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Abstract A biannual survey of physico-chemical quality indices of 104 

irrigation-water wells located in a cultivated plain of a Mediterranean island 

catchment was conducted using a multi-parameter probe. The campaign was 

planned so as to differentiate between the dry and wet seasons. The acquired data 

constituted the test bed for evaluating the results and the features of four spatial 

interpolation methods, i.e. ordinary kriging, universal kriging, inverse distance 

weighted and nearest neighbours, against those of the recently introduced bilinear 

surface smoothing (BSS). In several cases, BSS outperformed the other 

interpolation methods, especially during the two-fold cross-validation procedure. 

The study emphasizes the fact that both in situ measurements and good 

mathematical techniques for studying the spatial distribution of water quality 

indices are pivotal to agricultural practice management. In the specific case 

studied, the spatio-temporal variability of water quality parameters and the need 

for monitoring were evident, as low irrigation water quality was encountered 

throughout the study area. 

Keywords irrigation; water quality; specific conductance; pH; spatial 

interpolation; bilinear surface smoothing; kriging; inverse distance weighted; 

nearest neighbours; cross-validation  



2 

 

Introduction 

Sustainable agricultural development and management are based on adequate quantity 

and quality of water resources. Pollution and unreasonable use of water threaten 

development and demand implementation of measures and policies relating to both 

quality and demand management, along with quality assessment depending on each 

particular water use.  

Specifically, agriculture can cause extensive degradation of the soil–water 

system as well as underlying aquifers, when good agricultural practices are not 

implemented. The main problems associated with agriculture are: the increase in the 

concentration of salts, nitrates and agrochemical pollution, and the often insufficient 

water quantity causing unsustainable exploitation of aquifers. The quality of irrigation 

water is assessed on the basis of its effect on soil and on agricultural management 

practices (Malamos and Nalbantis 2005). Within this framework, there is a need for 

water quality monitoring in order to scientifically address the impacts of both existing 

and future degradation of water and soil quality, and to provide the basis for action at all 

administrative levels.  

In monitoring activities (Bartram and Ballance 1996, Chapman 1996), water 

quality is assessed by sampling or in situ point measurements in selected locations 

within the area of interest. Generalization of the results throughout the study area is 

realized by implementing spatial interpolation methods, as reported in several studies 

about the quality of water. For example, Gong et al. (2014) dealt with the comparison 

between kriging and inverse distance weighting methods, in estimating groundwater 

arsenic concentrations in rural areas; Kourgialas et al. (2017) analysed the dissolution 

and transport of excess quantities of the major and trace elements of fertilizers to the 

groundwater, which deteriorate the quality of drinking and irrigation water, by 
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implementing a GIS decision support system; Mir et al. (2017) dealt with the spatial 

monitoring of chemical parameters of water in dry and wet years in order to follow the 

variations in the water quality and determine the most suitable sites to extract potable 

and irrigation water by mapping these parameters; Murphy et al. (2010) performed 

comparison of three spatial interpolation methods – inverse distance weighting, ordinary 

kriging, and universal kriging – for water quality evaluation; while Yidana et al. (2012) 

classified groundwater quality control parameters and determined the quality for 

domestic and commercial irrigation purposes, using multivariate statistical methods and 

geographic information systems. 

The predictive performance of spatial interpolation methods is affected by 

interrelated factors: (a) sampling design and spatial distribution of samples, and (b) the 

nature and quality of data (Li and Heap 2014). Several studies, in various disciplines, 

have dealt with the evaluation of different spatial interpolation methods (Burrough and 

McDonnell 1998, Goovaerts 2000, Price et al. 2000, Vicente-Serrano et al. 2003, Stahl 

et al. 2006, Kis 2016, Malamos and Koutsoyiannis 2016b, Malamos et al. 2017). 

Here, spatial interpolation methods are assessed based on a biannual survey of 

the physico-chemical quality indices of irrigation water, such as: electrical conductivity, 

pH, dissolved oxygen (DO), temperature, turbidity and oxidation–reduction potential, 

along with the variability of the water level inside irrigation wells of a cultivated plain 

of a Mediterranean island catchment, which was conducted using a multi-parameter 

probe. This survey resulted in data collection from 104 water wells, constituting a 

dataset capable of addressing the spatial variation of the aforementioned variables. 

Apart from the obvious importance of the acquired data considering agricultural 

practice management during the dry and wet seasons, they constituted the basis for 

testing the special interpolation methods. The features of four well-established spatial 
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interpolation methods, i.e. ordinary kriging (OK), universal kriging (UL), inverse 

distance weighting (IDW) and nearest neighbours (NN), were evaluated against those of 

the recently introduced bilinear surface smoothing (BSS; Malamos and Koutsoyiannis 

2016a). The performance of each method was assessed by means of two different kinds 

of cross-validation procedures, implementing several statistical criteria. The 

mathematical derivation of the BSS’s leave-one-out cross-validation residuals from the 

existing mathematical framework is also depicted. 

 

Study area 

General characteristics 

The study area is the plain of Komi-Kalloni (Fig. 1) located on the northeast side of the 

Greek island of Tinos (37.6N, 25.15E; WGS84–EPSG: 4326), in the Aegean Sea. 

Tinos is the fourth largest island in the Cyclades archipelago, after the islands of Naxos, 

Andros and Paros, with an area of approx. 195 km
2
. It has about 9000 inhabitants across 

62 settlements. Tinos is located in the northern Cyclades, southeast of Andros island 

and northwest of Mykonos island. 

[Figure 1] 

The plain of Komi-Kalloni (268.1 ha), located at the estuary of the largest water 

basin of Tinos island, has an area of 3821.6 ha and a total stream length of about 90 km 

(Fig. 1). The average altitude of the plain is 27.5 m a.s.l., with minimum and maximum 

altitudes of 12 and 96 m a.s.l., respectively. Three villages, named Komi, Kalloni and 

Kato Klesma, are located on the southern (upstream) edges of the plain and are 

populated by farmers.  
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From a soil perspective, the study area consists of well-drained alluvial deposits 

of neutral reaction, with loamy sand texture without CaCO3, and shale bedrock (Shahabi 

and Anagnostopoulos 1973). There are soil salinity problems, as a direct consequence 

of the vicinity of the sea, caused by saline irrigation water and sea salt aerosols due to 

the presence of strong north winds all year round. Because of these strong winds, the 

farmers grow windbreaks from common reed (Phragmites australis) at the edges of 

every field, in order to protect their crops. 

The agricultural production of the plain is essential to the island’s sustainability, 

since it provides the majority of edible fruits and vegetables consumed by both the 

inhabitants and tourists. The main cultivation consists of horticultural crops such as 

potatoes, tomatoes, leafy vegetables and several kinds of fruits, along with citrus trees, 

mainly lemon trees. The cultivation of artichokes (Cynara cardunculus) increases 

downstream due to their tolerance to salinity, while the area occupied by citrus trees 

remains stable and is upstream. There are also some vineyards and olive groves located 

on the edges of the plain. This farming pattern, which is characterized by high quality 

agricultural products in limited volumes, is typical of the Cyclades islands.  

