)] := Φ΄[X(t)] t ≡ dΦ[X(t)] / d(lnt) (18) 

For a Gaussian random variable, the entropy depends on its variance only (Papoulis, 1991). Hence, 
for a Gaussian process the entropy will depend on the climacogram γ(t) only: 

Φ[X(t)] = (1/2) ln(2πe t2 γ(t)/m2) (19) 

The EPLT of a Gaussian process is thus easily shown to be: 

φ(t) = 1+ γ’(t) t / 2γ(t) = 1 + ½ γ#(t) (20) 

That is, EPLT is visualized and estimated by the slope of a log-log plot of the climacogram.  

When the past and the present are observed, instead of the unconditional variance γ(t), we should 
use a variance γC(t) conditional on the known past and present. This turns out to equal a 
differenced climacogram (Koutsoyiannis, 2017):  

𝛾C(𝑘) = 𝜀(𝛾(𝑘) – 𝛾(2𝑘)), 𝜀 =
1

1 − 2𝛾#(∞)
 (21) 

The conditional entropy production in logarithmic time (CEPLT) becomes: 

𝜑𝐶(𝑡) = 1 + ½𝛾𝐶
#(𝑡) (22) 
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The climacospectrum 
By slightly modifying the differenced climacogram (in order to make it integrable in (0, ∞)), i.e., by 
multiplying it with k, we can obtain an additional tool, which resembles the power spectrum and 
thus is referred to as the climacospectrum (Koutsoyiannis, 2017): 

𝜁(𝑘) ≔
𝑘(𝛾(𝑘)−𝛾(2𝑘))

ln 2
  (23) 

The climacospectrum is also written in an alternative manner in terms of frequency w = 1/k: 

𝜁(𝑤) ≔ 𝜁(1/𝑤) =
𝛾(1/𝑤)−𝛾(2/𝑤)

(ln 2)𝑤
  (24) 

The inverse transformation, i.e., that giving the climacogram 𝛾(𝑘) once the climacospectrum 𝜁(𝑘) is 
known, is: 

𝛾(𝑘) = ln 2 ∑
𝜁(2𝑖𝑘)

2𝑖𝑘

∞
𝑖=0 = 𝛾(0) − ln 2 ∑

𝜁(2−𝑖𝑘)

2−𝑖𝑘

∞
𝑖=1   (25) 

As also happens with the power spectrum, the entire area under the curve 𝜁(𝑤) is precisely equal 
to the variance γ(0) of the instantaneous process. The climacospectrum has also the same 
asymptotic behaviour with the power spectrum, i.e.,  

𝜁#(0) = −𝜁#(∞) = 𝑠#(0), 𝜁#(∞) = −𝜁#(0) = 𝑠#(∞) (26) 

This property holds almost always, with the exception of the cases where 𝜁#(0) is a specific integer 
(𝜁#(∞) = −1 or 𝜁#(0) = 3).  

The climacospectrum is also connected with the CEPLT trough: 

𝜑𝐶(𝑘) = ½ (1 + 𝜁#(𝑘)) = ½ (1 − 𝜁#(1/𝑘)) (27) 



  D. Koutsoyiannis, Unknowable and knowable moments   18 

Examples of stochastic processes and their entropy production 

 
1. A Markov process maximizes entropy production for small times (t→0) but minimizes it for large times (t→∞): 

𝑐(ℎ) = 𝜆e−ℎ/𝛼 , 𝛾(𝑘) =
2𝜆

𝑘 𝛼⁄
(1 −

1−e−𝑘 𝛼⁄

𝑘 𝛼⁄
)  (28) 

2. A Hurst-Kolmogorov (HK) process maximizes entropy production for large times (t → ∞) but minimizes it for 
small times (t → 0): 

𝛾(𝑘) = 𝜆(𝛼/𝑘)2−2𝛨 (29) 
3. A Filtered Hurst-Kolmogorov (FHK) process with a generalized Cauchy-type climacogram (FHK-C) 
maximizes entropy production both for large (t → ∞) and small times (t → 0):  

𝛾(𝑘) = 𝜆(1 + (𝑘 𝛼⁄ )2𝑀)
𝐻−1

𝑀  (30) 

The parameters a and λ are scale parameters. The parameter H is the Hurst parameter and determines the global 
properties of the process with the notable property 𝐻 = 𝜑(∞) = 𝜑C(∞). The parameter M (for Mandelbrot) is the 
fractal parameter. Both M and H are dimensionless parameters varying in the interval (0, 1] with M < ½ or > ½ 
indicating a rough or a smooth process, respectively, and with H < ½ or > ½ indicating an antipersistent or a 
persistent process, respectively (see also the graph in p. 20). 
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All three processes have same: 

variance γ(1) = 1;  

autocovariance for lag 1, 𝑐1
(1)

 = 0.5; 

fractal parameter M = 0.5. 

