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Abstract: Research within the field of hydrology often focuses on the statistical problem 

of comparing stochastic to machine learning (ML) forecasting methods. The performed 

comparisons are based on case studies, while a study providing large-scale results on the 

subject is missing. Herein, we compare 11 stochastic and 9 ML methods regarding their 

multi-step ahead forecasting properties by conducting 12 extensive computational 

experiments based on simulations. Each of these experiments uses 2 000 time series 

generated by linear stationary stochastic processes. We conduct each simulation 

experiment twice; the first time using time series of 100 values and the second time using 

time series of 300 values. Additionally, we conduct a real-world experiment using 405 

mean annual river discharge time series of 100 values. We quantify the forecasting 

performance of the methods using 18 metrics. The results indicate that stochastic and ML 

methods may produce equally useful forecasts. 

Key	 Words: no free lunch theorem; random forests; river discharge; stochastic 

hydrology; support vector machines; time series 
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1. Introduction	

1.1 Background information 

The fundamental problem of statistically producing point forecasts of univariate time 

series by exploiting information from their past values only (hereafter “forecasting”, 

unless specified differently) is of traditional interest to hydrological scientists (Yevjevich 

1987). Right after the introduction of the currently classical Autoregressive Integrated 

Moving Average (ARIMA) models by Box and Jenkins (1968), Carlson et al. (1970) used 

several stationary models of this specific family, i.e., Autoregressive Moving Average 

(ARMA) models, to forecast the evolution of four annual time series of streamflow 

processes. Today the available models for time series forecasting are numerous and can 

be classified according to De Gooijer and Hyndman (2006) into eight categories, i.e., (a) 

exponential smoothing, (b) ARIMA, (c) seasonal models, (d) state space and structural 

models and the Kalman filter, (e) nonlinear models, (f) long-range dependence models, 

e.g., the family of Autoregressive Fractionally Integrated Moving Average (ARFIMA) 

models, (g) Autoregressive Conditional Heteroscedastic/Generalized Autoregressive 

Conditional Heteroscedastic (ARCH/GARCH) models and (h) count data forecasting. The 

models from the categories (a)-(g) are of potential interest in hydrology, while they can 

be implemented for both one- and multi-step ahead forecasting. 

The theoretical properties of the models of categories (a)-(d), (f), (g) (hereafter 

referred to as “stochastic”) have been more or less investigated, in contrast to those of the 

nonlinear models and in particular the Machine Learning (ML) algorithms, also referred 

to in the literature as “black-box models”. These two main categories of models are known 

to represent two different cultures in statistical modelling, i.e., the data modelling culture 

and the algorithmic modelling culture (Breiman 2001b). The former assumes that an 

analytically formulated stochastic model is behind the generation of the data, while the 

latter that behind this process is something complex and unknown, which does not have 

to be analytically formulated, as long as a purely algorithmic model can offer high forecast 

accuracy. In other words, profoundly understanding and properly modelling the (future) 

behaviour of a process are strongly connected within the data modelling culture, but 

completely irrelevant within the algorithmic modelling culture. The distinction between 

causal explanation, prediction and description is acknowledged and clarified in terms of 

modelling in Shmueli (2010). Still, one could question whether the (rather artificial) 
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separation of models with respect to the “stochastic-ML dipole” actually corresponds to a 

striking difference in their forecasting performance. 

What cannot be questioned, on the other hand, is the popularity that the various ML 

forecasting methods have gained in many scientific fields, including hydrology. Amongst 

the most popular ML algorithms are the Neural Networks (NN), Random Forests (RF) and 

Support Vector Machines (SVM). The latter two algorithms are presented in their current 

forms in Breiman (2001a), and Cortes and Vapnik (1995; see also Vapnik 1995, 1999) 

respectively. For the implementation of NN for time series forecasting the reader is 

referred to Zhang et al. (1998) and Zhang (2001), while a review of SVM forecasting 

applications can be found in Sapankevych and Sankar (2009). The large number of 

hydrological studies implementing NN and SVM forecasting methods is imprinted in 

Maier and Dandy (2000), and Raghavendra and Deka (2014) respectively.  Moreover, 

Abrahart et al. (2012) collectively review the NN streamflow forecasting and rainfall-

runoff applications (see, e.g., De Vos 2013). A major difference between these two families 

of applications is the use of exogenous variables in the latter. In contrast to NN and SVM, 

RF are barely utilized for hydrological process forecasting. 

To explore the related background and facilitate the following discussion, in Table 1 

we present some literature information on hydrometeorological time series forecasting 

emphasizing a few key aspects and concepts. As it is apparent, hydrological research often 

focuses on ML or hybrid (e.g., combinations of ARMA and ML) forecasting methods and, 

in particular, on the comparison between stochastic (mainly ARMA and ARFIMA) and ML 

methods. However, the culture of assessing the performance of forecasting methods on 

large datasets is not customary in hydrology. Therefore, the assessment is made within 

case studies. Concerning the testing procedure, while the available forecast quality 

metrics are a lot, most of the studies use only a few (Krause et al. 2005), understating the 

importance of the testing process despite relevant suggestions (see, e.g., Armstrong 2001; 

Abrahart et al. 2008; Humphrey et al. 2017). Likewise, the number of the compared 

forecasting methods is usually small and simple benchmarks are rarely included in the 

comparisons, although their use is highly recommended in the (hydrological) forecasting 

literature (see, e.g., Harvey 1984; Pappenberger et al. 2015; Hyndman and 

Athanasopoulos 2018, chapter 3.1).  
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Table 1. Case studies presenting forecasts of hydrometeorological processes. 
s/n Study Primary 

focus 
Hydrometeorological 
process 
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1 Atiya et al. (1999) NN 
methods 

× ×  × × ×  × ×  × 
2 Lambrakis et al. 

(2000) 
× ×  ×  × × ×  × × 

3 Kişi (2007) × ×  × ×  × ×   × 
4 Cheng et al. (2008) × ×   × ×     × 
5 Yaseen et al. (2016) × ×  × ×   ×  × × 
6 Sivapragasam et al. 

(2001) 
SVM 
methods 

×   × ×  × ×  × × 

7 Shi and Han (2007) × ×   × ×     × 
8 Lu and Wang (2011) ×  × × ×  × ×  × × 
9 Hu et al. (2001) Hybrid 

methods 
×  × × × × ×   × × 

10 Kim and Valdés (2003) × × ×  × ×  ×   × 
11 Pai and Hong (2007) ×  × ×  × × ×  × × 
12 Hong (2008) ×  × ×  × × ×  × × 
13 Kişi and Cimen (2011) × ×  × × ×  ×  × × 
14 Liong and 

Sivapragasam (2002) 
SVM vs NN 
methods 

× × ×  ×  × ×   × 

15 Guo et al. (2011) × ×  × × ×  × × ×  
16 Kişi and Cimen (2012) ×  × × ×  × ×  × × 
17 He et al. (2014) × ×  × ×  × ×  × × 
18 Jain et al. (1999) Stochastic 

vs ML 
methods 

× ×  × × ×  ×  × × 
19 Ballini et al. (2001) × ×  × × ×  ×   × 
20 Kişi (2004) × ×  × × ×  ×   × 
21 Khan and Coulibaly 

(2006) 
× × ×  × ×  ×   × 

22 Lin et al. (2006) × ×  × × ×  × × ×  
23 Mishra et al. (2007) × × ×  × ×  ×   × 
24 Yu and Liong (2007) × ×  × × × × × ×  × 
25 Koutsoyiannis et al. 

(2008) 
× ×  × × ×  ×  × × 

26 Wang et al. (2009) × ×  × × ×  × ×  × 
27 Abudu et al. (2010) × ×  × × ×  ×  × × 
28 Kişi et al. (2012) × × ×  ×  × ×   × 
29 Shabri and Suhartono 

(2012) 
× ×  × × ×  ×  × × 

30 Valipour et al. (2013) × ×  × × ×  × × ×  
31 Patel and 

Ramachandran (2014) 
× ×  × × ×  × ×  × 

32 Papacharalampous et 
al. (2017c) 

  × × × ×  ×   × 

Researchers have long been chasing the most accurate forecast for their data, a 

“universally best technique”. On the other hand, there is an argument that it is the data and 

the application of interest that determine the proper methodology for each case, rather 

than vice versa (Hong and Fan 2016). Another argument is that perhaps research should 
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invest more on probabilistic forecasting (e.g., using Bayesian statistics, as in Tyralis and 

Koutsoyiannis 2014) and less on point forecasting (Krzysztofowicz 2001). In fact, the 

opinions on forecast evaluation are often diverging, as they tend to depend on the 

perspective from which the forecasts are examined. An interesting study on this subject 

can be found in Murphy (1993). The latter identifies three criteria for this specific 

evaluation, which are adopted as a foundation for further discussion in later studies (e.g., 

Ramos et al. 2010; Weijs et al. 2010). These criteria are (1) the consistency during the 

forecasting process, (2) the quality or the correspondence between the forecasts and the 

target values, and (3) the value or the profit that the forecast provide to the decision 

makers. Weijs et al. (2010) note that criterion (2) concerns more the pure science, while 

criterion (3) is closer related to the decisions made within the engineering applications 

(of science), rather than science itself. Thus, only a few studies are dedicated to criterion 

(3), such as Ramos et al. (2010) and Ramos et al. (2013), while the greatest part of the 

literature focuses on criterion (2). The latter likewise largely applies to the present study 

and to all of its references aiming to deal with the modelling issue (which model should I 

use?) within specific hydrological concepts. Another criterion of practical importance is 

the computational (running) time required for obtaining the forecasts. This information 

might be significant depending on the forecasting task, while it could also be decisive, 

especially when one has to select between methods producing equally useful forecasts. 