The climate of the region is Mediterranean and, according to the Köppen-Geiger 

classification, is characterized as CSa, i.e. warm temperate steppe with a hot summer 

(Kottek et al. 2006). The average annual rainfall does not exceed 460 mm; the average 

temperature is 18.0C, with average maximum and minimum temperatures of 30.8 and 

7.3C reported in July and February, respectively. The crops are irrigated almost 

exclusively by water wells during the dry period of the year, which lasts from early 

April to late September.  

The monthly variations in the basic climatic parameters, acquired from the 

climatic atlas of Greece (Mamara et al. 2016, 2017) are presented in Figure 2. 



6 

 

[Figure 2] 

Field survey 

To acquire the necessary information about the spatio-temporal variation in the 

irrigation water quality, a field survey (Bartram and Ballance, 1996; Chapman, 1996) 

was planned and conducted, consisting of in situ measurements of several physico-

chemical properties of every well located in the study area at the end of the dry and wet 

periods respectively, i.e. twice a year.  

There are three types of monitoring activities that distinguish between long-term, 

short-term and continuous monitoring programmes. To perform the field survey, the 

location of all the water wells in the study area was identified. The methodology for 

collecting and recording the wells’ locations into a geographic information system 

(GIS) consisted of the following steps: 

 

1. Initial location of the wells, using a GIS and remote sensing data together with 

interviews of local farmers. Farmers were able to identify well locations on a 

computer screen with the help of a thematic map of the study area that included: (a) 

very high resolution colour satellite images; (b) a digital elevation model (DEM); 

(c) different points of interest, such as place names, churches, streams and roads.  

2. On-the-spot visits with the participation of farmers as guides, to carry out the first 

round of measurements while simultaneously verifying the position of the wells 

using a geographical positioning system (GPS) device. 
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3. Registration of the actual positions of the wells into the GIS using the projected 

coordinate system for Greece, i.e. Greek Grid (EPSG: 2100) and updating the 

thematic map with all the necessary information for the next measurement cycle. 

4. A second round of measurements was carried out without involving farmers as 

guides, by just using the GPS device with the actual positions of the wells. 

 

In this way, the 104 water wells were identified and included in both 

measurement rounds (Fig. 3). 

[Figure 3] 

A
.
 multi-parameter water quality probe (TROLL 9000E, In-Situ Inc. 2005) 

connected with a 20-m-long cable to a PDA was used for acquiring water quality 

measurements and storing the data. The probe is equipped with several sensors to 

measure, e.g. pH, DO, conductivity (and specific conductance, salinity, total dissolved 

solids, resistivity), temperature, turbidity and oxidation–reduction potential. All the 

sensors, except for the turbidity sensor, were calibrated using a standardized solution 

from In-Situ Inc. (Quick Cal). This combination of sensors is capable of providing an 

assessment of water quality (Bartram and Ballance 1996).  

 

Materials and methods 

Following the preliminary data analysis, spatial interpolation and mapping of the 

parameters affecting irrigation water quality was performed, applying four of the most 

commonly used methods, i.e. ordinary kriging (OK), universal kriging (UK), inverse 

distance weighted (IDW), nearest neighbours (NN), against the recently introduced 

bilinear surface smoothing (BSS; Malamos and Koutsoyiannis 2016a, 2016b).  
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The results of all five methodologies were compared, in terms of several 

performance evaluation criteria, along with two different types of cross-validation, i.e. 

leave-one-out and two-fold cross-validation. 

The implementation of the leave-one-out cross-validation procedure, using the 

BSS mathematical framework, is also presented. 

Bilinear surface smoothing 

The non-parametric mathematical framework of BSS (Malamos and Koutsoyiannis 

2016a) incorporates smoothing terms with adjustable weights, defined by means of the 

angles formed by consecutive bilinear surfaces into a piecewise surface regression 

model with known break points. An alternative implementation of the main 

methodology is the bilinear surface smoothing with explanatory variable (BSSE) that 

incorporates, in an objective manner, an explanatory variable available from 

measurements in a considerably denser dataset than the initial main variable. 

The mathematical framework of BSS suggests that fitting is meant in terms of 

minimizing the total square error among the set of original points zi(xi, yi) for i = 1,…, n 

and the fitted bilinear surface, that in matrix form, can be written as: 

𝑝 = ‖𝒛 − �̂�‖2 (1) 

where z = [z1,…, zn]
T
 is the vector of known applicates of the given data points with size 

n (the superscript T denotes the transpose of a matrix or vector) and �̂� = [�̂�1,…, �̂�𝑛]
T is 

the vector of estimates with size n.  

Both BSS and BSSE have the following features, as outlined in Malamos and 

Koutsoyiannis (2016a): 

 BSS is univariate, while BSSE is multivariate. 
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 They are both local and global. 

 They can be either exact or inexact. 

 They are stochastic, since the proposed mathematical framework, apart from 

estimations, provides direct means of evaluating interpolation errors; also, it 

provides the leave-one-out cross-validation residuals, as demonstrated in the 

following sections. 

 The surfaces that they produce can be either gradual or abrupt depending on the 

magnitude of the smoothing parameters. 

 Both BSS and BSSE use a regular grid not necessarily square, since the number 

of bilinear surfaces along the x direction does not have to coincide with the 

number of bilinear surfaces along the y direction. 

 

For explanation and analysis of the above terminology the interested reader is 

referred to the classification of spatial interpolation methods presented by Li and Heap 

(2008). A brief presentation of the method and its equations follows, while the details of 

the method, including the algorithms and derivations of the equations, may be found in 

(Malamos and Koutsoyiannis 2016a).  

Let (cxl, cyk), l = 0, …, mx, k = 0, …, my, be a grid of (mx + 1) × (my + 1) 

points on the x y plane, so that the rectangle with vertices (cx0, cy0), (cxmx, cy0), (cx0, 

cymy) and (cxmx, cymy) contain all (xi, yi). For simplicity, we assume that the points on 

both axes are equidistant, i.e. cxl – cxl–1 = δx and cyk – cyk–1 = δy.  

The general estimation function for point u on the (x y) plane, according to the 

BSS method, is: 

�̂�𝑢 = 𝑑𝑢 (2) 
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while, according to the BSSE method it is: 

�̂�𝑢 = 𝑑𝑢 + 𝑡𝑢𝑒𝑢 (3) 

where du, eu are the values of the two bilinear surfaces at that point and tu is the 

corresponding value of the explanatory variable.  

