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Abstract
The objective of this article is to provide a simple and effective tool for low flow
forecasting up to six months ahead, with minimal data requirements, i.e. flow obser-
vations retrieved at the end of wet period (first half of April, for the Mediterranean
region). The core of the methodological framework is the exponential decay function,
while the typical split-sample approach for model calibration, which is known to
suffer from the dependence on the selection of the calibration data set, is enhanced
by introducing the so-called Randomly Selected Multiple Subsets (RSMS) calibration
procedure. Moreover, we introduce and employ a modified efficiency metric, since in
this modelling context the classical Nash-Sutcliffe efficiency yields unrealistically high
performance. The proposed framework is evaluated at 25 Mediterranean rivers of
different scales and flow dynamics, including streams with intermittent regime. Ini-
tially, signal processing and data smoothing techniques are applied to the raw
hydrograph, in order to cut-off high flows that are due to flood events occurring in
dry periods, and allow for keeping the decaying form of the baseflow component. We
then employ the linear reservoir model to extract the annually varying recession
coefficient, and, then, attempt to explain its median value (over a number of years)
on the basis of typical hydrological indices and the catchment area. Next, we run the
model in forecasting mode, by considering that the recession coefficient of each dry
period ahead is a linear function of the observed flow at the end of the wet period. In
most of the examined catchments, the model exhibits very satisfactory predictive
capacity and is also robust, as indicated by the limited variability of the optimized
model parameters across randomly selected calibration sets.
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1 Introduction

WMO (1974) defines low flow as the river discharge during prolonged dry weather, without
clarifying whether this description refers to the systematic decrease of discharge resulting from
considerable decrease (or even elimination) of rainfall during the dry period of each hydro-
logical year, or it includes also droughts, which are extreme phenomena that are due to
decreased precipitation over longer periods, i.e. annual or multi-annual. In common hydro-
logical practice, low flows refer to a periodic phenomenon, which is an inherent component of
the regime of a river. Low flows are associated with the storage dynamics of the catchment,
and, particularly, the aquifer outflows. In fact, these are the composite output of several
regulation mechanisms through the terrain surface, soil moisture zone and subsoil. In this
sense, Hall (1968) defines low flows as “the portion of flow that comes from groundwater or
other delayed sources”; thus, low flows depend on multiple factors, including the infiltration
characteristics of soils, the extent and hydraulic properties of the aquifers, the rate, frequency
and amount of recharge and actual evapotranspiration, as well as the vegetation, topography
and climate (Smakhtin 2001; Vafakhah et al. 2014).

In water management practice, the evaluation of low flows is essential for a range of goals,
such as water quality management, water supply, irrigation, hydropower planning, environ-
mental flow assessment, and habitat protection. This is also required by the European Water
Framework Directive which called for assessing the state of water bodies and establishing
environmental constraints for water resources planning and management. To fulfil this re-
quirement, several countries have developed national procedures for low flow assessment, e.g.,
the UK (Institute of Hydrology 1980; Gustard et al. 1992), Switzerland (Aschwanden and Kan
1999), and Austria (Laaha and Blöschl 2007).

The importance of low flows, from a water management perspective, becomes even more
significant in areas characterized by dry climate and excessive water demand, such as many
Mediterranean catchments where the water availability reaches its minimum when the water
demands are maximal, and vice versa. In particular, across the eastern and southwestern
Mediterranean, the dry period, with minimal precipitation, usually lasts from April to October,
while the water demands for domestic and agricultural use are major during this period. In
those areas, the concurrence of low flows, almost exclusively originating from baseflow, with
the increased demands and the absence of major storage works (e.g. reservoirs) may result to
substantial water stress. We remark that the aforementioned hydroclimatic characteristics and
the associated low-flow problems are not restricted to the Mediterranean region; in fact, the
“Mediterranean” climate also embraces the broader California, parts of Western and South
Australia, southwestern South Africa, and parts of central coastal Chile (Merheb et al. 2016).

Known approaches for low flow assessment are generally classified into statistical and
process-based ones (Laaha et al. 2013). The former mainly aim to estimate low flow charac-
teristics in terms of magnitude, frequency and duration, to be further utilized in water
management plans. These characteristics are typically expressed by means of the so-called
low flow indices representing flow quantiles, durations or deficit volumes, rise/falling rates,
etc. In the last three decades, a lot of research has been conducted on regionalization
approaches for predicting low flow statistics in ungauged basins (e.g., Vogel and Kroll
1992; Ludwig and Tasker 1993; Smakhtin et al. 1995; Smakhtin 2001; Yu et al. 2002; Kroll
et al. 2004; Laaha and Blöschl 2006a; Longobardi and Vallini 2008; Castiglioni et al. 2009;
Eslamian et al. 2010; Castiglioni et al. 2011; Tsakiris et al. 2011). Usually, these are based on
establishing regression relationships between the low flow characteristics of interest and the

4912 Risva K. et al.



catchment properties (climatic, topographic, meteorological, geological, geomorphological),
and, less often, on the usage of hydrological models (e.g., Engeland and Hisdal 2009) or the
complementary use of hydrogeological information (e.g., Cervi et al. 2017). In some studies,
low flow characteristics are combined with classification approaches that allow for dividing
broader areas into homogenous sub-regions, for which different relationships are valid (e.g.,
Laaha and Blöschl 2006a; Vezza et al. 2010). In few cases, seasonality effects are also
accounted for, to distinguish between winter low flows and summer ones, the former being
linked to phenomena of snow accumulation and melting (e.g., Schreiber and Demuth 1997;
Laaha and Blöschl 2006b; Assani et al. 2011; Farahani and Khalili 2013; Jenicek et al. 2016).
Nevertheless, most of the reported regionalization attempts have been made in wet climates,
with very few exceptions (e.g., Longobardi and Vallini 2008; Mehaiguene et al. 2012).