The computational requirements are known to depend on the primary algorithm and its 

complexity, as well as on its software implementation, while the computational time also 

depends on the computer. 

Regarding the so far conducted comparisons between forecasting methods, their 

majority in all scientific fields is based on case studies. Nevertheless, in some few cases 

beyond hydrology the number of the examined real-world time series is quite large. These 

time series are realizations of several phenomena, which however are fundamentally 

different from being hydrological, and their examination includes concepts that are rather 

inappropriate in hydrological terms (e.g., paying attention to small quantitative 

differences in the forecasting performance of the methods). Examples of such studies can 

be found in Makridakis et al. (1987), Makridakis and Hibon (2000), and Ahmed et al. 

(2010), which examine 1 001, 3 003 and 1 045 time series respectively. Within these 

studies a statistical analysis is performed and the results are presented accordingly. 

Furthermore, the literature includes two studies, specifically Zhang (2001) and Thissen 
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et al. (2003), in which the performance of the methods is assessed on simulated time 

series from linear stochastic processes. The scale of the simulation experiment is small in 

both cases. Thissen et al. (2003) examine one long time series from the ARMA family, and 

Zhang (2001) examine eight stochastic processes from the ARMA family and 30 simulated 

time series for each stochastic process. The forecasting methods are ARMA models, NN 

and SVM in the former study, and ARMA models and NN in the latter study, while 

Makridakis et al. (1987), Makridakis and Hibon (2000), and Ahmed et al. (2010) do not 

focus their comparisons on the stochastic-ML dipole. 

Admittedly, the studies mentioned in the previous paragraph pursue generalized 

results to greater extent than most of the available studies. However, the gap still remains. 

What specifically needs to be addressed is whether the stochastic-ML dipole actually 

corresponds to a clear difference in the forecasting performance of the methods, 

especially in the light of published studies, which claim that they found a technique better 

than others. Given the fact that each forecasting case is indisputably unique, this task 

would necessarily require the examination of a sufficiently large and representative 

sample of forecasting cases within the same (properly designed) methodological 

framework. Extensive simulations combined with statistical analysis and benchmarking 

(i.e., evaluation in comparison to standard approaches and/or theoretically expected 

outcomes) can constitute, nevertheless, a highly effective approach to solving the problem 

under discussion. In more detail, for the generalized comparison of stochastic and ML 

forecasting methods, a sufficient number of different and representative of the underlying 

phenomena time series could be used for the estimation of the expected performance of 

forecasting methods regarding several criteria of interest. The need of using simulated 

time series to assess the performance of forecasting methods is emphasized by 

forecasting experts (Bontempi 2013). The analytical approach in assessing the 

performance of ML algorithms is not possible; therefore, the only alternative approach is 

using simulations. Apparently, the larger the scale of the simulation experiments, the 

more general would be the results. Real-world experiments of large scale could be used 

to complement the results of the simulation experiments in alignment with specific 

applications. Some suggestions for the design of large-scale comparisons and the 

incorporation of benchmarking into methodological frameworks are available in Alpaydin 

(2010) and Hothorn et al. (2005) respectively. 
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1.2 The present study 

In the context described in the above section, we perform an extensive comparison 

between several stochastic and ML methods for the forecasting of hydrological processes 

by conducting large-scale computational experiments based on simulations. The 

comparison refers to the multi-step ahead forecasting properties of the methods. The 

simulated time series are 48 000 in total, while they are generated by linear stationary 

stochastic processes. The latter are commonly used for modelling hydrological processes. 

In fact, the linearity assumption starts to become reasonable when modelling hydrological 

variables at large time scales (e.g., annual or monthly), while at fine time scales (e.g., daily 

or hourly) non-linear modelling approaches start to prevail (e.g., due to intermittency). 

Moreover, stationary models, in contrast to the non-stationary ones, are established as 

the appropriate modelling choice when dealing with natural processes, unless tangible 

and quantitative information that can fully support a deterministic description (not based 

on data but on physical laws) of change in time is available (Koutsoyiannis 2011; 

Koutsoyiannis and Montanari 2015). Additionally to the simulation experiments, we 

examine 405 real-world time series. Our aim is to fill the gap detected in the literature by 

providing large-scale results and useful insights on the comparison of stochastic and ML 

forecasting methods for the case of hydrological time series forecasting at large time 

scales, with an emphasis on annual river discharge processes. A strength (and limitation) 

of the present study (implied by its aim) is the adopted approach to the problem, i.e., the 

algorithmic or data-driven approach. 

The present study was first presented by Papacharalampous et al. (2017a), while a 

preliminary research on the subject was conducted for the Postgraduate Thesis of the first 

author (Papacharalampous 2016). Subsequently, we provide some basic information 

about the large-scale companion studies of this paper. Papacharalampous et al. (2017b) 

examine the problem of error evolution in hydrological multi-step ahead forecasting, 

while Tyralis and Papacharalampous (2017) improve the performance of RF in one-step 

ahead forecasting of geophysical processes. Papacharalampous et al. (2018a) also focuses 

on the problem of one-step ahead forecasting with the aim to provide large-scale results 

on the latter in geoscience. These three studies examine simulated, as well as real-world 

datasets. In detail, they examine 12 000 simulated and 92 monthly streamflow time series, 

16 000 simulated and 135 annual temperature time series, and 24 000 simulated, 185 
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annual temperature and 112 annual precipitation time series respectively. Finally, 

Papacharalampous et al. (2018b) produce multi-step ahead forecasts for 985 monthly 

temperature and 1 552 monthly precipitation time series aiming at the investigation of 

the predictability of these processes. All the time series examined by the present study 

and its companions are short, as it is expected for the hydrometeorological time series. 

Makridakis et al. (2018) focus on a similar investigation to the present paper, although 

in a different field and under a different experimental setting. 

2. Methodology	

In Section 2 we present the basic methodological elements of this study and the way that 

these elements are combined into a framework for evaluating forecasting methods in 

hydrology. Software implementation information is also provided. All R functions are 

used as specified in this methodology overview. If no specification is made, then the 

default values are adopted. We note that the use of default values is acknowledged in the 

literature as a “reasonable and justified choice” in most cases (see, e.g., Arcuri and Fraser 

2013). To ensure reproducibility, the R codes are available in the supplementary material 

(see Appendix A). 

2.1 Simulated processes 

We simulate time series according to several stochastic models from the frequently used 

families of ARMA and ARFIMA. This modelling approach is considered appropriate for the 

achievement of our aim and has been widely applied in hydrology (see, e.g., Montanari et 

al. 1997, 2000; Ballini et al. 2001; Wang et al. 2009; Valipour et al. 2013). The simulated 

stochastic processes are presented in Table 2, while for the related definitions the reader 

is referred to the report entitled “Definitions of the stochastic processes’’ of the 

supplementary material (see also Wei 2006, pp 6-87, 489-494). These 12 stochastic 

models correspond to different types of autocorrelation. We use the arima.sim built-

in-R function (R Core Team 2018) to simulate the ARMA(p,q) processes and the 

fracdiff.sim function of the fracdiff R package (Fraley et al. 2012) to simulate the 

ARFIMA(p,d,q) processes. 
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Table 2. Simulated stochastic processes of the present study. Their definitions are given 
in the supplementary material. The parameters μ and σ of the simulated stochastic 
processes are set to 0 and 1 respectively. 

s/n Stochastic model AR and/or MA parameters 
1 AR(1) φ1 = 0.7 
2 AR(1) φ1 = –0.7 
3 AR(2) φ1 = 0.7, φ2 = 0.2 
4 MA(1) θ1 = 0.7 
5 MA(1) θ1 = –0.7 
6 ARMA(1,1) φ1= 0.7, θ1 = 0.7 
7 ARMA(1,1) φ1 = –0.7, θ1 = –0.7 

8 ARFIMA(0,0.45,0)  
9 ARFIMA(1,0.45,0) φ1 = 0.7 
10 ARFIMA(0,0.45,1) θ1 = –0.7 
11 ARFIMA(1,0.45,1) φ1 = 0.7, θ1 = –0.7 
12 ARFIMA(2,0.45,2) φ1 = 0.7, φ2 = 0.2, θ1 = –0.7, θ2 = –0.2 

2.2 Real-world time series 

We examine 405 mean annual river discharge time series of 100 values, sourced from 

GRDC (2017). For the exploration of these time series we compute the sample 

Autocorrelation Function (ACF) and the sample Partial Autocorrelation Function (PACF). 