Equations (2) and (3) can be more concisely written, for all given points zi(xi, yi) 

simultaneously, as: 

�̂� =  𝜫 𝒅 (4) 

and 

�̂� =  𝜫 𝒅 + 𝜯𝜫𝒆 (5) 

where d = [d0,…,dm]
T
 is a vector of unknown applicates of the bilinear surface d, with 

size m+1 (m = (mx + 1) × (my + 1) – 1); e = [e0,…,em]
T
 is a vector of unknown 

applicates of the bilinear surface e, with size m+1; and T is a n  n diagonal matrix with 

elements: 

T = diag(t(x1, y1), …, t(xn, yn)) (6) 

where t(x1, y1), …, t(xn, yn) are the values of the explanatory variable at the given data 

points; and Π is a matrix with size n  (m + 1), whose ijth entry (for  i = 1, …, n; j = 0, 

…m) is: 
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𝜋𝑖𝑗 =

{
 
 
 
 

 
 
 
 

(cx𝑙−𝑥𝑖 ) (cy𝑘−𝑦𝑖)

𝛿𝑥 𝛿𝑦
, when cx𝑙−1 < 𝑥𝑖 £ cx𝑙  and cy𝑘−1 < 𝑦𝑖 £ cy𝑘

(cx𝑙−𝑥𝑖 ) (𝑦𝑖−cy𝑘−1)

𝛿𝑥 𝛿𝑦
, when cx𝑙−1 < 𝑥𝑖 £ cx𝑙  and cy𝑘 < 𝑦𝑖  £ cy𝑘+1

(𝑥𝑖−cx𝑙−1 ) (𝑦𝑖−cy𝑘−1)

𝛿𝑥 𝛿𝑦
, when cx𝑙 < 𝑥𝑖  £ cx𝑙+1 and cy𝑘 < 𝑦𝑖  £ cy𝑘+1

(𝑥𝑖−cx𝑙−1 ) (cy𝑘−𝑦𝑖)

𝛿𝑥 𝛿𝑦
, when cx𝑙 < 𝑥𝑖  £ cx𝑙+1 and cy𝑘−1 < 𝑦𝑖 £ cy𝑘

0, otherwise

 (7) 

The calculation of the unknown vectors d and e requires also the definition of 

matrices Ψx and Ψy  with size (m – 1)  (m + 1) (for i = 1, …, m – 1 and j = 0, …m) and 

ijth entry: 

𝜓𝑥 𝑖,𝑗 = {

2, when 𝑖 = 𝑗 and 𝑖 − 𝑘(mx + 1) ∉ {1,mx + 1}

−1, when |𝑖 − 𝑗| = 1 and 𝑖 − 𝑘(mx + 1) ∉ {1,mx + 1}
0, otherwise

 (8) 

where k = 0, …, my, while: 

𝜓𝑦 𝑖,𝑗 = {

2, when 𝑖 = 𝑗 and 𝑖 − 𝑙(my + 1) ∉ {1,my + 1}

−1, when |𝑖 − 𝑗| = 1 and 𝑖 − 𝑙(my + 1) ∉ {1,my + 1}
0, otherwise

 (9) 

with l = 0, …, mx (note that Ψx and Ψy are identical when mx = my). 

In the case of BSS, the solution that minimizes error has the following form:  

d = (Π
T
 Π + λx Ψx

Τ
 Ψx + λy Ψy

Τ
 Ψy)

–1
 (Π

Τ
z)   (10) 

Likewise, in the case of BSSE, the solution is: 

[
𝒅
𝒆
] = 𝜴−1 [ 𝜫T𝒛

𝜫T 𝑻T𝒛
] (11) 

where 

𝜴 ∶= [
𝜫T 𝜫 + 𝜆𝑥𝜳𝑥

Τ 𝜳𝑥  +  𝜆𝑦𝜳𝑦
Τ  𝜳𝑦 𝜫T 𝑻𝜫

𝜫T 𝑻𝜫 𝜫T 𝑻T 𝜯𝜫 + 𝜇𝑥𝜳𝑥
Τ  𝜳𝑥  + 𝜇𝑦𝜳𝑦

Τ 𝜳𝑦

]  (12) 
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The minimum number of m + 1 points required to solve equations (10) or (11) is 

6, since the minimum number points needed to define the bilinear surfaces is the 

number of points that define two consecutive planes oriented according to either x or y 

direction. Based on the above equations, we can estimate the applicate of any point that 

lies in the two-dimensional interval ([cx0, cxmx]  [cy0, cymy]) by using either version of 

the proposed methodology. 

Choice of parameters 

The adjustable parameters required to implement each of the two versions of the 

methodology can be estimated by transforming the smoothing parameters λ and μ in 

terms of tension: τλ and τμ, whose values are restricted in the interval [0, 1), for both 

directions (Malamos and Koutsoyiannis 2016a). This transformation provides a 

convenient search in terms of computational time and is based on the generalized cross-

validation (GCV;  Craven and Wahba 1978, Wahba and Wendelberger 1980) 

methodology. Thus, for a given combination of segments mx, my, the minimization of 

GCV results in the optimal values of τλx, τλy and τμx, τμy. This can be repeated for several 

trial combinations of mx, my values, until the global minimum of GCV is reached. 

Leave-one-out cross-validation 

The leave-one-out cross-validation (LOOCV) is one of the most commonly used 

procedures for evaluating spatial interpolation methods, with several researchers 

reporting various applications in the discipline of water resources and soil science 

(Burrough and McDonnell 1998, Li and Heap 2008, Oliver and Webster 2014). Also, 

the differences between the LOOCV model predictions and observations, i.e. residuals, 

should be tested for normality and linear correlation with the original data points, in 
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order to evaluate the quality of model results (Kitanidis 1997, Malamos and 

Koutsoyiannis 2015). 

The proposed mathematical formulation of bilinear surface smoothing easily 

delivers the estimation of the LOOCV residuals, in order to provide means of the 

method’s outcome evaluation without repeating the procedure n times, one for each zi 

left out.  

For the BSS case, this is achieved by combining equations (4) and (10) to: 

�̂� = 𝑨 𝒛 (13) 

where A is a n  n symmetric matrix given by: 

Α = Π (Π
T
 Π + λx Ψx

Τ
 Ψx + λy Ψy

Τ
 Ψy)

–1
 Π

Τ
  (14) 

while, for the BSSE case, combining equations (5) and (11), we obtain again equation 

(13), with A being a n  n symmetric matrix, now given by: 

𝑨 = 𝜫 𝜯𝜫 𝜴−1(𝜫 𝜯𝜫)Τ (15) 

The positive-definite smoother matrices A in equations (14) and (15) include all 

adjustable parameters: mx, my, λx, λy and μx, μy and they are preserving the elements of 

each row sum to one. Let �̌� = [�̌�1, �̌�2, ⋯ , �̌�𝑛]
T be the vector with size n, of the 

estimates, �̌�, when each data point is successively left out and predicted from the rest of 

the data. In order to acquire �̌� using the smoother matrices presented above with their 

ith row and column deleted in order to be of dimension (n – 1) × (n – 1), we must 

renormalize their rows to sum to one. When the ith column is deleted, the ith row now 

sums to 1– aii, where aii are the diagonal elements of matrix A. Thus, by dividing every 
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element of the ordinary predicted values by 1 – aii (for i = 1 to n), we get the LOOCV 

predicted values, i.e.:  

�̌�𝑖 =
1

1–𝑎𝑖,𝑖
∑ 𝑎𝑖,𝑗𝑧𝑗
𝑛
𝑗=1
𝑗≠𝑖

  (16) 

while the ith ordinary predicted value is: 

�̂�𝑖 = ∑ 𝑎𝑖,𝑗
𝑛
𝑗=1 𝑧𝑗  (17) 

To acquire the leave-one-out residuals we multiply both sides of equation (16) 

with (1 – aii), and, after rearrangement, we obtain: 