The HK and FHK processes have Hurst 
parameter H = 0.7925. 
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Asymptotic scaling of second order properties 
EPLT and the CEPLT are related to LLDs (slopes of log-log plots) of second order tools such as 
climacogram, climacospectrum, power spectrum, etc. With a few exceptions, these slopes are 
nonzero asymptotically, hence entailing asymptotic scaling or asymptotic power laws with the 
LLDs being the scaling exponents. It is intuitive to expect that an emerging asymptotic scaling law 
would provide a good approximation of the true law for a range of scales.  

If the scaling law was appropriate for the entire range of scales, then we would have a simple 
scaling law. Such simple scaling sounds attractive from a mathematical point of view, but it turns 
out to be impossible in physical processes (Koutsoyiannis, 2017; see also the graph in p. 20).  

It is thus physically more realistic to expect two different types of asymptotic scaling laws, one in 
each of the ends of the continuum of scales. The respective scaling exponents are the following: 

1. Local scaling or smoothness or fractal behaviour, for small time scales (k → 0) or high 
frequencies (w → ∞):   

𝛾C
#(0) = 𝜉#(0) =  𝑣#(0) = 𝜁#(0) − 1 =  2𝜑𝐶(0) − 2 = −𝑠#(∞) − 1 =  2𝑀 (31) 

2. Global scaling or persistence or Hurst- Kolmogorov behaviour, for k → ∞ or w → 0:    

𝛾C
#(∞) = 𝛾#(∞) = 𝑐#(∞) = 𝜁#(∞) − 1 =  2𝜑𝐶(∞) − 2 = −𝑠#(0) − 1 = 2𝐻 − 2 (32) 

Here, the emergence of scaling has been related to maximum entropy considerations, and this may 
provide the theoretical background in modelling complex natural processes by such scaling laws. 
Generally, scaling laws are a mathematical necessity and could be constructed for virtually any 
continuous function defined in (0, ∞). In other words, there is no magic in power laws, except that 
they are, logically and mathematically, a necessity.  
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Bounds of scaling 

The “green square” represents the 
physically realistic region. 

On its left lies another equal square 
denoting a mathematically feasible 
but physically inconsistent region.  

The reasons why a process out of the 
square would be physically or 
mathematically inconsistent are also 
marked (note that s# can, by 
exception, take on values out of the 
square when φC(0) = 2 or φC(∞) = 0).  

The lines 𝜑𝐶(0) = 3/2 and 
𝜑𝐶(∞) = 1/2 define “neutrality” 
(which is represented by a Markov 
process) and support the 
classification of stochastic processes 
into the indicated four categories 
(smaller squares within the “green 
square”). 
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Bounds of asymptotic values of CEPLT, 𝜑C(0) and 𝜑C(∞), 
and corresponding bounds of the log-log slopes of power 
spectrum and climacospectrum (from Koutsoyiannis, 2017) 
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From unknowable to knowable moments:  
Definition of K-moments 
To derive knowable moments for high orders p, in the expectation defining the pth 
moment we raise (x – μ) to a lower power q < p and for the remaining (p – q) terms we 
replace (x – μ) with (2F(x) – 1), where F(x) is the distribution function. This leads to the 
following definition of the central K-moment of order (p, q): 

𝐾𝑝𝑞 ≔ (𝑝 − 𝑞 + 1)E[(2𝐹(𝑥) − 1)
𝑝−𝑞

(𝑥 − 𝜇)𝑞]  (33) 

Likewise, we define the non-central K-moment of order (p, q) as: 

𝐾𝑝𝑞
′ ≔ (𝑝 − 𝑞 + 1)E [(𝐹(𝑥))

𝑝−𝑞
𝑥𝑞]  (34) 