The side-by-side boxplots of the ACF and PACF estimates are presented in Figure 1. The 

Hurst-Kolmogorov (HK) behaviour is a common property of geophysical properties (see, 

e.g., Tyralis and Koutsoyiannis 2011). To describe the HK behaviour of river discharge we 

estimate the Hurst parameter H of the HK process for each time series using the mleHK 

function of the HKprocess R package (Tyralis 2016). The latter implements the 

maximum likelihood method (Tyralis and Koutsoyiannis 2011). The parameter H takes 

values in the interval (0, 1). The larger it is the larger the magnitude of the HK behaviour, 

which can be modelled by an ARFIMA(0,d,0) model. A histogram of the H estimates is 

presented in Figure 1. By its examination we observe that the magnitude of the long-range 

dependence is mostly significant in the real-world time series. 
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(a) 

 

(b) 

 

(c) 

 
 

Figure 1. (a) ACF, (b) PACF, (c) H estimates for the real-world time series. Data source: 
GRDC (2017). The red dashed line in (c) denotes the median of the H estimates. 

2.3 Forecasting methods 

We compare 11 stochastic and 9 ML forecasting methods. These methods are briefly 

presented in Sections 2.3.1 and 2.3.2 respectively. The primary forecasting algorithms are 

well documented in the literature. Therefore, we place emphasis on their software 

implementation, while the compiled information from books, textbooks and journal 

articles is limited to their key concepts and their basic theoretical background. Further 
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theoretical details, available in the provided references, are here omitted for reasons of 

brevity. We note that the understanding from a theoretical point of view of most methods 

could hardly help in interpreting the algorithmically obtained outcome of the comparison. 

2.3.1. Stochastic methods 

The stochastic methods are classified into five main categories, as presented in Table 3. 

Their implementation is mostly made through the forecast R package (Hyndman and 

Khandakar 2008; Hyndman et al. 2018). Specifically, we use the arfima, Arima, 

auto.arima, bats, ets, forecast, rwf, ses and thetaf functions of the forecast 

R package, and the simulate built-in-R function. The arfima and Arima functions use 

the fracdiff function of the fracdiff R package and the arima built-in-R function 

respectively. We implement two simple forecasting methods. The Naïve forecasting 

method simply sets all forecasts equal to the last value. The RW forecasting method, a 

variation of the Naïve forecasting method also known as Random Walk with drift, is 

equivalent to drawing a line between the first and the last values, and extrapolating it into 

the future (Hyndman and Athanasopoulos 2018, chapter 3.1). 

Table 3. Stochastic methods of the present study. The forecasting methods are available 
in code form in the supplementary material. 

s/n Abbreviated name Category 
1 Naïve Simple 
2 RW 
3 ARIMA_f ARIMA 
4 ARIMA_s 
5 auto_ARIMA_f 
6 auto_ARIMA_s 
7 auto_ARFIMA ARFIMA 
8 BATS Innovations State Space 
9 ETS_s 
10 SES Exponential Smoothing 
11 Theta 

ARIMA and ARFIMA methods are also included in the comparisons. For ARIMA_f and 

ARIMA_s the numbers of the AR and MA parameters (p and q respectively) are set to be 

the same to those used in the time series simulation process (see Section 2.1), while the 

number of differencing (d) is set to zero. On the contrary, auto_ARIMA_f and 

auto_ARIMA_s automatically estimate the order of the ARIMA models (and, therefore, the 

utilized lagged predictor variables) as summarized in the following. First, the d values are 

estimated via repeated Kwiatkowski–Phillips–Schmidt–Shin tests (Kwiatkowski et al. 

1992). Once the d value has been obtained, the p and q values are estimated using a 
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stepwise algorithm aiming at the minimization of the Akaike Information Criterion with a 

correction for finite sample sizes (AICc). This information (or model discrimination) 

criterion is introduced in Hurvich and Tsai (1993). Ye et al. (2008) report on a debate in 

hydrology on the selection between commonly used information criteria, such as the 

original Akaike Information Criterion (AIC) by Akaike (1974), its corrected version (AICc), 

and two Bayesian information criteria, i.e., BIC by Schwarz (1978) and KIC by Kashyap 

(1982). Task-oriented comparisons of information criteria can be found, for instance, in 

Ye et al. (2004), Billah et al. (2005) and Ye et al. (2008). AICc is preferred in the herein 

adopted implementation by Hyndman et al. (2018), while other available options are AIC 

and BIC. We note that AICc reduces asymptotically to AIC as the sample increases (Ye et 

al. 2008), while for small training samples the minimization of AIC tends to lead to larger 

number of model parameters (and larger number of lagged predictor variables) 

compared to the minimization of AICc (Hyndman and Athanasopoulos 2018, chapter 5.5). 

The exact procedure adopted by auto_ARIMA_f and auto_ARIMA_s for order estimation is 

available in Hyndman & Khandakar (2008), and Hyndman and Athanasopoulos (2018, 

chapter 8.6). As explained in the latter-mentioned textbook’s chapter, the d value is not 

estimated simultaneously with the p and q values using AICc, because in this case the 

estimation would be suboptimal. Once the p, d and q values have been estimated, the four 

ARIMA methods apply the maximum likelihood method to estimate the AR and MA model 

parameters (Hyndman and Athanasopoulos 2018, chapter 8.6). Similarly to auto_ARIMA_f 

and auto_ARIMA_s, auto_ARFIMA estimates d first, and thereupon follows a stepwise 

procedure to select p and q. Subsequently, it implements the algorithm of Haslett and 

Raftery (1989) to estimate the ARFIMA parameters. A final value of d is estimated as well 

in this last step. The latter information is sourced from Hyndman et al. (2018) and Fraley 

et al. (2012), where related detailed descriptions can be found. The definitions of the 

ARMA, ARIMA and ARFIMA models are given in the report entitled “Definitions of the 

stochastic processes’’ of the supplementary material (see also Wei 2006, pp 6-87, 489-

494). It is essential to also note that ARIMA_s and auto_ARIMA_s are simulation models, 

while the innovations are set to zero by the ARIMA_f, auto_ARIMA_f and auto_ARFIMA 

methods, i.e., the forecasts produced by the latter three methods are the expected future 

values from the AR(F)IMA model selected during the training process. 

Another family of stochastic methods considered herein (that is also broader than the 

family of ARIMA models; Gardner 2006) includes the Exponential Smoothing models and 
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their underlying methods, i.e., the (Innovations) State Space methods for Exponential 

Smoothing. Their forecasts are weighted averages of past values, with the weights 

decaying exponentially as these values get distant in time (Hyndman and Athanasopoulos 

2018, chapter 7). Informative reviews by Gardner (1985, 2006) discuss older and latest 

advances in forecasting with Exponential Smoothing, from the introducing works by 

Brown and Holt that are available in Brown (1959) and Holt (2004) respectively (the 

latter paper is a reprinted version of Holt’s report of 1957) up to more recent studies (e.g., 

Assimakopoulos and Nikolopoulos 2000; Hyndman et al. 2002; Hyndman and Billah 

2003). The reader is also referred to Hyndman et al. (2008), and Hyndman and 

Athanasopoulos (2018, chapters 7, 8.3) for further details on the theoretical background 

of the Exponential Smoothing and State Space models. We implement the Simple 

Exponential Smoothing (SES) and Theta methods. Similarly to the Naïve and average 

methods (the forecasts of the latter are simply the average of all training values), SES 

produces flat forecasts; therefore, it is considered the most simple of its class. An 

interpretation of the concept behind SES is provided by Hyndman and Athanasopoulos 

(2018, chapter 7.1). According to this interpretation, SES is a more general version of both 

the Naïve and average methods. Furthermore, the Theta method by Assimakopoulos and 

Nikolopoulos (2000) is equivalent to SES with drift (Hyndman and Billah 2003). There 

are several variations of Theta, each defined by the so-called “Theta lines”, i.e., the 

auxiliary time series (modified versions of the original time series provided as input to 

the method) used for model fitting and forecasting. A Theta line is characterized by its 

local curvature, which is determined by the Theta coefficient θ (different for each Theta 

line). Extrapolations of all Theta lines are averaged to produce the forecast. We implement 

the version of Theta that performed well in the M3 competition (Makridakis and Hibon 

2000), i.e., the one defined by two Theta lines, specifically for θ = 0 and θ = 2 (see 

Assimakopoulos and Nikolopoulos 2000). Moreover, we implement two State Space 

methods for Exponential Smoothing. Models from this category produce expected value 

forecasts and, additionally, provide information about the forecast error variances 

(Hyndman et al. 2005; see also Hyndman and Athanasopoulos 2018, chapter 7.5). This 

information can be used either for constructing prediction intervals or for running an 

Exponential Smoothing model in simulation mode. The latter case applies to the ETS_s 

method. This method also comprises automatic selection of the Error, Trend and Seasonal 

components (ETS) using the AICc (Hyndman and Athanasopoulos 2018, chapter 7.6). The 
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expected value forecasts of this model on the M competition and M3 competition data are 

found to be comparable with the best obtained in these competitions (Hyndman et al. 

2002). Another State Space method implemented herein is BATS. This method uses the 

point forecasts from an Exponential Smoothing State Space model with several key 

features, i.e., capability of performing Box-Cox transformation and/or including ARMA 

errors correction, Trend and Seasonal components (BATS), also allowing an optimal 

model selection using the Akaike Information Criterion (AIC). The original model is 

introduced and fully documented in De Livera et al. (2011). 