�̌�𝑖 = �̂�𝑖 − 𝑎𝑖,𝑖𝑧𝑖 + 𝑎𝑖,𝑖�̌�𝑖  (18) 

By subtracting zi from both sides of equation (18), we obtain: 

𝑧𝑖− �̌�𝑖 = 𝑧𝑖 − (�̂�𝑖 − 𝑎𝑖,𝑖𝑧𝑖 + 𝑎𝑖,𝑖�̌�𝑖) (19) 

After rearrangement, the leave-one-out residuals are given by: 

𝑧𝑖 − �̌�𝑖 =
1

1−𝑎𝑖,𝑖
(𝑧𝑖 − �̂�𝑖) (20) 

In matrix form, equation (20) can be written as: 

𝒛 − �̌� = 𝑺(𝑰–𝑨)𝒛   (21) 

where S is a n  n diagonal matrix, used for normalization, with elements: 

S = diag(
1

1–𝑎1,1
,

1

1–𝑎2,2
, ⋯ ,

1

1–𝑎𝑖,𝑖
) (22) 

The formulation of equation (21) has the advantage of implementing the already 

computed vector (𝑰–𝑨)𝒛 from the GCV minimization procedure to estimate the 

adjustable parameters of the method, as noted in the previous section and detailed in 

Malamos and Koutsoyiannis (2016a). 
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The left-hand side of equation (21) is the vector containing the LOOCV 

residuals, while the right-hand side expresses these residuals in terms of the ordinary 

residuals. Since the leave-one-out residuals (𝑧𝑖 − �̌�𝑖) are known, the leave-one-out 

predicted values, �̌�𝑖, can be computed.  

Kriging 

One of the commonly-used estimators for the interpolation of spatial data is the kriging 

technique. Kriging selects weights so that the estimates of a regionalized variable at 

selected points are unbiased and the estimation variance is minimized. 

The character of the spatially correlated variation is encapsulated in functions 

such as the variogram and the covariogram, and these provide the information for 

optimizing interpolation weights and search radii. Experimental variograms are 

computed from sample data in one, two, or three spatial dimensions. These 

experimental data are fitted by a theoretical variogram model, which serves to provide 

data for computing interpolation weights (Burrough and McDonnell 1998). 

Kriging requires a large number of available data points, at least 100, according 

to Oliver and Webster (2014), or 50–100 according to other studies (Li and Heap 2008), 

in order to produce a reliable estimation of variogram. The number of the required data 

points depends on the kind of spatial variation encountered, though smooth surfaces 

require fewer points than those with irregular variation (Burrough and McDonnell 1998, 

Goovaerts 2000). 

Currently, there are a lot of geostatistical methods incorporating different 

approaches of kriging, such as: simple, ordinary and universal kriging, kriging with an 

external drift or cokriging, which can accomplish interpolation tasks (Burrough and 

McDonnell 1998, Goovaerts 1997, Goovaerts 2000, Li and Heap 2008). Ordinary and 
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universal kriging, which are used in the present study, are gradual, local, and may or 

may not reproduce the measured data.  

Both methods require fitting a theoretical variogram to the empirical one. The 

actual process of fitting a model to an empirical variogram is referred to as more of an 

art than a science and involves evaluation of several types of models, a procedure that is 

time consuming and to some extent subjective with different authorities suggesting 

different methods and protocols (Bohling 2005). 

Ordinary kriging (OK) is similar to simple kriging and the only difference is that 

OK estimates the local constant mean, then performs simple kriging on the 

corresponding residuals, and only requires the constant mean of the local search 

window (Goovaerts 1997, Li and Heap 2008). 

Universal kriging (UK), also known as kriging with a trend or kriging in the 

presence of a drift, is a multivariate extension of ordinary kriging accommodating a 

spatially varying trend, introduced by Matheron (1969). It can be used both to produce 

local estimates in the presence of trend and to estimate the underlying trend itself, if it 

can be modelled by simple functions. UK can be used when the stochastic field of 

interest does not meet the criterion of second-order stationarity necessary for kriging. 

Second-order stationarity suggests that the mean and variance are the same on the entire 

area and that the correlation between any two observations depends only on their 

relative position in space. If the mean is assumed not constant across the entire study 

area the model is said to be nonstationary. UK splits the random function into a linear 

combination of deterministic functions, the smoothly varying and the trend, which is 

also called a drift, and a random component representing the residual stochastic field. 

Spatial trend or a drift represents any detectable tendency for the values to change as a 

function of the coordinate variables. The mean can be a function of the coordinates in 
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linear, quadratic or higher form (Kis 2016, Oliver and Webster 2014, Tabios and Salas 

1985, Vicente-Serrano et al. 2003). 

Inverse distance weighted and nearest neighbours 

The inverse distance weighting (IDW) and nearest neighbours (NN) methods were 

implemented as quick and exact interpolators capable of addressing the characteristics 

of the study area due to the large number of available data points.  

The IDW method is straightforward and computationally non-intensive, and 

effective in many aspects (Tegos et al. 2015, 2017). It has been regarded as one of the 

standard spatial interpolation procedures in geographic information science (Burrough 

and McDonnell 1998) and has been implemented in almost every GIS software 

package. Formally, the IDW method estimates the values of an attribute at unsampled 

points using a linear combination of values at sampled points weighted by an inverse 

function of the distance from the point of interest to the sampled points. The assumption 

is that sampled points closer to the unsampled point are more similar to it than those 

farther away in their values (Li and Heap 2008).  

The NN method, otherwise known as Thiessen polygons, predicts attributes at 

unsampled locations based on the nearest single data point. So, NN divides a region 

geometrically, in a way that is totally determined by the configuration of the data points, 

with one observation per cell. This is accomplished by triangulating all available data 

points into an irregular network that meets the Delaunay criterion, i.e. no point rests 

inside the circumcircle of any triangle. The perpendicular bisectors for each triangle 

edge are generated, forming the edges of the Thiessen polygons. The locations at which 

the bisectors intersect determine the locations of the Thiessen polygon vertices. If the 

data lie on a regular square grid, then the produced polygons are all equal, regular cells 
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with sides equal to the grid spacing; if the data are irregularly spaced, then an irregular 

lattice of polygons results. Obviously, since all estimates equal the values at the data 

points, NN is classified as an exact interpolator. 

Computational implementation 

The BSS method was realised in Microsoft Excel, as it provides a direct means of data 

visualization and graphical exploration. This was accomplished by the development of a 

dynamic link library in Free Pascal (Lazarus Team 2016), which was linked to 

Microsoft Excel. In this context, an Excel array formula acts as the main interface, with 

its arguments being the values and coordinates of the available points along with the 

coordinates of the unknown points, the number of points on the x and y axis that form 

the bilinear surfaces and the smoothing parameters values (Malamos and Koutsoyiannis 

2016a). 

The IDW, NN, OK and UK methods were performed by means of the free and 

open source GIS software: System for Automated Geoscientific Analyses (SAGA) 

version 5.0.0 (Conrad et al. 2015). SAGA is equipped with numerous tools, providing 

an almost complete collection of interpolation techniques, comprising deterministic and 

geostatistical kriging methods and its derivatives, with variable search radii. 