The quantity (2𝐹(𝑥) − 1)
𝑝−𝑞

 is estimated from a sample without using powers of x. 
Specifically, for the ith element of a sample x(i) of size n, sorted in ascending order, F(x(i)) 
and (2F(x(i)) – 1) are estimated as, 

�̂�(𝑥(𝑖)) =
𝑖−1

𝑛−1
, 2�̂�(𝑥(𝑖)) − 1 =

2𝑖−𝑛+1

𝑛−1
  (35) 

taking values in (0, 1) and (–1, 1), respectively, irrespective of the values x(i). Hence, the 
estimators are:  

�̂�𝑝𝑞
′ =

1

𝑛
∑ (

𝑖−1

𝑛−1
)

𝑝−𝑞
𝑥(𝑖)

𝑞𝑛
𝑖=1 ,    �̂�𝑝𝑞 =

1

𝑛
∑ (

2𝑖−𝑛+1

𝑛−1
)

𝑝−𝑞
(𝑥(𝑖) − �̂�)

𝑞𝑛
𝑖=1   (36) 
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Rationale of the definition  
1. Assuming that the distribution mean is close to the median, so that F(μ) ≈ 1/2 (this is precisely 

true for a symmetric distribution), the quantity whose expectation is taken in (33) is  

𝐴(𝑥) ≔ (2𝐹(𝑥) − 1)
𝑝−𝑞

(𝑥 − 𝜇)𝑞 and its Taylor expansion is 

𝐴(𝑥) = (2𝑓(𝜇))
𝑝−𝑞

(𝑥 − 𝜇)𝑝 + (𝑝 − 𝑞)(2𝑓(𝜇))
𝑝−𝑞−1

𝑓′(𝜇)(𝑥 − 𝜇)𝑝+1 + 𝑂((𝑥 − 𝜇)𝑝+2) (37) 

where f(x) is the probability density function of x. Clearly then, 𝐾𝑝𝑞  depends on 𝜇𝑝 as well as 
classical moments of x of order higher than p. The independence of 𝑲𝒑𝒒from classical 
moments of order < p makes it a good knowable surrogate of the unknowable 𝝁𝒑.  

2. As p becomes large, by virtue of the multiplicative term (𝑝 − 𝑞 + 1) in definition (33), 𝐾𝑝𝑞  shares 

similar asymptotic properties with �̂�𝑝
𝑞/𝑝

 (the estimate, not the true 𝜇𝑝
𝑞/𝑝

). To illustrate this for q = 
1, we consider the variable 𝑧 ≔ max1≤𝑖≤𝑝 𝑥𝑖 and denote f( ) and h( ) the probability densities of 
𝑥𝑖 and 𝑧, respectively. Then (Papoulis, 1990, p. 209): 

ℎ(𝑧) = 𝑝𝑓(𝑧)(𝐹(𝑧))
𝑝−1

 (38) 

and thus, by virtue of (34),  

E[𝑧] = 𝑝E [(𝐹(𝑥))
𝑝−1

𝑥] = 𝐾𝑝1
′  (39) 

On the other hand, for positive x and large p → n, 

𝐸[�̂�𝑝
′ 1/𝑝

] = 𝐸 [(
1

𝑛
∑ 𝑥𝑖

𝑝𝑛
𝑖=1 )

1/𝑝
] ≈ 𝐸 [ max

1≤ 𝑖≤𝑛
𝑥𝑖] = E[𝑧] = 𝐾𝑝1

′    (40) 

Note also that the multiplicative term (𝑝 − 𝑞 + 1) in definition (33) and (34) makes K-moments 
generally increasing functions of p. 
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Asymptotic properties of moment estimates 
Generally, as p becomes large (approaching n), estimates of both classical and K 
moments, central or non-central, become estimates of expressions involving extremes 

such as (max1≤𝑖≤𝑝 𝑥𝑖)
𝑞

 or max1≤𝑖≤𝑝(𝑥𝑖 − 𝜇)𝑞 . For negatively skewed distributions these 

quantities can also involve minimum, instead of maximum quantities.  

For the K-moments this is consistent with their theoretical definition. For the classical 
moments this is an inconsistency.  

A common property of both classical and K moments is that symmetrical distributions 
have all their odd moments equal to zero. 