2.3.2. Machine learning methods 

The ML methods are classified into three main categories, as presented in compact form 

in Tables 4 and 5. We implement these methods mainly by using the CasesSeries, fit 

and lforecast functions of the rminer R package (Cortez 2010, 2016) and the 

nnetar function of the forecast R package (the latter is the NN_3 forecasting method), 

as well as several built-in-R functions. The rminer R package uses the nnet function of 

the nnet R package (Venables and Ripley 2002; Ripley 2016), the randomForest 

function of the randomForest R package (Liaw and Wiener 2002; Liaw 2018) and the 

ksvm function of the kernlab R package (Karatzoglou et al. 2004; Karatzoglou et al. 

2018) for the implementation of the NN, RF and SVM methods respectively. The nnetar 

function also uses the nnet function. 

Table 4. Machine learning methods of the present study. The time lag selection procedures 
adopted are defined in Table 5. The forecasting methods are available in code form in the 
supplementary material. 

s/n Abbreviated 
name 

Category Basic model 
information 

Hyperparameter 
optimized 
(grid values) 

Time lag 
selection 
procedure 

1 NN_1 NN Single-hidden-layer 
MLP 

Number of hidden 
nodes (0, 1, …, 15) 

1 
2 NN_2 2 
3 NN_3  3 
4 RF_1 RF Breiman’s random 

forests algorithm 
with 500 grown 
trees 

Number of variables 
randomly sampled  
as candidates at each 
split (1, …, 5) 

1 
5 RF_2 2 
6 RF_3 3 

7 SVM_1 SVM Radial Basis kernel 
“Gaussian” function, 
C = 1, ε = 0.1 

Sigma inverse 
kernel width 
(2n, n = -8, -7, …, 6) 

1 
8 SVM_2 2 
9 SVM_3 3 
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Table 5. Time lag selection procedures adopted for the machine learning methods. The 
forecasting methods are available in code form in the supplementary material. 

s/n Time lags 
1 The corresponding to an estimated value for the ACF using the acf built-in-R 

function, i.e., the time lags 1, …, 19 for a time series of 90 values and the time lags 1, 
…, 24 for a time series of 290 values 

2 The corresponding to a statistically significant estimated value for the ACF using the 
acf built-in-R function. If there is no statistically significant estimated value for the 
ACF, the corresponding to the largest estimated value 

3 According to the nnetar R function of the forecast R package, i.e., the time lags 1, 
…, k, where k is equal to the maximum between 1 and the number of parameters of 
an AR model fitted to the time series data using the ar built-in-R function. The 
optimal number of AR parameters is decided using the AIC 

The training of the ML methods is traditionally based on (mostly) different strategies 

than those discussed in Section 2.3.1. The input to a ML method is the data matrix used in 

the regression process (hereafter referred to as “input data matrix”). The latter is built 

using a single time series holding the total information provided to the ML method. One 

column of the input data matrix holds information about the predictand variable and the 

remaining columns information about lagged (predictor) variables that are assumed to 

be informative about the predictand. Variable selection (or feature selection) is known as 

a factor that might affect the performance of ML algorithms in both regression and 

forecasting applications (see, e.g., Anctil et al. 2009; Papacharalampous et al. 2017c). 

Thus, many studies specifically focus on the examination of this problem (e.g., Kohavi and 

John GH 1997; Tyralis and Papacharalampous 2017). A usual practice in the literature, 

also adopted herein, is to use a priori determined lagged variables and place empasis on 

hyperparameter optimization during the training process (see, e.g., the implementations 

by Khan and Coulibaly 2006; Lin et al. 2006; Wang et al. 2009). Hyperparameters are 

parameters that can be optimized (or tuned) to limit overfitting (known to deteriorate the 

forecasting performance of an algorithm), thereby improving the performance of a ML 

algorithm (Witten et al. 2017, pp 171−172). This specific utility of hyperparameters 

justifies their artificial distinguishment from the parameters of the stochastic models and 

the basic parameters of the ML models. Several examples of hyperparameters can be 

found in Luo (2016). A common approach to hyperparameter optimization is the herein 

implemented automatic grid search (Hutter et al. 2015). In optimization via grid search a 

complicated optimization problem is solved as the simplified problem of selecting 

between several candidate model configurations during the training process. The 

candidate configurations are defined by different predetermined hyperparameter values 

(Witten et al. 2017, pp 171−172). The considered hyperparameter values and the adopted 
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procedures for selecting the time lag(s) (one at minimum) are reported in Table 4 and 

Table 5 respectively, while some supporting information to the former table are provided 

subsequently. 

NN are an ensemble approach to regression and, by extension, to forecasting (Hastie et 

al. 2009, pp 623), often perceived to mimic the human brain’s function. Detailed 

information about NN is available, for instance, in Lippmann (1987), Murtagh (1991), 

Lanc (1992, pp 7-28), Zhang et al. (1998), Hastie et al. (2009, pp 389-416), Marsland 

(2011, pp 71−110), and Hyndman and Athanasopoulos (2018, chapter 11.3), while the 

below synopsis of this information is largely adapted to our computations. We utilize a 

single-hidden-layer Multilayer Perceptron (MLP), which consists of interconnected 

computational units known as nodes or neurons grouped into three layers, namely the 

input, hidden and output layers. The employed MLP is feed-forward, i.e., the information 

moves in one direction, specifically from the input nodes to the output nodes through the 

hidden nodes. This information transit is achieved via (weighted) connections, while all 

computations are performed in the nodes. The input nodes are inactive, i.e., they do not 

apply any transfer function (e.g., a sigmoid function) to their inputs before passing them 

forward, while each of the hidden and output nodes computes the (weighted) sum of its 

inputs and subsequently applies a transfer function (usually different for the two layers) 

to this sum. In fact, each group of nodes has its own characteristics that are related to its 

utility. The number of input nodes is simply the number of lagged variables or the number 

of time lags. Moreover, the number of output nodes is set to be one, even for multi-step 

ahead forecasts, since the latter are produced iteratively using one-step ahead predictions 

as inputs (Cortez 2016; Hyndman and Athanasopoulos 2018, chapter 11.3). The number 

of hidden nodes, on the other hand, is an (integer-valued) hyperparameter to be 

optimized during the training process. The candidate architecture configurations are 16 

in number. They are defined by fixed numbers of layers, input and output nodes according 

to the above-outlined information, and 16 different possibilities for the number of hidden 

nodes according to Table 4. Zero number of hidden nodes and, consequently, no hidden 

layer is a feasible option within our experiments. 

RF can also be considered as ensemble methods (Hastie et al. 2009, pp 605; Scornet et 

al. 2015). Herein we use the original RF algorithm by Breiman (2001a), i.e., an evolution 

of the bagging algorithm by Breiman (1996) applied to regression trees (Liaw and Wiener 

2002). The term BAGGING is an acronym for Bootstrap AGGregatING (Breiman 1996). 
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Bagging or bootstrap aggregation is an iterative scheme for building a large number of 

individual predictors by sampling from the input dataset to finally aggregate the results 

obtained by them to get the prediction of interest (Biau 2012; Scornet et al. 2015; Biau 

and Scornet 2016). For continuous variables, the aggregation is made by computing the 

average of all values obtained by bagged predictors (Sutton 2005; Moisen 2008). This 

averaging reduces the variance of an estimated prediction function leading to more 

accurate predictions (Sutton 2005; Hastie et al. 2009, pp 282-288). Nonetheless, the 

reduction in variance is limited by large correlation values between pairs of bagged 

predictors. RF are designed to dominate their precursor by offering a further 

improvement in terms of variance reduction. This improvement is achieved by reducing 

the correlation between the tree-structured predictors through random selection of the 

input variables in the tree-growing process (Hastie et al. 2009, pp 587-588). We grow 500 

randomized regression trees per model run. We grow each tree using a different 

bootstrap sample drawn from the input data matrix. The sampling is made with 

replacement. The procedure followed to create each tree is fully described, for example, 

in Hastie et al. (2009, pp 588), and Biau and Scornet (2016). The hyperparameter 

optimized is the number of variables randomly sampled as candidates at each split 

(integer-valued hyperparameter) during the tree-growing process, while the candidate 

configurations to choose from during the training process are five. In Tyralis and 

Papacharalampous (2017) we describe the Breiman’s RF algorithm in greater detail. 

A to-the-point summary of SVM is available in Solomatine and Ostfeld (2008), while 

Hastie et al. (2009, pp 417−438) review the theoretical background of these models, and 

Smola and Schölkopf (2004) provide an overview of their underlying idea with an 

emphasis on regression and forecasting problems. In contrast to NN and RF that can be 

conceptualized as structured models with fixed and random architecture respectively 

(see the above paragraphs), SVM are usually perceived as models utilizing a hyperplane 

for the separation in a two-dimensional space of two different classes in classification 

(see, e.g., Solomatine and Ostfeld 2008). They are introduced in Cortes and Vapnik (1995) 

as an extension of the Vapnik’s method of optimal hyperplanes. This method is applicable 

to separable training data, i.e., training data that can be separated without errors, while 

SVM can be implemented on non-separable training data as summarized subsequently. 