One important feature of the above-mentioned SAGA modules (IDW, NN, OK 

and UK) is the ability to perform different kinds of cross-validation, i.e. leave-one-out, 

two-fold or k-fold cross-validation. The output of the two-fold and k-fold cross-

validation is a set of performance metrics such as: mean square error (MSE), root mean 

square error (RMSE), normalized root mean square error (NRMSE) and the coefficient 

of determination (R
2
). In the case of LOOCV, SAGA provides additional information in 

terms of the estimation residuals along with the leave-one-out predicted values. These 
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residuals can be tested for normality and linear correlation to the original data points 

and compared against the results of the BSS residuals analysis, presented earlier. 

The computations involving the IDW and NN interpolations were relatively 

straightforward, while the kriging interpolation required the fitting of a theoretical 

variogram to the empirical one, for each parameter. The investigated variogram models 

were the widely-used: (a) spherical, (b) exponential, (c) Gaussian and (d) power. In the 

case of UK, we chose the geographical coordinates as “external drift” predictors. 

Since SAGA’s variogram fitting module required the range as input, the fitting 

procedure was accomplished by means of the Excel XonGrid Interpolation Add-in 

(http://xongrid.sourceforge.net/). XonGrid is a free Excel library of functions to perform 

multidimensional interpolations from scattered data. Excel Solver was used to perform 

the optimization procedure by adjusting range, sill and nugget. The upper limit of range 

was set as the distance, h, at which the value of the model variogram reaches 95% of the 

sill, i.e. the 95% of the midpoint distance between the outermost data points. The sill 

was maintained larger than the variance of the observations, γ, while the nugget was 

estimated through the optimization procedure.  

All four variogram models were fitted for each parameter using the procedure 

described above. Those finally selected for kriging performed better in terms of the 

statistical criteria provided by SAGA GIS during the LOOCV procedure along with 

tests considering residuals normality and linear correlation. So, both kriging versions 

were implemented using the best variogram model according to the residuals analysis of 

the LOOCV procedure and not the best fitted model to the experimental variogram. 

 

Evaluation criteria 

The criteria used for the evaluation of the methodologies performance are: mean bias 

http://xongrid.sourceforge.net/
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error (MBE), mean absolute error (MAE), root mean square error (RMSE) and 

modelling efficiency (EF) (Loague and Green 1991, Nash and Sutcliffe 1970, Willmott 

1982). Willmott (1982) suggests that RMSE and MAE are among the best overall 

measures of model performance, as they summarize the mean difference in the units of 

observed and predicted values. RMSE provides a measure of model validity that places 

a lot of weight on high errors, whereas MAE is less sensitive to extreme values. The 

relationships that provide them are: 

MBE =
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)
𝑛
𝑖=1    (23) 

MAE =
1

𝑛
∑ |𝑃𝑖 − 𝑂𝑖|
𝑛
𝑖=1    (24) 

RMSE = [
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

2𝑛
𝑖=1 ]

1/2

 (25) 

EF = 1 −
∑ (𝑃𝑖−𝑂𝑖)

2𝑛
𝑖=1

∑ (�̅�−𝑂𝑖)
2𝑛

𝑖=1

 (26) 

where n is the number of observations, Oi are the observed values, Pi are the predicted 

values, and Ō is the mean of the observed values. The optimum (minimum) for the 

MBE, MAE, RMSE statistics is 0, while the optimum (maximum) for EF is 1. 

Ideal point error 

The ideal point error (IPE; Domínguez et al. 2011) metric is calculated by identifying 

the ideal point, up to a five-dimensional space, against which each model should be 

evaluated. For the purposes of the present study, the three-dimensional vector IPE3 is 

implemented by normalizing RMSE, MBE and the coefficient of determination (R
2
), so 

the individual IPE3 for each measure ranges from 0 for the best model to 1 for the 

worst.  
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The coordinates of the ideal point are: RMSE = 0, R
2
 = 1, MBE = 0. IPE3 

measures how far a model is from this ideal point by the relationship: 

IPE3𝑖 = [(1/3) ( (
RMSE𝑖

maxRMSE
)
2

+  (
𝑅𝑖
2−1

min𝑅2−1
)
2

+  (
MBE𝑖

max |MBE|
)
2

)]

1/2

 (27) 

In equation (27), i represents each of the models under investigation. 

Results and discussion 

Preliminary data analysis 

As previously stated, 104 water wells were identified inside the study area, resulting in 

an average density of one well every 2.6 hectares. The majority of sampling points were 

taken up to 35 m of altitude (Fig. 3). 

Two rounds of sampling were performed, the first at the end of the dry period of 

the hydrological year (from 28 August 2007 to 21 September 2007), and the second at 

the end of the following wet period (14 March 2008 to 30 March 2008 (Fig. 3). It is 

worth pointing out that the timing of the second round of measurements was determined 

by the weather, since access to the lower parts of the plain was almost impossible due to 

rainfall events and the subsequent floods that occurred during the first 10 days of March 

2008. All measurements were executed following the procedures described in the 

manual of the TROLL 9000Ε probe. Each measurement was taken when the full length 

of the instrument’s body was submerged, at 60 cm depth. After each measurement 

completion, the probe was rinsed with clear water to remove impurities on the sensors 

before the next measurement. The duration of the measurements depended on the time 

needed for the sensors to stabilise. Also, calibration was performed twice in each round 
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of measurements, the first at the beginning and the second in the middle of each round, 

using the Quick Cal solution (In-Situ Inc. 2005). 

Apart from the TROLL 9000Ε parameters, the distance between the water 

surface and the ground, together with the total depth of each well, were measured. Then, 

the water level inside the well was determined by subtracting the first measurement 

from the second. Consequently, the water elevation above sea level was estimated by 

subtracting the distance between the water surface and the ground from the 

corresponding altitude provided by the DEM of the study area. 

The first round of sampling took 16 days to complete, while the second was only 

12 days. This is explained by the fact that the locations of the wells and the routes to 

reach them were not a priori available. As this was not the case for the second round of 

measurements, a greater number of samples could be taken on each day. 

The results are summarized in Table 1 (dry period) and Table 2 (wet period), by 

means of the maximum, minimum and average values, along with the percentage of 

measurements exceeding the average. The parameter values were within the limits 

found in the literature (In-Situ Inc. 2005). The values of actual conductivity were 

normalized to 25ºC, to allow comparison between measurements made at different 

temperatures. This conversion required a temperature coefficient for the solution being 

measured. By convention, the temperature coefficient for potassium chloride (KCl) 

calibration standards was used. Therefore the specific conductance was calculated from 

(In-Situ Inc., 2005): 

SC =
AC

[1+0.0191(𝑇−25)]
 (28) 

where AC is the actual conductivity (in μS/cm), 0.0191 is the nominal temperature 

coefficient for KCl solutions and T is the solution temperature (in ºC). According to In-
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Situ Inc. (2005), specific conductance is used to estimate total dissolved solids (TDS), 

by multiplying the specific conductance by a factor of 0.65. 