It is well-known that a hydrograph can generally be decomposed into rising limbs,
reflecting increases in discharge caused by precipitation events, and recession limbs,
representing delayed flows due to multiple and complex regulation processes. Process-based
approaches aim at representing the recession limb of hydrographs or its individual compo-
nents, using probabilistic or deterministic simulation models. The exponential decay function
is the simplest and most traditional conceptual modelling approach for hydrograph recession
analysis (Hall 1968; Singh and Stall 1971; Tallaksen 1995; Gottschalk et al. 1997; Aksoy and
Wittenberg 2011). Its first use in hydrology is attributed to Maillet (1905), while its mathe-
matical background originates from Boussinesq (1903), who formulated the idealized problem
of outflow from a horizontal, unconfined aquifer discharging into a fully penetrating stream
(Brutsaert and Nieber 1977; Eng and Milly 2007). The working hypothesis behind the
exponential decay function is the linear reservoir model that represents the recession limb of
a hydrograph as the outflow hydrograph from a tank of infinite storage capacity, having no
inflows, which implements the groundwater storage. The model is linear since outflow is
expressed as a constant fraction of storage, thus resulting in an exponential decay function with
a single parameter, i.e. the recession coefficient. In a more general context, a nonlinear
relationship between storage and outflow is also considered (typically, of the power-type),
which allows better representation of the low-flow regime of complex basins due to the use of
two instead of one single parameter (for a comprehensive review of nonlinear recession
analysis, please refer to Aksoy and Wittenberg 2011, as well as Akylas et al. 2015). Recently,
Fiorotto and Caroni (2013) proposed a stochastic framework to overcome the major short-
coming of the typical hydrograph recession analysis, which ignores the variability in the
behavior of individual streamflow recession segments (Tallaksen 1995).

As pointed out by Brandes et al. (2005), process-based methods for estimating recession
rates and the associated time scales have not received the same attention as the regionalization
ones, despite of their importance in water resources management (for instance, recession scales
indicate how rapidly a river reaches dry conditions). Despite of their simplicity, such ap-
proaches bear quite large subjectivity in their assumptions (e.g., master recession curves,
matching strip, recursive filters, dependence on the starting point with variable initial catch-
ment conditions, etc.), thus resulting in biased and uncertain estimations (Anderson and Burt
1980; Stoelzle et al. 2013).

The prediction, for given starting conditions, of the evolution of future low flow component
of a river hydrograph is a typical hydrological forecasting problem. In general, the existing
literature approaches refer to short time horizons, which allows for updating the parameters of
the forecasting scheme on the basis of new flow data. For instance, Štravs and Brilly (2007)
have developed a machine learning method with seven-day lead time for Slovenian rivers, to
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be used on a day-to-day operational basis for low flow forecasting during rainless periods.
Nicolle et al. (2014) also employed alternative models, already calibrated against observed
data in a number of French rivers, considering short (7-day) and medium (30-day) lead times.
In a more complex context, Demirel et al. (2013, 2015) took advantage of ensemble meteo-
rological predictions (precipitation, potential evapotranspiration) within conceptual and data-
driven models (i.e. artificial neural networks), to provide low flow forecasts for lead times
from one up to 90 days; apparently, the success of this approach strongly depends on the
uncertainty of seasonal meteorological predictions, which is generally very large.

Nevertheless, in an operational water management context, the time period ahead of a low
flow forecasting study may include the entire forthcoming dry period, during which precip-
itation is expected to be low, or even negligible. Actually, most of the aforementioned
forecasting schemes not only are built to represent the recession limb in the short run, but
also require systematic flow measurements, thus being applicable only in well-monitored
rivers. In this respect, our research objective is to provide a simple yet effective tool for low
flow forecasting in the long run (up to six months), with minimal data requirements. In our
approach, the low flow component is accounted as the “safe” yield of a river system, i.e. the
amount of surface water that can be estimated with quite good accuracy. Simplicity is secured
by using as background simulation model the exponential decay function, while data parsi-
mony is ensured by accounting for flow information retrieved at the end of the first half of
April, conventionally considered as the end of wet period. This convention is of major
importance, since it allows getting timely decisions regarding the optimal allocation of water
resources during the entire forthcoming dry period. A stochastic framework, comprising
several novelties, has been developed to estimate the regional parameters of the model, on
the basis of historical flow data. The proposed framework is tested in 25 Mediterranean rivers
from five countries (Spain, France, Italy, Greece and Cyprus), exhibiting very satisfactory
predictive capacity and robustness against the inherent uncertainty of the calibration procedure.

2 Modelling Framework

2.1 Overview and Assumptions

As already explained, our objective is providing a simple forecasting tool to estimate the flow
recession during the dry period of each year, by accounting for easily observable hydrological
conditions at the end of the antecedent wet period. As the emphasis is on the Mediterranean,
for convenience we consider that the dry period has a maximum duration of six months (herein
called reference time horizon), which extends from April 15th to October 15th; thus the model
should be built upon the observed data for the period before April 15th. We emphasize that this
convention is made because our approach is oriented to the long-term water management
problem; in practice, it is not possible to determine a priori the beginning of the baseflow
recession (Rupp and Selker 2006).

In Mediterranean rivers and streams, the low flow component of the dry period hydrograph
is mainly attributed to baseflow, which is only slightly influenced by occasional and generally
small rainfall events during the dry season. Under such hydroclimatic conditions, a reliable
prediction of the temporal evolution of baseflow is essential, since this can be regarded as the
guaranteed flow during the dry period. We remind that common low flow forecasting schemes
generally consider much shorter lead times, which apparently ensures more accurate
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predictions of the recession limbs from multiple (and apparently overlapping) flow regulation
sources of both slow (baseflow) and fast (interflow) response.