The input vectors are non-linearly mapped into a high-dimensional feature space, where 

the hyperplanes are linearly constructed in a way pursuing generalizable (to unobserved 
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situations) solutions. The optimal separating hyperplane is defined as the one that 

maximizes the margin between the classes in the separable case, and as the one that 

simultaneously minimizes the number of errors and separates with maximal margin the 

correctly classified elements in the non-separable case (Smola and Schölkopf 2004). The 

optimization problem to be solved in regression is a convex optimization problem defined 

as follows. The objective is to find a function f that simultaneously is as flat as possible and 

deviates less or equal to ε from all input data values. In cases where this problem is not 

solvable or we want to allow some errors, the formulation changes so that there is a 

predefined trade-off between the flatness of f and deviations larger than ε. This trade-off 

is determined by a constant C > 0 (Smola and Schölkopf 2004). Herein, we use the default 

kernel function and the default C and ε values, and optimize sigma inverse kernel width 

(continuous hyperparameter) during the training process according to Table 4. Sigma 

inverse kernel width is a hyperparameter to be specified when using the Radial Basis and 

the Laplacian kernel functions for the computations in the feature space (Karatzoglou et 

al. 2004). 

2.4 Forecast quality metrics 

We utilize the forecast quality metrics briefly presented in Table 6. These metrics do not 

share one-to-one relationships with each other, emphasizing -more or less- different 

aspects of the same information. Their classification into six main categories according to 

the criterion/criteria that is/are (co-)assessed through their use is also presented in Table 

6. These criteria are two types of accuracy, the capture of the variance and the correlation. 

By type 1 accuracy we mean the closeness of the forecasted time series to the target time 

series, while by type 2 accuracy we mean the closeness of the mean of the forecasts to the 

mean of the target values. The definitions of the forecast quality metrics are listed in the 

report entitled “Definitions of the forecast quality metrics” of the supplementary material, 

while in the below paragraphs we justify their combined use herein. 
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Table 6. Forecast quality metrics used in the present study. Their definitions are given in 
the supplementary material. 

s/n Abbreviated 
name 

Full name Criterion/criteria Values Optimum 
value 

Condition 
(preferred values) 

1 MAE Mean Absolute Error Type 1 accuracy [0, +∞) 0 smaller MAE 
2 MAPE Mean Absolute Percentage Error  [0, +∞) 0 smaller MAPE 
3 RMSE Root Mean Square Error  [0, +∞) 0 smaller RMSE 
4 NSE Nash-Sutcliffe Efficiency  (-∞, 1] 1 larger NSE 
5 mNSE Modified Nash-Sutcliffe Efficiency  (-∞, 1] 1 larger mNSE 
6 rNSE Relative Nash-Sutcliffe Efficiency  (-∞, 1] 1 larger rNSE 
7 cp Persistence Index  (-∞, 1] 1 larger cp 
8 ME Mean Error Type 2 accuracy (-∞,+∞) 0 smaller |ME| 
9 MPE Mean Percentage Error  (-∞,+∞) 0 smaller |MPE| 
10 PBIAS Percent Bias  (-∞,+∞) 0 smaller |PBIAS| 
11 VE Volumetric Efficiency  (-∞,+∞) 1 smaller |VE - 1| 
12 rSD Ratio of Standard Deviations Capture of the 

variance 
[0, +∞) 1 larger min{rSD, 

1/rSD} 
13 Pr Pearson’ s Correlation Coefficient Correlation [-1, 1] 1 larger Pr 
14 r2 Coefficient of Determination  [0, 1] 1 larger r2 
15 d Index of Agreement Type 1 accuracy, 

capture of the 
variance 

[0, 1] 1 larger d 

16 md Modified Index of Agreement  [0, 1] 1 larger md 
17 rd Relative Index of Agreement  (-∞, 1] 1 larger rd 
18 KGE Kling-Gupta Efficiency Type 2 accuracy, 

capture of the 
variance, correlation 

(-∞, 1] 1 larger KGE 

MAE provides an easily interpretable assessment with respect to the type 1 accuracy 

criterion, while it is also amongst the most frequently used forecast quality metrics 

(Hyndman and Koehler 2006). Similarly, the computation of MAPE and RMSE is implied 

by their traditional use in the forecasting field (Armstrong and Collopy 1992; Hyndman 

and Koehler 2006). Although RMSE is more sensitive to outliers than MAE (Fildes 1992; 

Hyndman and Koehler 2006), the former is usually preferred to the latter by forecasting 

scientists mainly because of its “theoretical relevance in statistical modelling” (Hyndman 

and Koehler 2006). Furthermore, MAPE is a scale-independent metric, offering an 

advantage in comparing forecasting methods across different datasets. Nonetheless, this 

metric is particularly affected by target values close to zero (Fildes 1992; Hyndman and 

Koehler 2006). The ME and MPE metrics are also utilized herein as they constitute 

analogues (with similar advantages and disadvantages) to MAE and MAPE respectively 

for the assessment according to the type 2 accuracy criterion. 

Some limitations of the correlation metrics, i.e., the Pr and r2 ones, mainly related to 

an over-sensitivity to outliers and to the fact that their optimum value does not indicate 

by itself a perfect forecast, are well understood in hydrology and beyond (see, e.g., Legates 

and McCabe Jr 1999; Armstrong 2001). However, their use is of traditional significance 

(Legates and McCabe Jr 1999; Krause et al. 2005) and could not harm the interpretation 

of the results, when these metrics are used attentively and collectively with others 
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(Krause et al. 2005). Perhaps the most widely used metric in the field of hydrology is the 

introduced by Nash and Sutcliffe (1970) NSE, while another traditional metric is d 

(Legates and McCabe Jr 1999; Krause et al. 2005; Schaefli and Gupta 2007). Consequently, 

these two metrics are also considered helpful in communicating the results of the present 

study. The use of their original versions, which are known to be over-sensitive and under-

sensitive to high and low outliers respectively (Krause et al. 2005), is herein 

complemented by the use of their modified and relative versions, i.e., the mNSE, rNSE, md 

and rd metrics. These four metrics can provide improved forecast evaluation depending 

on the data (Krause et al. 2007). Moreover, Zambrano-Bigiarini (2014) places cp, VE, 

PBIAS, rSD and KGE amongst the metrics of potential interest to hydrological scientists 

and provides references about their use in the hydrological field (see, e.g., Kitanidis and 

Bras 1980; Yapo et al. 1996). VE and KGE are introduced by Criss and Winston (2008) and 

Gupta et al. (2009) to overcome some drawbacks of NSE (and mNSE).  

The rationale of using this large set of forecast quality metrics is also supported by 

suggestions made by experts in the field of hydrology and beyond; see Abrahart et al. 

(2008) and Armstrong (2001) respectively. According to the latter study, when feasible, 

multiple metrics should be used collectively with an emphasis on the most relevant ones. 

Herein, we place some emphasis on type 1 accuracy, since a good performance with 

respect to this criterion is a major pursuance in most of the forecasting applications. 

Finally, we note that amongst the utilized forecast quality metrics the MAPE, NSE, mNSE, 

rNSE, cp, MPE, PBIAS, VE, rSD, Pr, r2, d, md, rd and KGE ones are dimensionless, while 

MAE, RMSE and ME are expressed in the same units as the data (and the forecasts). 

2.5 Methodology outline 

To compare the forecasting methods of Section 2.3 we conduct 12 large-scale 

computational experiments based on simulations. Within each of these experiments we 

simulate 2 000 time series according to a stochastic process (see Section 2.1). We conduct 

each simulation experiment twice; the first time using time series of 100 values and the 

second time using time series of 300 values. The simulation experiments are hereafter 

referred to under their code names. The latter are composed by two parts separated by 

an underscore. The first part is “SE” (acronym for Simulation Experiment), while the 

second part is the serial number of the simulated process, as reported in Table 2, followed 

by the letter “a” or “b” to denote the length of the simulated time series, i.e., 100 or 300 
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values respectively. Additionally, we conduct a real-world experiment using the time 

series presented in Section 2.2. Within the experiments using ARMA simulated processes 

we test all the forecasting methods except for auto_ARFIMA. The latter method is tested 

within the experiments using ARFIMA simulated processes or real-world time series 

instead of the ARIMA_f, ARIMA_s, auto_ARIMA_f and auto_ARIMA_s ones. The total 

number of forecasts is 858 480, among which 6 480 are produced within the real-world 

experiment. 

For the application of the stochastic methods we divide each time series into two 

segments, i.e., the training segment and the test segment, which contain n1 and n2 values 

respectively, as indicated in Figure 2(a). We fit the stochastic models to the former and 

produce forecasts for the latter using the recursive multi-step ahead forecasting method. 

For the total of the conducted experiments n2 equals 10, while n1 equals 90 or 290 

depending on the length of the used time series. For the application of the ML forecasting 

methods, we additionally divide the segment of n1 values into two parts, as presented in 

Figure 2(b). The tail of the training segment is hereafter referred to as “validation 

segment” and serves hyperparameter selection, as delineated subsequently. We fit the ML 

model several times to the first [2n1/3] values of the training segment, each time using 

different hyperparameter values according to Table 4. The fitted configurations of the ML 

model are then utilized to produce forecasts for the validation segment. We compute the 

RMSE values of these forecasts using the actual values of the validation segment as 

reference information and decide on an optimum hyperparameter value (i.e., the 

corresponding to the smallest RMSE). Finally, we fit the ML model with the selected 

hyperparameter value to the whole training segment and produce forecasts for the test 

segment. The rationale of adopting this procedure is explained in Witten et al. (2017, pp 

171−172; see also Section 2.3.2). In summary, both the validation and test segments are 

used for testing and comparing models that have been previously fitted to independent 

(with respect to these segments) information. The former testing facilitates the decision 

on a ML method variation, so that the ML method is afterwards considered fully trained, 

while the latter enables the comparison between all the (fully trained) forecasting 

methods. 
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Figure 2. Time series segment division for the application of the (a) stochastic and (b) 
machine learning methods. For the latter category the validation segment serves the 
hyperparameter optimization procedure. 