[Table 1, Table 2] 

Figure 4 shows the variation in specific conductance along with the geological 

faults present in the study area between the two measurement periods, in terms of 

analogy between those acquired during the wet period against those of the dry period, 

while Figures 5 and 6 present the corresponding variation in the water level and the DO, 

respectively.  

[Figure 4, Figure 5, Figure 6] 

The water level fluctuation is evident along the main stream, especially 

upstream. In general, as the distance from the main stream increases, the water level 

fluctuation is reduced too. However, the water level rises by 40% during the wet period, 

with an average value of 4.5 m, and 46.2% of measurements exceeding this average. 

The average distance between the ground surface and the water inside the wells, was 2.7 

m for the wet period, while it reached 5.1 m for the dry period, presenting a notable 

increase. 

In the case of specific conductance, a decrease is obvious (Fig. 4), especially 

along the main stream. It should be noted that the maximum value of specific 

conductance measured during the wet period (7205 μS/cm, Table 2) can be explained 

by sea water intrusion, since measurements were done along the geological faults on the 

northeast side of the study area, near the sea. 

The vicinity of the sea constitutes a major reason to investigate the existence of 

trend between the measured parameters and their location. In this context, the degree of 

linear dependence between the measured parameters and the projected coordinates 

(Greek Grid-EPSG: 2100) of each water well was examined in terms of the coefficient 
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of determination (R
2
) of the fitted line, when the parameters were plotted against each 

direction (Table 3). The y-coordinates are well correlated to the distance from the sea 

due to the shape of the catchment. Water elevation, specific conductance and oxidation–

reduction potential are linearly correlated to the variation of y-coordinates, in both dry 

and wet periods, with R
2
 values in the range 0.202–0.457.  For the wet period, pH and 

DO have R
2
 values of 0.263 and 0.330, respectively, with the y-coordinates, while for 

the dry period the corresponding values are much smaller. Finally, the water 

temperature has a R
2
 value of 0.375 during the dry period only. Based on the above 

discourse, the presence of a spatial trend imposes the use of universal kriging for spatial 

interpolation of the selected variables. 

[Table 3] 

The variogram analysis described earlier showed that, for the wet season, the 

best variogram model for all the parameters, except water elevation, was the spherical 

for both kriging versions, i.e. OK and UK, while the exponential model performed 

better for the dry season. In the case of groundwater elevation above sea level, the 

power model outperformed the other models, for both seasons. 

Spatial interpolation 

Spatial interpolation of parameters requires representability of the point measurements, 

not only at the specific locations where the data were collected, but also in adjacent 

areas. Measurements of physical parameters, such as DO and turbidity, inside non-

flowing water bodies, e.g. wells, cannot be considered as representative of the 

corresponding soil water properties across the study area, due to the complex external 

and biochemical influences, e.g. time of day of the measurement, sun exposure, algal 

growth and decomposition of organic matter, that occur in each well (Bartram and 
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Ballance 1996, Chapman 1996, Murphy et al. 2010). However, simple geochemical 

variables, such as conductivity normalized by temperature, i.e. specific conductance (or 

total dissolved solids) and pH, may be considered representative of the soil water in 

adjacent areas, thus capable of producing surfaces that describe their spatial structure. 

According to Chapman (1996), all three variables are used in irrigation water quality 

assessment. 

In this context, maps of specific conductance and pH were produced using all 

methods, for both wet and dry periods, along with the difference of groundwater 

elevation between the wet and the dry periods. The grid resolution for the output maps 

was set to 10 m, according to the size of the study area and the number of samples 

(Hengl 2006). 

In view of BSS implementation, the global minimum of GCV for every 

parameter was reached by implementing the methodology for different numbers of 

segments mx and my (1 ≤ mx ≤ 15, 1 ≤  my ≤ 15, m + 1 ≥ 6) and minimizing GCV for 

each combination, by altering each one of the adjustable parameters, as detailed in 

Malamos and Koutsoyiannis (2016a). Additionally, we assessed larger values of mx and 

my up to 30 segments in either direction (i.e. 16 ≤ mx ≤ 30 and 16 ≤  my ≤ 30) by 

setting each smoothing parameter to its minimum value (0.001) or its maximum value 

(0.99) alternately (i.e. four different combinations) in order to reduce the computational 

effort required to implement the GCV minimization procedure. The results of the above 

procedure are presented in Table 4. 

[Table 4] 

Figure 7 presents the bilinear surface d acquired from the solution of equation 

(10), along x and y axes, by applying the obtained parameters for the specific 

conductance of the wet period. The available measurements are indicated with stars. 
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Figure 8 presents the specific conductance maps of the study area, acquired from all five 

methods. The spatial pattern of the specific conductance variation demonstrated by all 

methods throughout the study area, showed increased values in the northeast, i.e. near 

the sea, with smaller values in the south-southeast, i.e. upstream. Also, proximity along 

the main stream bed does not contribute to a variation in specific conductance as much 

as the distance to the sea, especially in the lower parts of the study area. Considering the 

temporal variation of the specific conductance, the decrease of its values during the wet 

period is evident throughout the study area, except for a small part located in the 

northeast where increased values were encountered due to possible sea water intrusion, 

as already mentioned. The similarities between the outputs of UK, OK and IDW are 

noticeable. 

[Figure 7, Figure 8] 

Considering the spatio-temporal variation of pH (Fig. 9), a significant spatial 

variability throughout the study area is clear during the dry period, due to the influence 

of the diverse agricultural activities. However, the influence of freshwater from 

upstream during the wet period led to clearly distinguished areas of low and high pH 

values. Also, during the wet period, alkali values are shown by all methods in the 

eastern parts of the study area. 

[Figure 9] 

 

Figure 10 presents the difference in water elevation between the wet and dry 

periods, i.e. the temporal fluctuation of the water surface inside the wells, throughout 

the study area. All methods showed a significant increase in water level upstream, up to 

8.4 m, demonstrating the influence of the surface runoff originating from rainfall in the 

wet period. Considering the output of each method, BSS presented very plausible, 
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homogenously distributed areas, while the kriging implementations produced almost 

identical maps. Both IDW and NN presented either “bull’s eye” or polygon shaped 

artefacts, inconsistent to physical interpretation. 

[Figure 10] 

The results of all five methodologies (Figs 8, 9 and 10) show the significant 

improvement in irrigation water quality at the end of the wet season in upstream 

locations, with the greatest increase in water level, suggesting that the use of wells 

located in these areas is preferred to those located downstream. This could be achieved 

by the use of a centralized irrigation system, collecting the surface runoff, along with 

groundwater pumping from the preferred areas, thus distributing irrigation water of 

adequate quality across the plain. 

Even though the overall assessment demonstrated low irrigation water quality 

throughout the study area, frequent flooding of the well-drained loamy sand soil 

combined with the salts leaching caused by the excess irrigation applied by the farmers, 

suggest limiting factors to the salinity problems and soil structure degradation.  

Evaluation of spatial interpolation methods 

The evaluation of spatial interpolation methods using different statistical metrics may 

not be representative with respect to the validity of the interpolation results in other 

locations, except for those incorporated in the interpolation procedure.  