For unbounded variables both classical and K moments are non-decreasing functions of 
p, separately for odd and even p. 

In geophysical processes we can justifiably assume that the variance μ2 ≡ σ2 ≡ K22 
is finite (an infinite variance would presuppose infinite energy to materialize, which is 
absurd). Hence, high order K-moments Kp2 will be finite too, even if classical moments μp 
diverge to infinity beyond a certain p (i.e., in heavy tailed distributions). 
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Justification of the notion of unknowable vs. knowable 

  

 
Note: Sample sizes are ten times higher than the maximum p shown in graphs, i.e., 1000.  
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Relationship among different moment types 
The classical moments can be recovered as a special case of K-moments: 𝑀𝑝 ≡ 𝐾𝑝𝑝. In 

particular, in uniform distribution, classical and K-moments are proportional to each other: 

𝐾𝑝𝑞
′ ≔ (𝑝 − 𝑞 + 1)𝜇𝑝

′ ,   𝐾𝑝𝑞 ≔ (𝑝 − 𝑞 + 1)𝜇𝑝 (41) 

The probability weighted moments (PWM), defined as 𝛽𝑝 ≔ E [𝑥 (𝐹(𝑥))
𝑝

], are a special case of 

K- moments corresponding to q = 1: 

𝐾𝑝1
′ = 𝑝𝛽𝑝−1  (42) 

The L-moments are defined as 𝜆𝑝 ≔
1

𝑝
∑ (−1)𝑘 (

𝑝 − 1
𝑘

) E[𝑥(𝑝−𝑘):𝑝]
𝑝−1
𝑘=0 , where 𝑥𝑘:𝑝 is the kth order 

statistic in a sample of size p. L-moments are also related to PWM and through them to K-
moments. The relationships for the different types of moments for the first four orders are: 

𝐾11
′ = 𝜇 = 𝛽0, 𝐾11 = 0 

𝐾21
′ = 2𝛽1, 𝐾21 = 2(𝐾21

′ − 𝜇) = 4𝛽1 − 2𝛽0 = 2𝜆2  

𝐾31
′ = 3𝛽2, 𝐾31 = 4(𝐾31

′ − 𝜇) − 6(𝐾21
′ − 𝜇) = 12𝛽2 − 12𝛽1 + 2𝛽0 = 2𝜆3 

𝐾41
′ = 4𝛽3,  𝐾41 = 8(𝐾41

′ − 𝜇) − 16(𝐾31
′ − 𝜇) + 12(𝐾21

′ − 𝜇) 

= 32𝛽3 − 48𝛽2 + 24𝛽1 − 4𝛽0 =
8

5
𝜆4 +

12

5
𝜆2  

(43) 

Both PWM and L-moments are better estimated from samples than classical moments but they are 
all of first order in terms of the random variable of interest. PWM and L-moments are good to 
characterize independent series or to infer the marginal distribution of stochastic processes, 
but they cannot characterize even second order dependence of processes; K-moments can. 
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Characteristics a marginal distribution using K-moments 
Within the framework of K-moments, while respecting the rule of thumb “Just two 
moments” in terms of the power of x, i.e. q = 1 or 2, we can obtain knowable statistical 
characteristics for much higher orders p.  

In this manner, for p > 1 we have two alternative options to define statistical 
characteristics related to moments of the distribution, as in the table below. (Which of 
the two is preferable depends on the statistical behaviour, and in particular, the mean, 
mode and variance, of the estimator.) 

Characteristic Order p Option 1 Option 2 Option 3*  

Location 1 𝐾11
′ = 𝜇 (the classical mean) 

Variability 2 𝐾21 = 2(𝐾21
′ − 𝜇) = 2𝜆2 

𝐾22 = 𝜇2 = 𝜎2  
(the classical variance) 

Skewness 
(dimensionless) 

3 
𝐾31

𝐾21
=

𝜆3

𝜆2
 

𝐾32

𝐾22
 

𝐾32

𝐾22
3/2

 
=

𝜇3

𝜎3
 

Kurtosis 
(dimensionless) 

4 
𝐾41

𝐾21
=

4

5

𝜆4

𝜆2
+

6

5
 

𝐾42

𝐾22
 

𝐾42

𝐾22
2  

=
𝜇3

𝜎4
 

* Option 3 is based on the classical moments and is not recommended for distribution fitting.  
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 Statistical behaviour of variability, skewness and kurtosis indices 
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Illustration of the probability 
density function of:  