We provide a multi-faced assessment and comparison of the forecasting methods by 

utilizing the forecast quality metrics briefly presented in Section 2.4. The values of these 

metrics are computed for each forecasting test (conducted for a specific forecasting 

method and a specific time series) on the test segment. We mainly compare the medians 

and interquartile ranges (iqr) of the metric values, as computed for each forecasting 

method per experiment. We compare the medians, as described in Table 6, while the 

smallest the iqr the better the forecasts. We also apply a clustering analysis on the 

forecasting methods based on the median values of the forecast quality metrics. This 

analysis can ease the extraction of information from the experiments. It can also facilitate 

the identification of possible repeating patterns in the clustering of the forecasting 

methods. The presence or absence of such repeating patterns could be strongly connected 

to algorithmic aspects and elements that we aim to reveal with the conducted 

experiments. In particular for the real-world experiment, we rank the forecasting 
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methods for each individual test and further compute an average-case ranking for each 

metric. We place our emphasis on the 18 average-case rankings and not directly in the 

mean or median values of the metrics, because the latter might be more affected by the 

results of specific time series. This practice was first adopted by Tyralis and 

Papacharalampous (2017). 

Finally, we measure the total computational time consumed by each forecasting 

method within the various experiments using the system.time built-in-R function. We 

present these measurements to allow a simplified and easily interpretable comparison of 

the implemented methods in terms of computational requirements. The computations are 

performed in our regular home PC, while the computational times could differ 

significantly for other PCs. 

2.6 Benchmarking information 

Although our computational experiments are designed to produce new knowledge in the 

field of hydrological time series forecasting, there are several outcomes rather well 

known at the forefront of our methodological framework. In more detail, ARIMA_f is 

expected to produce optimal forecasts with respect to the type 1 accuracy criterion, 

mainly in terms of RMSE, on the time series resulting from the simulation of ARMA 

processes because of its theoretical background, specifically for two reasons. Firstly, it 

uses by design the p, d, q numbers that are used in the simulation procedure; therefore, in 

its case the forecasting procedure is in essence the inverse of the simulation procedure. 

Furthermore, it produces minimum mean square error forecasts by setting the 

innovations to zero (see Wei 2006, pp 88-93 for the related theoretical proof). Moreover, 

auto_ARIMA_f should be slightly worse, since it exploits information about the type of the 

simulated processes, although to a lesser extent, since the values of p, d, q are not known 

a priori (but they are estimated during the training process). Similarly to the ARIMA_f and 

the auto_ARIMA_f methods, auto_ARFIMA is expected to exhibit the best performance in 

terms of RMSE when applied to the time series resulting from the simulation of ARFIMA 

processes. Finally, ARIMA_s and auto_ARIMA_s are expected to be best performing in 

capturing the variance exhibited by the simulated time series, while together with ETS_s 

are expected to not be amongst the most accurate. The six forecasting methods mentioned 

in the above lines play the role of benchmarks within our methodological approach, since 

they serve as a reference for the assessment of the remaining methods within the 
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simulation experiments. Other benchmarks used herein are the simple methods. These 

two methods are amongst the most commonly used benchmarks in the forecasting field 

(Hyndman and Athanasopoulos 2018, chapter 3.1). The above-outlined information is 

used in interpreting and discussing our results. 

3. Results	

3.1 Simulation experiments 

Section 3.1 aims at providing a synopsis of the results of the simulation experiments. To 

support our key findings, here we present a small representative sample of the entire 

information. For the about 13 000 figures, conducted in the context of an exploratory 

visualization, as well as for the numerical summaries of the results in table form, the 

reader is referred to the fully reproducible reports, which are available together with their 

codes in the supplementary material. In the latter we also enclose the report entitled 

“Selected figures for the qualitative comparison of the forecasting methods”, which 

includes Figures S.1-S.24. These figures can support the main conclusions of this paper in 

a satisfactory manner. 

In Figures 3-9 we present the side-by-side boxplots of the values of the forecast quality 

metrics computed within the SE_1a simulation experiment. These figures can provide a 

rough outline of the forecasting methods and the utility of the forecast quality metrics 

within this study. By their examination, we observe that the ARIMA_f and auto_ARIMA_f 

benchmarks are the best performing with respect to type 1 accuracy, as assumed in 

Section 2.6, while BATS exhibits a very close to these methods performance, perhaps 

because it uses information from an ARMA model. We also note that the total of the ML 

methods except for NN_1 are competitive with BATS and with each other, while they are 

also better than the stochastic SES and Theta. The latter forecasting methods share a quite 

similar performance, a fact also applying to Naïve and RW. These simple benchmarks are 

better than NN_1 and the simulation models (ARIMA_s, auto_ARIMA_s, ETS_s), amongst 

which ETS_s produces forecasts with the most varying metric values and the worst 

median. Regarding the type 2 accuracy, all the methods seem to have rather equally good 

average-case performance, since the differences in the latter are small and not perceivable 

from these figures. However, the metric values computed for ETS_s are the most scattered 

with respect to each other, while the opposite applies to the metric values computed for 

ARIMA_f, auto_ARIMA_f, BATS and all the ML methods apart from NN_1. The metric values 
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computed for the remaining forecasting methods are scattered with respect to each other 

to an extent in between. 

In terms of rSD, the image is mostly reversed compared to the one produced by the 

type 1 accuracy metrics. Naïve, RW, SES and Theta are clearly the worst, while the ML 

methods are more segregated. The average-case performance of NN_1, ARIMA_s, 

auto_ARIMA_s and ETS_s is good. Nevertheless, the rSD values for these four forecasting 

methods can vary significantly from the one forecasting attempt to the other, more than 

the rSD values computed for the remaining forecasting methods, a fact also applying to 

the rest of the forecast quality metrics. Regarding the average-case performance with 

respect to correlation, ARIMA_f, auto_ARIMA_f and BATS are the best, followed by NN_3. 

With respect to both type 1 accuracy and capture of the variance, ARIMA_f, auto_ARIMA_f, 

BATS and all the ML methods except for NN_1 are clearly better than the simple 

benchmarks and competitive with each other. SES and Theta, on the other hand, exhibit a 

very close performance to the one of Naïve and RW. Finally, in terms of KGE, the best 

performing methods are the same three stochastic and eight ML ones. NN_1, ARIMA_s and 

auto_ARIMA_s are better than Theta, which is competitive with RW. Overall, we observe 

that for the SE_1a simulation experiment the forecast quality metrics (even the 

corresponding to the same criterion) provide different aspects of the same information to 

an extent larger or smaller (as it is expected; see Section 2.4), while these 18 different 

aspects may also be conflicting to each other. 

Subsequently, we state the main observations obtained from the total of the simulation 

experiments. To base these observations, in Figure 10 we present the heatmaps of the 

average-case performance of the forecasting methods within the SE_1a, SE_1b, SE_2a and 

SE_2b simulation experiments, while in Figures 11-13 we present the heatmaps formed 

using the medians of the total of the RMSE, rSD and d values respectively. In these figures 

the scaling is performed in the row direction and the darker the colour the better the 

forecasts. The conducted clustering analysis on the forecasting methods based on their 

performance is also presented. Some observations obtained from SE_1a apply to the rest 

of the simulation experiments as well. These are the following (see, e.g., Figures 10-13): 

(a) forecasting methods from both the stochastic and ML categories are amongst the best 

and worst performing ones, (b) the metrics can provide significantly different, even 

conflicting, image regarding the performance of the forecasting methods, (c) the ARIMA_f, 

auto_ARIMA_f and auto_ARFIMA benchmarks are the best performing in terms of type 1 
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accuracy, while ETS_s, ARIMA_s and auto_ARIMA_s exhibit a good average-case 

performance in terms of rSD, (d) the image produced by rSD is mostly reversed with 

respect to the one produced by the type 1 accuracy metrics, i.e., methods that are well 

performing according to the latter criterion are bad performing with respect to the 

capture of the variance of the time series, (e) BATS is very close to ARIMA_f, auto_ARIMA_f 

and auto_ARFIMA, and (f) Naïve and RW, as well as SES and Theta, exhibit similar 

performance to each other. Nevertheless, the Pr, r2 and KGE metrics are not defined for 

the forecasts produced by Naïve and SES. Finally, by the examination of the side-by-side 

boxplots produced for each and every of the simulation experiments we note that (g) 

ARIMA_s, auto_ARIMA_s, ETS_s and NN_1 seem to share a form of instability, i.e., their 

metric values vary more than the metric values of other forecasting methods. The latter 

concerns the results obtained from all the forecast quality metrics except for Pr and r2. 
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Figure 3. Side-by-side boxplots for the comparative assessment of the forecasting 
methods regarding their performance according to the type 1 accuracy criterion within 
the SE_1a simulation experiment (part 1). The far outliers have been removed. 