In order to ensure parsimony and simplicity, we adopt the well-known linear reservoir
approach, implying that the catchment (more precisely, the groundwater) storage, s(t), is
linearly proportional to its outflow, q(t), i.e.:

s tð Þ ¼ kq tð Þ ð1Þ
where k is the so-called recession parameter; in fact, the quantity 1/k represents the mean
residence time of the catchment. Under this assumption, for a given discharge at a starting time
t = 0, the outflow is expressed by means of an exponential decay function, i.e.:

q tð Þ ¼ q 0ð Þexp –ktð Þ ð2Þ
In our context, Eq. (2) is expressed in discrete form, considering a daily time interval; thus the
model is written as:

qij ¼ q0 jexp –k jti
� � ð3Þ

where qij is the average discharge of day i and year j, ti is the accumulated time up to day i, in
day units, and q0j and kj are the annually-varying initial discharge and recession rate, expressed
in flow (m3 s−1) and inverse time (d−1) units, respectively. For convenience, index i = 0
corresponds to the beginning of the dry period, i.e. April 15th, while Eq. (3) is valid up to
the end of the dry period, i.e. October 15th, which corresponds to day index i = 184. Therefore,
in order to employ (3) in forecasting mode we should simply set ti = i.

Given that the Eq. (3) is to be used for forecasting purposes, at the beginning of the dry
period (i.e. April 15th) of each year j it is essential to determine the initial discharge q0j and the
parameter kj. Preliminary investigations by Risva et al. (2017) indicated that for the initial
discharge, the minimum of the observed daily flow values during the first two weeks of April
is the best choice. Therefore, the remaining question involves the “prediction” of the annually-
varying recession rate kj, based on the available hydrological information up to April 15th. The
initial discharge q0j is considered as predictor, which is evidently associated with the ground-
water conditions at the end of the wet period controlling the generation of the dry period
baseflow. The simplest dependence relationship is the linear one, thus:

k j ¼ a q0 j þ b ð4Þ
where a (s m−3 d−1) and b (d−1) are site-specific parameters that are considered stationary, i.e.
not depending on the annually-varying hydrological conditions of the catchment at the end of
the wet period. Combining (3) and (4) we obtain the final expression of the forecasting
scheme, i.e.:

qij ¼ q0 jexp – a q0 j þ b
� �

ti
h i

ð5Þ

The above formula uses a known initial condition at the beginning of each dry period, by
means of initial discharge q0j, and two time-invariant regional parameters, a and b. For the
estimation of the latter for a specific catchment, we have developed a novel randomly selected
multiple subsets calibration framework, wherein Eq. (3) is utilized for recession analysis of
observed baseflow data sets across a number of dry periods. The stochastic configuration of
the calibration procedure allows for evaluating the uncertainty of the recession model which is
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reflected on low flow forecasts; this originates from studies using relatively short historical
samples (cf. discussion by Ouarda et al. 2008). Key issues of the proposed framework are:

(a) The derivation of the baseflow data of each dry period, corresponding to year j (herein
referred to as the adjusted low flow data), on the basis of observed daily hydrographs;

(b) the formulation of a suitable performance measure for evaluating the fitting of the
modelled to the observed low flows;

(c) the implementation of the calibration procedure in a stochastic setting that allows for
accounting for the uncertainty of model parameters against the period of observations.

The above issues are discussed in detail in next sections.

2.2 Derivation of Adjusted low Flows from Dry Period Data

For a given record of daily flows over the conventional reference period between April 15th
and October 15th of a specific year j, with given starting flow q0j, the estimation of the
recession coefficient kj is far beyond a typical calibration problem. In fact, neither the
beginning nor the duration of the dry period of each year can be specified a priori, since the
dry-period hydrograph contains, apart from the slow response component (which is conven-
tionally attributed to baseflow), both rising and recession limbs, as well as individual peaks
that are due to rainfall events.

As shown in the examples given in Fig. 1, attempting to infer kj by fitting the exponential decay
function (Eq. 3) to the full flow data set spanning over the entire reference period would result in
unrealistic and strongly biased (overestimated) values of the recession coefficient. Therefore, before
applying the calibration procedure, it is essential to extract the so-called adjusted low flows (i.e.,
values of the baseflow component) for each year j, and determine the actual start and end of the dry

Fig. 1 Examples of fitting the exponential decay function (3) to the full daily hydrograph over the entire reference
period on the left (dotted line on the right), contrasted to the final expression fitted to the adjusted flow data on the
right (continuous line). The recession rate is higher when the function is fitted to the adjusted low flows
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period, the length of which is generally shorter than that of the reference period. In this vein, we
employ a multi-step procedure, comprising four steps (see example in Fig. 2):

Step (a): The full hydrograph over the dry period generally exhibits both large- and small-
scale fluctuations; the former are due to flood events, while the latter are often
induced by random errors of the monitoring instruments (e.g., stage recorders) or
turbidity effects, resulting to local minima that do not have physical meaning. In
order to obtain a smoothened hydrograph, we employ the numerical filter intro-
duced by Savitzky and Golay (1964), as shown in Fig. 2a. This filter allows for
increasing the signal-to-noise ratio without greatly distorting the signal. This is
achieved by replacing the raw data values by new ones, which are computed from a
moving polynomial fit to 2n + 1 neighbouring points, with n being at least equal to

Fig. 2 Example of extracting the adjusted flow data from the daily hydrograph of Achelous River at Kremasta
dam, for the dry period of year 1966
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the order of the polynomial. When the points are equally spaced (which is the case
here, since the time interval is constant, i.e. daily), we obtain an analytical
expression, i.e. a symmetric moving average scheme, where the weights (convo-
lution coefficients) of the smoothing procedure are constant. In our context, we
employ a 7-point 3rd order polynomial.