(upper) variability index 

(𝐾11/𝐾21, 𝜇/𝜎 ≡ 𝐾11/√𝐾22; 

note that the latter is inverse 
of the common coefficient of 
variation);  

(middle) skewness index 

(𝜇3
1/3

/𝜎, 𝐾31/𝐾21, 

sign(𝐾32)√|𝐾32|/𝐾22);  

(lower) kurtosis index 

(𝜇4
1/4

/𝜎, 𝜆4/𝜆2, 𝐾41/𝐾21, 

√𝐾42/𝐾22).  

The panels of the left column 
correspond to the normal 
distribution Ν(0,1) and those 
of the right column to the 
lognormal distribution 
LN(0, 2). 
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High order moments for stochastic processes:  
the K-climacogram and the K-climacospectrum 
The full description of the third-order, fourth-order, etc., properties of a stochastic 
process requires functions of 2, 3, …, variables.  

For example, the third order properties are expressed in terms of the two-variable 
function: 

c3(h1, h2) := E[(x(t) – μ) (x(t + h1) – μ) (x(t + h2) – μ)] (44) 

Such a description is not parsimonious and its accuracy holds only in theory, 
because sample estimates are not reliable.  

This problem is remedied if we introduce single-variable descriptions for any order 
p, expanding the idea of the climacogram and climacospectrum based on K-moments. 

K-climacogram:   𝛾𝑝𝑞(𝑘) = (𝑝 − 𝑞 + 1)E[(2𝐹(𝑋(𝑘)/𝑘) − 1)
𝑝−𝑞

(𝑋(𝑘)/𝑘 − 𝜇)𝑞]  (45) 

K-climacospectrum: 𝜁𝑝𝑞(𝑘) =
𝑘(𝛾𝑝𝑞(𝑘)−𝛾𝑝𝑞(2𝑘))

ln 2
  (46) 

where 𝛾22(𝑘) ≡ 𝛾(𝑘) and 𝜁22(𝑘) ≡ 𝜁(𝑘).  

While the standard climacogram 𝛾22(𝑘) ≡ 𝛾(𝑘) provides a description precisely 
equivalent to the classical, this is not the case for q > 2. In this case, the single-variable K-
climacogram description is obviously not equivalent to the multivariate high-order one. 
However, it suffices to define the marginal distribution at any scale k. 
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Example 1: Turbulent velocity  

  

  
Data: 60 000 values of turbulent velocity along the flow direction (Kang, 2003; Koutsoyiannis 2017, Dimitriadis and 
Koutsoyiannis, 2018); the original series was averaged so that time scale 1 corresponds to 0.5 s.  
Note: Plot (2*) is constructed from the variance and (2**) corresponds to standard deviation. 
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Example 2: Rainfall rate at Iowa measured every 10 s  

 

 
Data: 29542 values of rainfall at Iowa measured at temporal resolution of 10 s (merger of seven events from Georgakakos et al. 
1994; see also Lombardo et al. 2012). Plot (2*) is constructed from the variance and (2**) corresponds to standard deviation. 
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Example 3: Daily rainfall at Padova  
 

 

Data: 100 442 values of daily rainfall at Padova (the longest rainfall record existing worldwide; 
Marani and Zanetti, 2015). 

0.01

0.1

1

10

100

1000

1 10 100 1000 10000

K
-m

o
m

en
t 

va
lu

e

Time scale

2 3

4 5

6 7

8 19

20

Moment order, p

1

10

100

1000

1 10 100 1000 10000

K
-c

lim
ac

o
sp

ec
tr

u
m

 v
al

u
e

Time scale

2 3
4 5
6 7
8 19
20

Moment order, p

Very rough, slightly persistent, highly intermittent 

q = 1 q = 1 



  D. Koutsoyiannis, Unknowable and knowable moments   32 

K-moments vs. moment order 
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Daily rainfall data at Padova 

Note 1: Each curve is in fact a series of connected 
points whose shape is smooth by itself (not 
artificially smoothed).  

Note 2: Moments of order p approximately repre-
sent maxima for a time window of length p. For 

independent processes E[max(𝑥1, … , 𝑥𝑝)] should 

be equal to 𝐾𝑝1
′ , but when there is dependence the 

two quantities differ. The former reflects the joint 
distribution and the latter the marginal one. The 
difference is related to the dependence structure. 