28 

 

  

  
Figure 4. Side-by-side boxplots for the comparative assessment of the forecasting 
methods regarding their performance according to the type 1 accuracy criterion within 
the SE_1a simulation experiment (part 2). The far outliers have been removed. 
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Figure 5. Side-by-side boxplots for the comparative assessment of the forecasting 
methods regarding their performance according to the of type 2 accuracy criterion within 
the SE_1a simulation experiment. The far outliers have been removed. 

 

Figure 6. Side-by-side boxplots for the comparative assessment of the forecasting 
methods regarding their performance according to the capture of the variance criterion 
within the SE_1a simulation experiment. The far outliers have been removed. 
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Figure 7. Side-by-side boxplots for the comparative assessment of the forecasting 
methods regarding their performance according to the correlation criterion within the 
SE_1a simulation experiment. The Pr and r2 metrics are not defined for the forecasts 
produced by the Naïve and SES forecasting methods and, thus, the corresponding boxplots 
are not presented. 
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Figure 8. Side-by-side boxplots for the comparative co-assessment of the forecasting 
methods regarding their performance according to the type 1 accuracy and capture of the 
variance criteria within the SE_1a simulation experiment. The far outliers have been 
removed from the side-by-side boxplots of the rd values. 
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Figure 9. Side-by-side boxplots for the comparative co-assessment of the forecasting 
methods regarding their performance according to the type 2 accuracy, capture of the 
variance and correlation criteria within the SE_1a simulation experiment. The far outliers 
have been removed. The KGE metric is not defined for the forecasts produced by the Naïve 
and SES forecasting methods and, thus, the corresponding boxplots are not presented. 
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(a) (b) 

  
(c) (d) 

  

Figure 10. Heatmaps for the comparative assessment of the forecasting methods within 
the (a) SE_1a, (b) SE_1b, (c) SE_2a, (d) SE_2b simulation experiments according to the 
median values of the forecast quality metrics and the conditions listed on Table 6. The Pr, 
r2 and KGE metrics are not defined for the forecasts produced by the Naïve and SES 
forecasting methods. Their missing values are not taken into consideration during the 
comparative assessment and are imprinted with white colour. 
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Figure 11. Heatmaps for the comparative assessment of the forecasting methods 
according to the median values of the RMSE metric and the condition stated on Table 6. 
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Figure 12. Heatmaps for the comparative assessment of the forecasting methods 
according to the median values of the rSD metric and the condition stated on Table 6.  
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Figure 13. Heatmaps for the comparative assessment of the forecasting methods 
according to the median values of the d metric and the condition stated on Table 6. 

By the examination of Figures 10-13 (or Figures S.1-S.24) we observe that the image 

provided by the metrics and the resulted clustering of the forecasting methods can also 

vary from the one simulation experiment to the other. Especially Figures 11-13 (or 

Figures S.7-S.24), allow us to easily perceive that the differences in the results of the 

various simulation experiments, also depicted in the clustering of the forecasting 
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methods, are more related with the information provided by specific metrics and mostly 

concern specific forecasting methods. In fact, the heatmaps formed for the MAE, MAPE, 

RMSE, NSE, mNSE, rNSE, cp, rSD and KGE metrics are smoother than those formed for the 

remaining forecast quality metrics. In particular, the pictures obtained from ME, MPE, VE, 

r2, d and md are the most dispersed. On the other hand, the Naïve, RW, ARIMA_s, 

auto_ARIMA_s, ETS_s, SES, Theta and NN_1 forecasting methods are more likely to have a 

varying performance (which results in varying clustering of forecasting methods). For 

example, we observe that Naïve and RW exhibit rather the best average-case performance 

in terms of d (see Figure 13) and md (see Figure S.22), while they have either bad, 

moderate or good average-case performance in terms of MAE, MAPE, PBIAS and VE 

depending on the simulation experiment (see Figures S.7, S.8, S.16 and S.17 respectively). 

The same applies to SES and Theta in terms of d, etc. We also note that forecasting 

methods resulting from the implementation of the same algorithm can exhibit a far distant 

or always close performance depending on the algorithm, as it is also perceivable by the 

examination of the resulted clustering of the forecasting methods. For instance, NN_1 and 

NN_2 (or NN_3) may differ with each other to a great extent, a fact also applying to 

ARIMA_s and ARIMA_f, but not to the RF and SVM forecasting methods. Interestingly, we 

observe that the training length largely affects the performance of NN_1 in a systematic 

way, while the performance of the remaining forecasting methods is less or even slightly 

affected. The latter effect depends on the forecasting method, as well as on the simulated 

process. In detail, the NN_1 forecasting method exhibits a bad performance with respect 

to type 1 accuracy (and a good one in terms of rSD; see Figure 12) within the simulation 

experiments using time series of 100 values, i.e., for 90-value training segments. On the 

contrary, its performance is good with respect to type 1 accuracy (and bad in terms of 

rSD) within the simulation experiments using time series of 300 values, i.e., for 290-value 

training segments. The latter observations concerning NN_1 might apply to a small extent 

to some of the remaining ML methods. 

Next, we summarize some important information about the best performing 

forecasting methods in terms of type 1 accuracy, which has been identified as the criterion 

of focus herein. In terms of MAE (see Figure S.7) BATS is very close to the ARIMA_f, 

auto_ARIMA_f and auto_ARFIMA benchmarks, while SES, Theta and all the ML methods 

except for NN_1 have always a good or moderate performance. With respect to the MAPE 

metric (see Figure S.8) SVM_3 and BATS are mostly close to ARIMA_f, auto_ARIMA_f and 
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auto_ARFIMA, and NN_2, NN_3, RF_1, RF_2, RF_3, SVM_1, SVM_2, SVM_3, SES and Theta 

are well performing for the greatest part of the simulation experiments. The same 

observations apply with respect to RMSE (see Figure 11). Nevertheless, for this metric 

NN_2 and NN_3 are rather very close to the good benchmarks as well. Regarding the NSE, 

mNSE, rNSE and cp values (see Figures S.10, S.11, S.12 and S.13 respectively), most of the 

stochastic and ML methods are competitive to each other and to the good benchmarks. 

The only ones that are not competitive are the simulation models, the simple benchmarks 

and NN_1 (the latter for 90-value training segments). 

Finally, in Tables 7 and 8 we present the total computational time consumed by the 

forecasting methods within the simulation experiments. In summary, the following 

related observations are important. Naïve, SES, Theta, ARIMA_s, ARIMA_f, ETS_s and RW 

consume considerably less time than the remaining methods. Moreover, NN_3 is faster 

than auto_ARIMA_f, auto_ARIMA_s and auto_ARFIMA for the 90-value training segments, 

and faster than BATS for both lengths of training segments. The computational time 

consumed by RF_2 and RF_3 is mostly comparable with the computational time consumed 

by auto_ARIMA_f, auto_ARIMA_s and auto_ARFIMA for the 90-value training segments, 

while it is much higher for 290-value training segments. This computational time is also 

lower (higher) than the computational time reported for BATS for the former (latter) 

category of experiments. The three SVM methods are mostly faster than BATS, which in 

turn consumes less time than RF_1 for 290-value training segments. NN_1 and NN_2 are 

found to be the most computationally intensive. Overall, the ML methods collectively 

consume disproportionately more computational time than the stochastic ones. 
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Table 7. Total computational time (s) consumed by the forecasting methods within the 
simulation experiments (part 1). The numbers have been rounded up to the nearest 
integer. The computations have been performed in a regular home PC. 
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SE_1a 0 18 11 7 127 124 331 15 3 4 1301 827 90 343 178 141 312 215 187 
SE_2a 0 19 13 10 173 171 1003 24 5 6 1679 1099 129 447 242 184 449 328 278 
SE_3a 0 22 23 17 196 192 410 23 5 6 1797 1312 140 440 316 184 448 448 287 
SE_4a 0 21 15 12 168 163 926 22 4 5 1597 946 189 466 186 223 445 266 309 
SE_5a 0 24 17 12 186 180 885 24 5 6 1693 965 198 467 178 222 452 268 302 
SE_6a 0 23 19 15 255 251 562 23 5 6 1748 1073 195 405 225 194 393 259 265 
SE_7a 0 21 21 17 223 217 1381 21 5 6 1614 1127 213 433 249 209 397 323 297 
SE_1b 0 18 15 12 148 146 1083 51 7 8 6364 3645 391 3061 1421 808 890 643 539 
SE_2b 0 22 16 13 109 105 1222 56 8 9 6353 3726 421 3038 1466 802 892 650 531 
SE_3b 0 25 37 30 161 155 579 51 8 8 6401 5349 543 2995 2414 808 894 801 529 
SE_4b 0 24 21 16 129 124 1218 49 7 8 6282 2986 823 3148 766 1020 786 482 542 
SE_5b 0 26 20 17 114 109 1159 53 8 9 6032 2829 817 3069 811 1098 895 547 620 
SE_6b 0 26 30 24 184 180 1517 51 7 9 6352 4012 940 2952 1561 1124 882 674 625 
SE_7b 0 25 28 22 126 123 1782 49 7 8 6555 4212 954 3062 1591 1089 834 630 583 