In order to tackle this, leave-one-out (LOOCV) and two-fold cross-validation 

procedures were implemented for the evaluation of the five methods efficiency, based 

on the already presented criteria. LOOCV was accompanied by tests regarding 

normality and linear correlation of the residuals to the original data points. The 
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statistical criteria results, concerning each parameter, are summarized in Tables 5, 6 and 

7.  

[Table 5, Table 6, Table 7] 

Based on the IPE3 metric (Tables 5, 6 and 7), the kriging implementations 

outperformed the rest in the cases of the specific conductance (wet and dry periods) and 

pH (dry period), while BSS performed better in the remaining cases. The IDW and NN 

methods produced the worst results in the specific conductance and water elevation 

cases. 

Figure 11 demonstrates the normal probability plots of the empirical distribution 

function of the residuals for the pH estimates from UK (dry period) and BSS (wet 

period). For comparison, the corresponding theoretical normal distribution functions 

were also plotted. As can be seen, the residuals follow the normal distribution in both 

cases. Similar results, not shown here for brevity, were obtained for the residuals of all 

parameters in both periods, except for the residuals obtained by NN that presented a 

sizable deviation from the corresponding normal distribution. In contrast, the NN 

residuals were those with the smallest coefficient of determination (R
2
) values amongst 

the other four methods, presenting negligible linear correlation between measured 

values and residuals. This can be explained by the fact that the predictions of the NN 

method at unsampled locations are those of the nearest single data point, so in the leave-

one-out procedure only the nearest point to the one omitted is used, probably having a 

similar value, thus resulting in more uncorrelated residuals than the other methods 

delivered, using all the remaining points as predictors. 

Furthermore, a two-fold cross-validation was performed as an extreme case of 

evaluation performance, where half of the dataset is used to estimate the other half and 

vice versa. For the BSS case, the dataset consisting of 104 data points was randomly 
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divided to two equal parts and, using each part successively as input, we obtained the 

estimations of the parameters at the locations of the other part. Each of the two 

validation rounds produced 52 estimations that were combined to produce the two-fold 

cross-validation output of the BSS. For the remaining methods, the two-fold cross-

validation was performed by means of SAGA GIS while keeping the same analysis 

extent. 

[Table 8] 

Table 8 shows the RMSE values obtained by the two-fold cross-validation 

procedure. BSS clearly outperformed all other methods confirming the findings of 

(Malamos and Koutsoyiannis 2016b) that in the case of scarce data, the bilinear surface 

smoothing mathematical framework provides consistent results. The kriging 

implementations gave a similar performance, followed closely by IDW. The NN 

method presented the poorest results apart from the case of water level. 

 

Conclusions 

A survey of physico-chemical quality indices of irrigation water in a Mediterranean 

island catchment irrigated by water wells resulted in a dense dataset collected in situ in 

two rounds, one at the end of the dry season and one at the end of the wet season, using 

an In-Situ Inc. Multi-Parameter TROLL 9000E probe. During the first round, the water 

wells were located using a geographical information system and remote sensing data, 

together with interviews with local farmers. During the second round, knowledge of the 

exact locations and routes led to an optimal allocation of time and resources and thus a 

reduction in the time required to cover the study area, with an increased number of 

samples taken per day. 
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The acquired data constituted a test set for assessing the performance and the 

features of four well-established spatial interpolation methods, i.e. ordinary kriging, 

universal kriging, inverse distance weighting and nearest neighbours, against those of 

the recently introduced bilinear surface smoothing. 

Furthermore, the derivation of the leave-one-out cross-validation residuals of 

BSS from the existing mathematical framework is also described, along with 

information concerning the implementation of the other four methods, in the open-

source geographical information system SAGA. 

The performance evaluation of each methodology took place on the basis of two 

types of cross-validation, i.e. leave-one-out and two-fold. The results of the leave-one-

out procedure were evaluated using the IPE3 criterion, which is a combined evaluation 

vector comprising three traditional metrics. The IPE3 values revealed that the kriging 

implementations, especially universal kriging, performed better for specific 

conductance (wet and dry periods) and pH (dry period), while bested by BSS in the 

remaining cases. The IDW and NN methods produced the worst results in the specific 

conductance and water level cases.  

For the two-fold cross-validation, BSS produced very good results, which, based 

on the acquired RMSE values, outperformed those of the other interpolation methods. 

Thus, BSS constitutes a good alternative to kriging in cases of data scarcity.  

In every case, the spatio-temporal variability of water quality parameters and the 

need to monitor them at least twice a year were evident. Also, low irrigation water 

quality was reported throughout the study area as a direct consequence of vicinity to the 

sea. The results of all five methodologies show a significant improvement of all indices 

at the end of the wet season, especially in upstream locations with the greatest increase 

in water level. This finding suggests a centralized irrigation system should be used that 
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collects surface water runoff along with groundwater from the preferred areas and 

distributes it across the plain. 

Although the BSS concept is simple, the overall performance against the other 

methods is quite satisfactory, indicating its applicability to provide factual information 

on the spatial distribution of water quality indices, even with scarce datasets. Also, 

further research considering the form of the variograms between wet and dry seasons 

will contribute to further assessment of the geostatistical properties of the 

aforementioned variables. This information, combined with appropriate agricultural 

practices, such as effective drainage and salts leaching from excess irrigation, suggest 

limiting of salinity problems and soil structure degradation and contribute to optimal 

irrigation water management. 
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Table 1. Synopsis of dry period results (August 2007). DO: dissolved oxygen. 

 
Maximum Minimum Average 

% of measurements 

exceeding the average 

Water elevation (m) 101.8 10.6 19.2 24.0 

Specific conductance 

(μS/cm) 
4769.5 1159.3 1757 36.5 

Temperature (ºC) 22.8 15.2 18.2 47.1 

Turbidity (NTU) 16.6 0.4 1.0 21.2 

Oxidation–reduction 

potential (mV) 
193 –274 70.1 62.5 

pH 8.22 6.78 7.56 63.5 

DO (μg/L) 9676 608 3756 48.1 

 

Table 2. Synopsis of wet period results (March 2008). 

 Maximum Minimum Average 
% of measurements 

exceeding the average 

Water elevation (m) 101.9 11.5 21.6 32.7 

Specific conductance 

(μS/cm) 
7205 851.6 1684.6 32.7 

Temperature (ºC) 19.19 12.21 15.6 53.8 

Turbidity (NTU) 2.9 0 0.4 35.6 

Oxidation–reduction 

potential (mV) 
228 –159 93.7 57.7 

pH 8.65 5.81 7.45 43.3 

DO (μg/L) 10398 569 4296.6 46.2 
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Table 3. Coefficient of determination (R
2
) of the linear regression between 

measurements and projected geographical coordinates.  

 Dry period Wet period 

 
x coordinate y coordinate x coordinate y coordinate 

Water elevation (m) 0.002 0.331 0 0.457 

Specific conductance 

(μS/cm) 
0 0.202 0 0.228 

Temperature (ºC) 0.046 0.375 0.167 0.01 

Turbidity (NTU) 0.006 0.013 0.044 0 

Oxidation–reduction 

potential (mV) 
0.01 0.266 0.236 0.117 

pH 0.037 0.062 0.123 0.263 

DO (μg/L) 0.008 0.038 0.003 0.330 

 

 

Table 4. BSS optimal parameter values and performance indices. 