Step (b): We define the beginning and end of the dry period of interest, and its last flow
value, as shown in Fig. 2b. First, we seek for the last flow value being greater than
q0j and detect the corresponding date index, bj, which denotes the actual beginning
of the dry period of year j. Under this assumption, by using q0j as cut-off threshold,
we ignore the part of the observed hydrograph from April 15th until day bj. Next,
in order to determine the actual end of the dry period, symbolized ej, we calculate
the average flows over 15-day intervals and their differences until October 15th.
Moving backwards in time, we examine whether the one-step flow trend changes
from negative to positive, which marks the end of the dry period, ej. Since the
number of data points removed from April 15th to the actual beginning of the dry
period are bj, and the points removed from the actual end of the dry period up to
October 15th (i = 184) are 184 – ej, the remaining flow values in the sample, and
thus the actual duration of the dry period of year j, are nj = ej – bj + 1.

Step (c): We remove all flow values that lie above the line joining q0j with qej, which
is given by:

qij ¼ q0 j− q0 j−q
0
ej

� �
i= e j þ n j
� � ð6Þ

where the denominator is the number of days between April 15th and the actual end of the dry
period of year j. All flow values exceeding the theoretical threshold qij are removed, since the
exponential decay function (3), by definition lies below the line of Eq. (6). As shown in Fig.
2c, the remaining data set is generally discontinuous and contains fewer values than the initial
sample of length nj, from which all important dry-period flood events have been removed.

Step (d): We further reduce the remaining flow peaks below the theoretical upper threshold
(6), considering small-scale flood events of typical duration up to two days. In this
context, we apply a cut-off procedure comprising the identification of the remain-
ing local flow maxima over the dry period, which are next set equal to the value of
the previous day. This procedure is repeated only once, to avoid removing a
unreasonable number of flow points, thus getting an adjusted flow record contain-
ing too few data.

2.3 Performance Measure and Associated Benchmarks

In order to evaluate the predictive capacity of the forecasting model against the observed low
flows (more accurately, the adjusted flow data), we employ a modified expression of the Nash-
Sutcliffe efficiency (NSE), using as benchmark a typical low flow pattern over the dry period,
commonly referred to as the master recession curve, instead of an average low flow value.

Well-known shortcomings of NSE for hydrological model evaluations have been exten-
sively discussed in the literature (Schaefli and Gupta 2007; Gupta et al. 2009), including the
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case of models for low flow simulations (e.g., Pushpalatha et al. 2012; Nicolle et al. 2014). We
remind that NSE compares the mean square error of the modelled flow against the observed
data to the variance of the observed data, thus comparing the predictions of the actual model to
the predictions provided by the observed mean value; under this premise, a positive efficiency
indicates that the model is a better predictor than the observed mean. However, the mean value
as the benchmark predictor in the context of low flow evaluations is far from being represen-
tative, since the river regime during the dry period exhibits an evident non-stationary behav-
iour due to the systematic decrease of runoff.

Within calibrations, we initially considered as benchmarks the daily average streamflow
curve, as advocated by Garrick et al. (1978) and Martinec and Rango (1989), as well as the
daily median streamflow curve, which is generally a better estimator than the mean, because
the dry period flows are highly skewed. However, due to noise effects, these two benchmarks
(particularly that with the mean) exhibit random fluctuations, which are not desirable (see
example in Fig. 3). The reason for that is that the benchmark should normally reflect baseflow
and be uninfluenced from extremes in the dataset. To remove fluctuations, we tested three
alternative exponential functions, i.e. master recession curves, which were fitted to the daily
means and medians, as well as the lower envelope of medians (see example in Fig. 3). The
latter, symbolized mi, is considered the most representative for the average dry period
baseflow, and thus it was finally selected as benchmark within calibrations.

Based on the above assumptions and preliminary results by Risva et al. (2017), the
modified NSE function for N dry period intervals is given by:

MNSE ¼ 1–

∑
N

j¼1
∑
i¼b j

e j

q0 j exp –k j ti
� �

–q
0
ij

� �2

∑
N

j¼1
∑
i¼b j

e j

mi–q
0
ij

� �2
ð7Þ

Fig. 3 Example of alternative master recession curves used as benchmark functions, extracted from the observed
dry period flow data for Achelous River, Greece
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where j is the dry period index; bj and ej are the beginning and end day of dry period j; q
0
ij are

the adjusted flow values across the dry period j; q0j is the starting flow (i.e. the lower flow
value between April 1st and April 15th of year j); kj is the (unknown) recession parameter of
period j; ti is a day index (integer); and mi is the benchmark flow value of day i, estimated on
the basis of the master recession curve for the specific catchment.

We remark that by adopting the classical NSE metric, in the denominator of (7) we would

apply a constant benchmark value m, equal to the average of all adjusted flow values, q
0
ij.

Obviously, such benchmark would be a highly inaccurate predictor of the low flow dynamics;
its use would therefore provide unrealistically high performance scores, thus making it difficult
to evaluate the actual predictive capacity of our modelling framework.

2.4 Randomly Selected Multiple Subsets Calibration Framework

The calibration problem has been formulated for estimating the “annually varying” (i.e., with a
different value for each year) recession coefficients kj, in two ways: first by maximizing the
criterion of (7) for each specific dry period j separately, and, second, by maximizing this
criterion for all dry periods collectively, which allows for obtaining the “overyear” (basin-
specific) parameters a and b. Evidently, this is essential for running the model for future
conditions, i.e. in forecast mode, using as sole information the initial flow q0j.