 



  D. Koutsoyiannis, Unknowable and knowable moments   33 

Generic stochastic simulation methodology 
The symmetric moving average (SMA) method (Koutsoyiannis, 2000) can generate time series with 
any arbitrary autocorrelation function from 𝑥𝑖 = ∑ 𝑎|𝑙|𝑣𝑖+𝑙

𝑞
𝑙=−𝑞 , which transforms white noise 𝑣𝑖 , 

not necessarily Gaussian, to a process 𝑥𝑖 with the specified autocorrelation. The modelling steps 

(Koutsoyiannis, 2018) are summarized as follows: 

1. We estimate K-moments for q = 1 and 2 we choose a marginal distribution for it based on K-
moments and possibly relevant theoretical considerations (e.g. entropy maximization). 

2. We construct the climacogram and climacospectrum, and we choose a suitable model of 
second-order dependence (see a repertoire of models in Koutsoyiannis 2016, 2017). 

3. We estimate the marginal and joint distribution parameters of the model (with appropriate 
provision for fitting issues, such as bias, e.g., as in Koutsoyiannis 2016). 

4. Based on the model parameters we calculate theoretically (and not estimate from data) the 
classical moments of the process of interest.  

5. From theoretical relationships of moments with cumulants we calculate the cumulants of the 
process of interest.  

6. We readily calculate the cumulants of the white noise process and hence its moments. 
7. We choose an appropriate distribution for the white noise, calculate its parameters 

theoretically from its moments and generate a random sample with the required length. 
8. Filtering with the SMA scheme we synthesize the simulated series for the process of interest. 
9. We construct K-climacograms from the original and synthetic data and compare for relevant 

moment orders > 2. 
10. If a disagreement is found in step 9, then we repeat the process separating the entire range of 

relevant scales to parts, building different models for each part, and coupling the separate 
models using a model coupling (disaggregation) scheme such as that in Koutsoyiannis (2001). 
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Some results of simulations for several models 

 

  

The first fifty terms of times series at time scales k = 1 and 20 of time series produced by various models, along 
with “stamps” of the models (green lines plotted with respect to the secondary axes) represented by the CEPLT, 
φC(k). In all cases the discretization time scale is D = 1, the characteristic time scale a = 10, and the characteristic 

variance scale λ is chosen so that for time scale D, γ(D) = 1. The mean is 0 in all cases and the marginal distribution 
is normal (see details in Koutsoyiannis, 2017).  
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(a) Markov;  

(b) FHK, with CEPLT 
close to the absolute 
maximum (H = M = 
0.97); 

(c) FHK, close to “red 
noise”, i.e., with 
CEPLT close to the 
absolute maximum 
for large scales (H = 
0.99) and close to the 
absolute minimum for 
small scales (M = 
0.01);  

(d) process with the 
blackbody spectrum, 
i.e. with CEPLT equal 
to the absolute 
minimum (0) for 
large scales and to the 
absolute maximum 
(2) for small scales. 
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Impressive results of homogenous turbulence simulation 
(preserving the 2-climacogram and four marginal moments) 
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(2018) 
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Concluding remarks 
Awareness of stochastics is important in analysing and modelling geophysical processes. 

Pursuit of simplicity and parsimony is a guide for good modelling. 

Moments of single variables are simpler than joint moments and can replace the latter 
offering some advantages and practically at no cost. 

In this regard, (second-order) climacograms contain precisely the same information as 
autocovariance and power spectrum, displaying better statistical properties. 

High-order classical moments are in fact unknowable for typical geophysical samples; 
however, high-order properties of distributions can be inferred from knowable 
moments (the K-moments). 

The K-climacogram and the K-climacospectrum enable viewing the statistical properties 
and possible scaling behaviours of a process at a wide range of scales and without 
applying laborious transformations. 

The turbulence case study indicates that simplicity can achieve impressive results: by 
preserving just the second-order climacogram, along with the marginal third and fourth 
moments at a single scale, we can reproduce the observable behaviour of homogeneous 
turbulence.  

The question if knowable moments and K-climacograms are relevant to hydrofractals 
may have a positive reply but requires further research.  
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