Parameter / 

Period 

Number of 

segments, 

mx 

Number of 

segments, 

my 

τλx τλy 

Global 

minimum 

GCV 

Specific 

conductance 

     Wet 

 

 

7 

 

 

27 

 

 

0.99 

 

 

0.001 

 

 

3.4 × 10
5
 

     Dry 4 12 0.99 0.001 2.3 × 10
5
 

pH 

     Wet 

 

6 

 

3 

 

0.001 

 

0.001 

 

1.4 × 10
–1

 

     Dry 1 13 0.001 0.001 8.0 × 10
–2

 

Water elevation 

     Wet 

 

4 

 

2 

 

0.001 

 

0.001 

 

1.5 

     Dry 4 2 0.001 0.001 2.1 
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Table 5. Leave-one-out cross-validation statistics for both periods – specific 

conductance. 

Interpolation  

method 

MBE 

(μS/cm) 

MAE 

(μS/cm) 
RMSE EF IPE3 

Dry period 

BSS 3.0 293.6 457.0 0.402 0.68 

OK 10.8 267.3 437.2 0.453 0.65 

UK* 9.9 255.6 429.7 0.472 0.63 

IDW 44.6 255.3 432.8 0.464 0.85 

NN 21.9 281.8 569.5 0.072 0.86 

Wet period 

BSS 8.3 354.6 602.0 0.514 0.74 

OK* 16.8 288.8 534.9 0.616 0.62 

UK 18.0 292.6 538.0 0.612 0.63 

IDW 64.6 293.8 561.7 0.577 0.75 

NN 98.3 368.9 745.7 0.255 0.99 

* denotes best performance according to IPE3.  

 

 

 

Table 6. Leave-one-out cross-validation statistics for both periods – pH. 

Interpolation  

method 
MBE MAE RMSE EF IPE3 

Dry period 

BSS 0.00 0.18 0.27 0.325 0.82 

OK 0.02 0.15 0.24 0.488 0.88 

UK* 0.00 0.15 0.23 0.511 0.66 

IDW 0.01 0.15 0.24 0.478 0.77 

NN 0.00 0.14 0.26 0.358 0.76 

Wet period 

BSS* 0.01 0.27 0.37 0.749 0.61 

OK 0.00 0.24 0.43 0.690 0.65 

UK 0.01 0.25 0.43 0.681 0.68 

IDW 0.00 0.24 0.41 0.718 0.62 

NN –0.03 0.25 0.52 0.550 1.00 

* denotes best performance according to IPE3.  
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Table 7. Leave-one-out cross-validation statistics for both periods – groundwater 

elevation. 

Interpolation  

method 

MBE 

(m) 

MAE 

(m) 
RMSE EF IPE3 

Dry period 

BSS* –0.33 1.76 6.13 0.659 0.57 

OK –0.52 1.65 7.05 0.549 0.72 

UK –0.52 1.65 7.04 0.550 0.72 

IDW –1.16 1.90 8.14 0.399 0.99 

NN –1.18 1.85 6.95 0.562 0.85 

Wet period 

BSS* –0.39 1.61 6.12 0.685 0.61 

OK –0.44 1.55 6.45 0.650 0.66 

UK –0.44 1.55 6.43 0.652 0.66 

IDW –1.12 1.75 7.85 0.482 1.00 

NN –1.12 1.75 6.75 0.616 0.86 

* denotes best performance according to IPE3.  

 

Table 8. Two-fold cross-validation RMSE values for all parameters and both periods. 

 Specific conductance  pH Water elevation 

Interpolation  

method  
 Dry   Wet  Dry  Wet Dry Wet 

BSS* 289.2 401.3 0.28 0.26 2.24 0.99 

OK 489.6 577.7 0.29 0.40 6.44 6.07 

UK 489.6 589.5 0.30 0.40 6.43 6.06 

IDW 501.2 584.2 0.29 0.40 8.22 7.94 

NN 693.1 824.7 0.35 0.53 7.10 6.90 

* denotes best performance according to RMSE.  
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Figure 1. Study area. 

 

Figure 2. Monthly variation of maximum (T_max), average (T_aver), and minimum 

(T_min) temperature, and rainfall of the study area. 

 

Figure 3. Sampling points and altitude of the study area. 

 

Figure 4. Ratio of specific conductance between the two measurement periods (wet 

versus dry). 

 

Figure 5. Ratio of water level between the two measurement periods (wet versus dry). 

 

Figure 6. Ratio of dissolved oxygen between the two measurement periods (wet versus 

dry). 

 

Figure 7. Bilinear surface d fitted to the 104 specific conductance data points (stars) 

(minimum GCV: mx = 7, my = 27) for the wet period.  

 

Figure 8. Maps of specific conductance for both periods and all methods: (a, b) BSS; 

(c, d) universal kriging; (e, f) ordinary kriging; (g, h) inverse distance weighting; and (i, 

j) nearest neighbours. 

  

Figure 9. Maps of pH for both periods and all methods: (a, b) BSS; (c, d) universal 

kriging; (e, f) ordinary kriging; (g, h) inverse distance weighting; and (i, j) nearest 

neighbours. 
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Figure 10. Fluctuation of groundwater elevation above sea level between periods for all 

methods: (a) BSS, (b) UK, (c) OK, (d) IDW, and (e) NN. 

 

Figure 11. Normal probability plots of the pH empirical distribution functions of: (a) 

UK and (b) BSS residuals, using Weibull plotting positions against the corresponding 

normal distribution functions. 

 



2 

 

Figures 

 

 

Figure 1. Study area 

 

 

Figure 2. Monthly variation of maximum (T_max), average (T_aver), minimum 

(T_min) temperature and rainfall of the study area 
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Figure 3. Sampling points and altitude of the study area 

 

 

 

Figure 4. Ratio of specific conductance between the two measurement periods (wet 

versus dry) 
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Figure 5. Ratio of water level between the two measurement periods (wet versus dry) 

 

 

 

 

Figure 6. Ratio of dissolved oxygen between the two measurement periods (wet versus 

dry) 
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Figure 7. Bilinear surface d fitted to the 104 specific conductance data points (stars) 

(minimum GCV: mx = 7, my = 27) for the wet period  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
(i) (j) 

Figure 8. Specific conductance maps for both periods and all methods (a, b: BSS; c, d: 

UK; e, f: OK; g, h: IDW, i, j: NN)  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
(i) (j) 

Figure 9. pH maps for both periods and all methods (a, b: BSS; c, d: UK; e, f: OK; g, h: 

IDW, i, j: NN)  
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(a) 

  
(b) (c) 

  
(d) (e) 

Figure 10. Fluctuation of groundwater elevation above sea level between periods for all 

methods (a: BSS; b: UK; c: OK; d: IDW, e: NN) 
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(a) 

 
(b) 

Figure 11. Normal probability plots of the pH empirical distribution functions of: (a) 

UK and (b) BSS residuals using Weibull plotting positions against the corresponding 

normal distribution functions 
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