In the second case, for the parameter estimation procedure and its validation, we employed
a stochastic approach, to account for the uncertainties induced due to the use of relatively small

Table 1 Characteristic properties of study basins

No River Country Station name Elevation (m) Basin area (km2) Data period*

1 Ebro Spain Castejon 265 25,194 1949–2012 (63)
2 Aragon Spain Caparosso 302 5469 1950–2013 (63)
3 Jucar Spain Cuenca 916 984 1950–2013 (63)
4 Alcanadre Spain Lascellas 390 501 1945–2013 (62)
5 Albaida Spain Montaberner 162 320 1992–2013 (21)
6 Algas Spain Horta de San Juan 418 115 1965–2013 (49)
7 Turia Spain Tramacastilla 1278 95 1945–2013 (56)
8 Aude France Carcassone 96 1754 1969–2016 (46)
9 Argens France Arcs 36 1730 1966–2016 (47)
10 Doux (Rhône) France Tournon 127 640 2005–2016 (12)
11 Orbieu France Luc 34 586 1969–1998 (19)
12 Lèze France Labarthe 159 351 1969–2016 (47)
13 Loup France Tourrettes 124 206 1972–2016 (32)
14 Vixiège France Belpech 243 196 1969–2016 (42)
15 Fium-Alto France (Corsica) Taglio-Isolaccio 35 114 1961–2016 (40)
16 La Coise France Larajasse 571 61 1970–2016 (43)
17 Limnatis Cyprus Kouris Dam 277 115 1984–2009 (24)
18 Germasogeia Cyprus Foinikaria 100 110 1969–2009 (41)
19 Stavros Psokas Cyprus Skarfos 185 78 1985–2009 (25)
20 Peristerona Cyprus Panagia Bridge 546 77 1966–2012 (44)
21 Xeros Cyprus Lazarides 553 69 1971–2011 (41)
22 Arno Italy Subbiano 750 751 1992–2013 (22)
23 Tanaro Italy Piantorre 1067 500 2002–2012 (11)
24 Salso Italy (Sicily) Petralia 760 28 1954–2003 (33)
25 Achelous Greece Kremasta dam 146 3570 1967–2008 (42)

(*) Complete years, in parentheses
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samples. It is well-known that a shortcoming of the classical calibration-validation paradigm,
referred to as split-sample test (Klemeš 1986), is the dependency of the model performance
and the optimized parameters on the length and time window of the used data sample (Gharari
et al. 2013). To account for the associated uncertainties, we repeated the calibration-validation
procedure 1000 times. At each trial, we randomly split the whole data set into calibration and
validation sub-sets (not necessarily with contiguous time intervals), containing 80 and 20% of
dry period intervals respectively. Using this approach, also regarded as heuristic multiobjective
calibration (Efstratiadis and Koutsoyiannis 2010), we obtained 1000 sets of parameter values
and the associated performance metrics in calibration and validation (see section 4.2).

3 Study Areas

We have collected daily flow data from 25 Mediterranean catchments from Spain (7), France
(9), Cyprus (5), Italy (3) and Greece (1), which were mainly obtained from online databases.
For these catchments, key properties and summary hydrological statistics, in the form of flow
quantiles, are given in Tables 1 and 2, respectively. As shown, the study areas cover a wide
range of hydrological characteristics, in terms of basin area, mean ground elevation and runoff
production, including some small catchments with intermittent flow regime. The station sites
are illustrated on the map of Fig. 4. For convenience, all flow time series were converted into
equivalent water depths (mm d−1), to allow direct comparisons across basins of different size.
In this context, the initial discharge, q0, and parameter a in eq. (4) will hereafter be referred to
mm d−1 and mm−1, respectively.

Table 2 Summary flow statistics for study basins (mm)

No River Mean Q St. dev. Q5 Q25 Q50 Q75 Q95

1 Ebro 0.77 0.97 2.60 0.97 0.40 0.20 0.11
2 Aragon 0.87 1.27 3.29 0.99 0.40 0.19 0.09
3 Jucar 0.81 1.21 2.50 0.92 0.47 0.23 0.10
4 Alcanadre 0.72 1.26 2.46 0.77 0.35 0.18 0.09
5 Albaida 0.21 0.38 0.55 0.23 0.14 0.09 0.03
6 Algas 0.57 3.04 1.79 0.36 0.13 0.05 0.01
7 Turia 0.67 0.74 1.75 0.87 0.45 0.27 0.12
8 Aude 0.95 1.24 2.54 1.18 0.62 0.35 0.18
9 Argens 0.57 0.89 1.88 0.61 0.28 0.17 0.09
10 Doux (Rhône) 1.15 2.40 3.81 1.25 0.59 0.17 0.02
11 Orbieu 0.75 1.86 2.76 0.78 0.25 0.08 0.01
12 Lèze 0.47 1.10 1.75 0.48 0.15 0.05 0.02
13 Loup 1.52 2.47 5.36 1.65 0.73 0.36 0.16
14 Vixiège 0.53 1.54 2.07 0.52 0.11 0.03 0.01
15 Fium-Alto 1.04 2.87 3.07 0.93 0.44 0.23 0.11
16 La Coise 0.89 1.41 2.86 1.12 0.48 0.17 0.04
17 Limnatis 0.34 0.99 1.35 0.35 0.10 0.00 0.00
18 Germasogeia 0.38 1.23 1.60 0.36 0.08 0.00 0.00
19 Stavros Psokas 0.21 0.64 0.99 0.16 0.01 0.00 0.00
20 Peristerona 0.42 1.53 1.70 0.35 0.06 0.00 0.00
21 Xeros 0.35 0.89 1.45 0.26 0.09 0.06 0.03
22 Arno 1.37 2.97 5.00 1.37 0.56 0.17 0.06
23 Tanaro 1.79 3.41 4.76 2.06 1.04 0.48 0.23
24 Salso 2.40 8.35 9.65 1.74 0.40 0.06 0.00
25 Achelous 2.61 3.48 7.87 3.37 1.53 0.65 0.34
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The largest basin is Ebro, Spain, upstream of Castejon station, which extends over an area
of more than 25,000 km2. On the other hand, the smallest catchment is Salso (tributary of
Imera Meridionale), Sicily, upstream of Petralia station, the area of which is only 28 km2. The
range of mean ground elevations is also large, from headwater mountainous catchments to low
elevation coastal ones. Regarding the runoff production, we investigate from very wet basins,
such as Achelous, Greece, with a mean daily runoff of 2.61 mm d−1 (more than 950 mm y−1),
to very dry ones, such as Albaida (Spain) and Stavros tis Psokas (Cyprus), which produce only
0.21 mm d−1, on average (75 mm y−1).

4 Results and Discussion

4.1 Assessment and Interpretation of Annually Varying Recession Rates

For each catchment, we initially calculated the median value of the reference time horizon
(April 15th to October 15th), on the basis of which we extracted the master recession curve,
to be used next as benchmark low flow data within calibrations. We also estimated the
average dry period duration and its median flow, which are characteristic indices of the
hydrological behaviour of the studied catchments during the low flow period (Table 3). We
remark that in some catchments with intermittent flow, the length of the low flow period is
lower than expected (e.g. 115 days, in the catchment called Stavros tis Psokas, Cyprus)
because conventionally, the end of the dry period is marked by the point of inflection of the
master recession curve. Therefore, even a minor flood flow is assumed as indicator of the
beginning of the next wet period.

Next, for each year j, we estimated the initial discharge, q0j, i.e., the minimum daily flow
between 1st and 15th April, and solved a one-dimensional optimization problem to infer,

Fig. 4 Map of examined stations; station names are listed in Table 1
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through calibration, the recession rate, kj, of the corresponding dry period, using as perfor-
mance measure the adjusted low flow data and the MNSE metric of Eq. (7). As shown in
Table 4, in all basins, the fitting of the linear reservoir approach by Eq. (3) is very good, with
few exceptions that are related to peculiar hydrological conditions during specific periods (e.g.,
too late start of the dry period j, thus making q0j unsuitable for low flow predictions).

The key statistics of the two variables of interest, i.e. kj and q0j, as well as their Pearson
correlation coefficient are summarized in Table 3. All the aforementioned quantities exhibit
significant variability across catchments. It is noteworthy to mention that in some basins kj and
q0j are strongly correlated (e.g., 0.87 in Achelous), thus indicating that the variation of the
recession rate is well explained by the variation of q0j, representing the basin state at the end of
the wet period. However, in other areas the correlation is very low (even negative), which
means that the low flow dynamics does not depend on the catchment conditions at the
conventional end of the wet period, i.e. early April.

In order to further explain the spatial variability of the recession coefficient, we also
calculated its correlation with the typical flow statistics of Table 2 and some other
indices. In Fig. 5, we provide scatter plots of the median value of kj (next symbolized
k) against four indices, i.e. Qdry/Q50, Qdry/Q0, Qdry/Q25 and Q50/Q25, where Qdry is the
median flow value across all dry periods (Table 3). The highest correlation (apparently
negative) is between k and Qdry/Q25, which shows that the recession coefficient is
associated with the “distance” of these two runoff characteristics.

Table 3 Recession analysis results, considering annually varying recession coefficients

No Aver. dry period
duration (d)

Median
Qdry (mm)

Mean
MNSE

Recession coefficient, k
(d−1)

Initial discharge, q0
(mm)

Correl. k
vs q0

Mean Median St.
dev.

Mean Median St.
dev.

1 128 0.25 0.663 0.0121 0.0118 0.0068 0.69 0.58 0.45 0.674
2 135 0.29 0.751 0.0173 0.0093 0.0327 0.62 0.49 0.49 0.039
3 172 0.37 0.791 0.0095 0.0093 0.0044 0.85 0.80 0.54 0.419
4 152 0.25 0.739 0.0130 0.0097 0.0124 0.48 0.41 0.32 0.227
5 130 0.11 0.781 0.0172 0.0108 0.0248 0.17 0.13 0.12 −0.117
6 195 0.08 0.740 0.0177 0.0145 0.0208 0.35 0.19 0.41 −0.011
7 141 0.09 0.794 0.0122 0.0108 0.0077 1.05 0.89 0.79 −0.175
8 167 0.50 0.684 0.0084 0.0081 0.0029 1.05 0.94 0.56 0.759
9 143 0.24 0.840 0.0076 0.0070 0.0035 0.51 0.37 0.38 0.588
10 150 0.22 0.705 0.0218 0.0218 0.0125 0.74 0.60 0.40 −0.179
11 195 0.14 0.654 0.0197 0.0163 0.0112 0.70 0.71 0.47 0.165
12 159 0.08 0.701 0.0185 0.0184 0.0076 0.36 0.33 0.22 0.263
13 143 0.51 0.781 0.0118 0.0124 0.0055 1.12 0.99 0.63 0.595
14 195 0.04 0.629 0.0267 0.0213 0.0350 0.44 0.42 0.30 0.459
15 147 0.28 0.619 0.0132 0.0131 0.0062 0.96 0.89 0.76 0.633
16 147 0.24 0.646 0.0183 0.0168 0.0097 0.58 0.48 0.37 0.263
17 186 0.00 0.804 0.0391 0.0337 0.0192 0.38 0.28 0.28 −0.513
18 195 0.01 0.729 0.0347 0.0293 0.0262 0.40 0.29 0.33 −0.257
19 115 0.00 0.799 0.0393 0.0366 0.0098 0.19 0.12 0.14 −0.098
20 155 0.00 0.734 0.0346 0.0326 0.0102 0.30 0.26 0.16 −0.275
21 149 0.06 0.443 0.0158 0.0153 0.0063 0.29 0.24 0.20 0.648
22 140 0.21 0.558 0.0191 0.0183 0.0069 0.92 0.89 0.53 0.778
23 162 0.67 0.734 0.0123 0.0117 0.0041 1.60 1.21 0.90 0.593
24 122 0.35 0.698 0.0294 0.0294 0.0166 0.79 0.73 0.41 0.235
25 144 0.80 0.485 0.0130 0.0131 0.0044 2.67 2.58 1.10 0.870
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Another characteristic associated with themedian recession rate, k, is the catchment area, A. As
shown in Fig. 6, k is well correlated with A-1/2. Actually, the increase of k with the decrease of the
basin area is consistent with the theoretical background of the linear recession model, which is the
Boussinesq equation (Eng andMilly 2007). It is interesting to remark that in the scatter plot of Fig.
6, two clearly different clusters of catchments are recognized. However, we did not find any
interpretation of this classification on the basis of hydrological indices or any other information
extracted from our data set. An evident hypothesis is that the two clusters contain catchments with
common geological characteristics, by means of porosity and hydraulic conductivity, as antici-
pated by the Boussinesq theory. We remark that several studies (e.g., Zecharias and Brutsaert
1988; Peña-Arancibia et al. 2010; Li et al. 2018) found that the baseflow recession coefficient is
associated with climatic and geomorphological properties (e.g., terrain slope, river network
density); however, such information was not available in our case.

4.2 Estimation of Basin-Specific Parameters a and b

As indicated by the above analysis, at least in some of the test catchments, the recession rate
exhibits quite significant linear correlation with the initial flow; thus the local value of kj can be
approximated as function of q0j (Eq. 4). We can therefore accept Eq. (5), assuming that the
baseflow recession of each dry period is estimated as function of the initial flow q0j,
representing the hydrological conditions at the end of the wet period, and the two regional
(i.e., basin-specific) parameters, a and b.

Table 4 Average values of regional parameters a and b, and average performance indices resulting from the
Randomly Selected Multiple Subsets (RSMS) calibration framework for 1000 random calibration/validation sets

No Name a (d−1) b (mm d−1) MNSE NSE

Calibration Validation Calibration Validation

1 Ebro 0.010 0.004 0.582 0.543 0.805 0.790
2 Aragon 0.012 0.001 0.374 0.266 0.683 0.623
3 Jucar 0.004 0.005 0.579 0.437 0.789 0.742
4 Alcanadre 0.008 0.007 0.589 0.464 0.895 0.859
5 Albaida 0.009 0.007 0.659 0.487 0.842 0.755
6 Algas 0.005 0.013 0.762 0.718 0.967 0.957
7 Turia −0.001 0.011 0.591 0.289 0.732 0.553
8 Aude 0.003 0.005 0.541 0.456 0.873 0.861
9 Argens 0.002 0.007 0.793 0.722 0.877 0.855
10 Doux (Rhône) 0.001 0.019 0.593 0.354 0.928 0.891
11 Orbieu −0.001 0.019 0.429 −0.235 0.710 0.553
12 Lèze −0.001 0.020 0.739 0.692 0.948 0.942
13 Loup 0.002 0.010 0.591 0.531 0.908 0.886
14 Vixiège 0.022 0.012 0.474 0.373 0.877 0.853
15 Fium-Alto 0.004 0.009 0.755 0.607 0.884 0.851
16 La Coise 0.009 0.011 0.640 0.594 0.935 0.930
17 Limnatis −0.003 0.031 0.866 0.831 0.909 0.884
18 Germasogeia 0.007 0.022 0.868 0.848 0.916 0.901
19 Stavros Psokas 0.003 0.037 0.890 0.871 0.932 0.915
20 Peristerona −0.016 0.039 0.732 0.702 0.875 0.868
21 Xeros 0.016 0.011 0.804 0.720 0.888 0.862
22 Arno 0.011 0.009 0.554 0.456 0.920 0.910
23 Tanaro 0.002 0.009 0.606 0.453 0.939 0.895
24 Salso 0.008 0.015 0.414 0.359 0.757 0.731
25 Achelous 0.003 0.005 0.524 0.474 0.902 0.898
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For the estimation of parameters a and b for each of the 25 catchments we followed the
stochastic calibration framework of section 2.4, resulting in a sample of 1000 optimized
parameters and the associated performance metrics in calibration and validation. In Table 4
we display the key results of the analyses, by means of average values of the aforementioned
parameters. As illustrated by the MNSE metric, the calibration is very satisfactory in most of
the basins, ranging from 0.374 (Aragon) to 0.890 (Stavros Psokas), while in 21 out of the 25
catchments, the MNSE in calibration exceeds 0.50. The predictive capacity of the model is
quantified by the validation MNSE score, which, in most basins, is slightly lower than the
score in calibration, as expected. Only in one case, i.e. in Orbieu river, the model exhibits
unsatisfactory performance, as indicated by the negative MNSE in validation. However, we
remind that this metric is very conservative, and if we use the typical NSE (i.e. by considering
the average flow across all dry periods as benchmark model), the corresponding validation

Fig. 5 Scatter plots of median recession rate against characteristic hydrological indices across the examined
catchments

A Framework for Dry Period Low Flow Forecasting in Mediterranean Streams 4925



score goes up to 0.55. In general, all NSE values are significantly higher than those of MNSE.
Actually, the NSE values in validation exceed 0.80 in 20 out of 25 basins.

In Fig. 7 we show the box plots for parameters a and b, on the basis of 1000
optimized values. In most catchments, their variability is generally low, which is a
strong evidence of the robustness of the proposed modelling framework. Therefore,
the model predictive capacity is not severely influenced by the specific calibration
sample. Yet, some basins (e.g. Orbieu) exhibit quite large parameter variability, which
is reflected on occasional failure of the forecasting model to reproduce the low flow
behaviour during specific dry periods.

The operational version of the forecasting model of each test basin is constructed by
considering the average values of a and b, which are given in Table 4. Characteristic examples
of model fitting for 8 out of 25 basins, and specific dry periods, are given in Fig. 8.

5 Conclusions

In Mediterranean catchments (and areas with similar hydroclimatic conditions all over the
globe), the dry period is of long duration (up to six months) and is dominated by low flows, as
the major, and relatively well predictable, part of the available water resources. Evidently, the
earlier and more accurate the prediction of low flow is (over the forthcoming dry period), the
more assistance is provided to water resources planners and managers.

Most literature approaches for low flow prediction are valid for wet climates and short
forecasting horizons (e.g. a few days), since the dry-period flow regime in such climates is
significantly affected by flood events. As a result, in these conditions, extending forecasting
horizons up to six month or so would require using ensemble meteorological predictions,
which are still highly uncertain and their operational applicability is questionable.

In contrast to the existing approaches, we have developed a simple and parsimonious
methodology for predicting low flows up to six months ahead, which was validated on the
basis of daily flow data retrieved from 25 Mediterranean rivers, with substantially different
characteristics. The proposed method uses the traditional linear reservoir concept under two

Fig. 6 Scatter plots of median recession rate against the inverse square root area of the examined catchments
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main assumptions: assigning as starting flow, q0, the minimum flow value during the first two
weeks of April, and expressing the annually-varying recession rate k as a function of q0 (Eq.
(4)). This empirical relationship comprises two site-specific parameters, a and b, for the
estimation of which we have developed a stochastic methodological framework comprising
three major novelties.

The first novelty involves the extraction of the so-called “adjusted flows” during each dry
period, by employing consequent filtering and data removal procedures to the original time
series. The objective is to determine the actual beginning and end of the dry period, and
remove flood peaks and high flow pulses that are due to rainfall events, which provides a flow
record that is representative of the low flow dynamics of each specific period.

The second novelty refers to the development of a new metric for the evaluation of the
predictive capacity of low-flow models, called modified Nash-Sutcliffe efficiency (Eq. 7). Its
necessity rises from the fact that the typical efficiency metric is too favourable, since it uses as
benchmark model the average value of the observed data, which is far from being represen-
tative and may provide a misleading picture of model fitting. Instead of this naïve benchmark,

Fig. 7 Box plots of parameters a and b
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Fig. 8 Examples of forecasted low flows against the observed hydrographs over the conventional reference
period (April 15th to October 15th)
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we employ a master recession curve constructed by passing a lower envelope curve to the
median flow values across the dry period.

The third novelty is a stochastic configuration of the classical split-sample test (i.e., the
inference of the unknown model parameters through optimization during a calibration period,
and its evaluation against an independent data set in validation), which is the working
paradigm in hydrological model calibrations. The proposed procedure, termed Randomly
Selected Multiple Subset (RSMS) calibration, retains the key concepts of calibration and
validation, yet the distinction of the two periods is not strict. In contrast, a large number of
calibration-validation tests are employed, by randomly changing the corresponding data sets.
The outcome of the RSMS approach is a large number of alternative optimal parameter sets
and related performance metric values, which also allows for evaluating the parameter
uncertainty. We remark that the new procedure can be of general use, although here this is
exclusively applied for the extraction of the forecasting model parameters, a and b.

Extended low flow analyses across the 25 Mediterranean rivers proved that the linear
reservoir approach, with recession parameters that are fitted to the adjusted low flow data of
each dry period, ensures very good model performance. As expected, the variability of the
recession rate across dry periods is significant, and in several cases it proved to be associated
with the hydrological conditions at the end of the antecedent wet period. The median of the
recession coefficients is also significantly varying across catchments, and this variability is
well explained by typical hydrological indices, particularly the ratios Qdry/Q25 and Q50/Q25,
where Qdry is the median flow value across all dry periods and Q25 is the 25% percentile of
daily flow data.

An interesting outcome is that the median recession coefficient is inversely pro-
portional to the square root of the catchment area. This is consistent with the
Boussinesq equation, which is the theoretical basis of the linear recession model.
With regard to this relationship two distinct clusters of catchments were clearly
recognized; however, more information is required in order to explain this behaviour.

Finally, by employing the RSMS calibration procedure, we extracted the parameters
of the low flow forecasting model, as well as the associated performance metrics, and
evaluated their uncertainty using randomly selected calibration-validation samples.
Overall, the results are very encouraging, thus making it possible to employ the
average parameter values within Eq. (5) for estimating the evolution of the baseflow
component during each dry period, using, as sole input, the observed flow data at the
end of the preceding wet period. Actually, provided that the basin-specific parameters
are known, a few flow measurements (or even a single measurement) at mid-April
may be sufficient, which makes the proposed tool very attractive for areas with
limited sources of hydrometric observations.
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