Table 8. Total computational time (s) consumed by the forecasting methods within the 
simulation experiments (part 2). The numbers have been rounded up to the nearest 
integer. The computations have been performed in a regular home PC. 
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SE_8a 0 23 207 457 21 4 5 1614 1050 127 436 234 183 417 295 262 
SE_9a 0 23 277 458 25 5 5 1908 1445 172 457 312 201 461 369 284 
SE_10a 0 25 217 689 27 5 6 1681 964 127 479 176 199 432 255 265 
SE_11a 0 18 178 402 19 4 5 1488 966 119 404 216 170 381 271 240 
SE_12a 0 20 184 406 18 4 5 1496 970 117 406 218 169 383 272 227 
SE_8b 0 24 199 743 44 6 7 6426 5111 654 2882 1999 872 752 667 524 
SE_9b 0 26 242 902 56 8 9 6558 5395 525 2480 2083 665 716 625 417 
SE_10b 0 23 196 860 61 9 10 6189 2600 564 2796 696 897 722 462 464 
SE_11b 0 20 168 641 38 5 6 5602 4142 533 2480 1839 773 683 593 453 
SE_12b 0 23 175 653 38 5 6 5614 4107 543 2483 1820 780 683 590 449 

3.2 Real-world experiment 

In full correspondence to the results of the simulation experiments, the results of the real-

word experiment are presented in both quantitative and qualitative forms. In Figures 14-

17 we present the side-by-side boxplots of the MAPE, NSE, cp, MPE, d and KGE values. 

Additionally, in Table 9 we present the median values of the dimensionless metrics, while 

in Figure 18 the average-case rankings of the forecasting methods. Here as well, we 

observe small differences between most of the methods, especially with respect to specific 

forecast quality metrics (e.g., MAPE, cp, MPE, d). For example, the median values of MAPE 

computed for auto_ARFIMA, BATS, SES, Theta, NN_3, RF_1, SVM_1, SVM_2 and SVM_3 are 

very close to each other. The same applies to the median values of NSE computed for the 

same methods, although the differences in the respective side-by-side boxplots seem to 
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be larger in the latter case than in the former. Because of the small differences in the 

performance of the forecasting methods, the median metric values of Table 9 (e.g., the 

median MAPE values) may result to a different ranking of the forecasting methods than 

the average-case ranking presented in Figure 18. 

Furthermore, while the average-case rankings with respect to accuracy mostly favour 

stochastic methods (SES, Theta, auto_ARFIMA and BATS), SVM_1 is also ranked amongst 

the best performing methods. In more detail, SES is ranked first according to MAE, RMSE, 

NSE, mNSE, cp, ME, MPE, PBIAS and VE, but it is worse than SVM_1, and SVM_1 and SVM_2 

according to MAPE and rNSE respectively. According to the latter metrics, the best 

performing method is BATS. This method has a rather moderate overall performance in 

terms of accuracy. The less accurate methods, on the other hand, are Naïve, RW, ETS_s 

and NN_1, as it is expected from the simulation experiments. With respect to the 

remaining criteria, SES is clearly the worst performing method, while Theta, Naïve, BATS, 

SVM_1, NN_3 and auto_ARFIMA are also ranked behind the remaining ML methods, 

amongst which NN_1 is mostly ranked first. Finally, in terms of computational 

requirements within this real-world experiment the methods could be ranked from best 

(1st) to worst (16th) as follows: Naïve, SES, Theta, RW, ETS_s, NN_3, auto_ARFIMA, RF_3, 

RF_2, SVM_3, SVM_2, SVM_1, RF_1, NN_2, BATS and NN_1 (see also Table 10). 
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Figure 14. Side-by-side boxplots for the comparative assessment of the forecasting 
methods regarding their performance according to the type 1 accuracy criterion within 
the real-word experiment. The far outliers have been removed. 
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Figure 15. Side-by-side boxplots for the comparative assessment of the forecasting 
methods regarding their performance according to the type 2 accuracy criterion within 
the real-word experiment. The far outliers have been removed. 

 

Figure 16. Side-by-side boxplots for the comparative co-assessment of the forecasting 
methods regarding their performance according to the type 1 accuracy and capture of the 
variance criteria within the real-word experiment. 



43 

 

 

Figure 17. Side-by-side boxplots for the comparative co-assessment of the forecasting 
methods regarding their performance according to the type 2 accuracy, capture of the 
variance and correlation criteria within the real-word experiment. The far outliers have 
been removed. The KGE metric is not defined for the forecasts produced by the Naïve and 
SES forecasting methods and, thus, the corresponding boxplots are not presented.  
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Table 9. Median values of the dimensionless metrics computed within the real-word 
experiment.  
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MAPE 29.21 29.83 22.04 22.04 33.81 22.02 22.86 32.30 24.05 22.95 23.06 25.19 24.81 22.03 22.24 22.29 
NSE -0.72 -0.84 -0.20 -0.19 -1.57 -0.17 -0.18 -1.26 -0.33 -0.22 -0.25 -0.47 -0.46 -0.24 -0.26 -0.23 

mNSE -0.27 -0.31 -0.07 -0.07 -0.61 -0.06 -0.07 -0.51 -0.14 -0.09 -0.11 -0.20 -0.19 -0.09 -0.10 -0.10 

rNSE -0.81 -0.90 -0.35 -0.39 -2.24 -0.35 -0.45 -1.83 -0.59 -0.45 -0.46 -0.86 -0.78 -0.36 -0.40 -0.42 
cp 0.09 0.03 0.39 0.38 -0.37 0.39 0.38 -0.16 0.30 0.36 0.37 0.27 0.25 0.38 0.35 0.34 

MPE 2.83 1.47 2.99 2.20 3.29 3.32 5.07 2.94 4.61 3.36 4.31 4.62 3.96 3.00 1.17 1.49 

PBIAS -6.34 -6.34 -3.14 -4.25 -2.72 -2.90 -1.56 -3.05 -2.09 -2.41 -1.19 -1.80 -2.59 -4.50 -5.84 -4.60 

VE 0.71 0.71 0.78 0.78 0.67 0.78 0.78 0.69 0.76 0.78 0.78 0.75 0.76 0.78 0.78 0.78 

rSD 0.00 0.03 0.05 0.00 1.02 0.00 0.01 0.94 0.21 0.05 0.24 0.42 0.40 0.00 0.12 0.07 

Pr - -0.05 0.06 0.04 0.00 - -0.04 0.08 0.08 0.02 0.08 0.08 0.04 0. 08 0.07 0.05 

r2 - 0.07 0.06 0.05 0.06 - 0.07 0.05 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.06 

d 0.41 0.41 0.39 0.36 0.38 0.36 0.36 0.40 0.39 0.37 0.39 0.39 0.39 0.39 0.38 0.38 

md 0.31 0.31 0.28 0.28 0.28 0.27 0.26 0.30 0.29 0.28 0.28 0.29 0.30 0.29 0.30 0.29 

rd 0.29 0.30 0.25 0.26 0.30 0.22 0.18 0.33 0.28 0.22 0.30 0.30 0.31 0.29 0.34 0.30 

KGE - -0.47 -0.35 -0.34 -0.17 - -0.46 -0.12 -0.24 -0.35 -0.22 -0.15 -0.19 -0.31 -0.27 -0.32 

 

Figure 18. Heatmap for the comparative assessment of the forecasting methods within the 
real-world experiment according to their average-case rankings. The latter are based on 
the values of the forecast quality metrics and the conditions listed on Table 6. The Naïve 
and SES forecasting methods are ranked 15th and 16th according to rSD, Pr, r2 and KGE. 
Their rSD values are 0, while the Pr, r2 and KGE metrics are not defined for their forecasts. 
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Table 10. Total computational time (s) consumed by the forecasting methods within the 
real-world experiment. The numbers have been rounded up to the nearest integer. The 
computations have been performed in a regular home PC. 
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4. Discussion	

4.1 Contribution in hydrology and beyond 

The present study contributes by developing a detailed framework for assessing 

forecasting techniques in hydrology. Furthermore, its findings can provide new insights 

into the nature of short hydrological time series forecasting at large time scales, while 

they concern all natural processes that could be modelled by linear stationary processes. 

A first view of the results suggests that the differences in the forecasting performance of 

the methods are mostly small (insignificant for hydrometeorological applications; see 

also the experiments of Papacharalampous et al. 2018b), while the stochastic and ML 

methods can share a quite similar forecasting performance when implemented to 

hydrological time series of small length and small temporal resolution (e.g., annual or 

monthly). In fact, methods from both these categories are found to perform better or 

worse mainly depending on the forecast quality metric, but on the experiment as well. 

Regarding the type 1 accuracy, in the simulation experiments BATS is always close to the 

ARIMA_f, auto_ARIMA_f and auto_ARFIMA benchmarks, probably because it uses 

information from an ARMA model, while most of the ML methods (e.g., NN_3 and SVM_3) 

are amongst the best performing and often better than SES and Theta. Nevertheless, in 

the real-world experiment SES is mostly ranked first, followed by auto_ARFIMA, BATS, 

SVM_1 and Theta, while NN_3, RF_1, SVM_2, and SVM_3 are also close to the latter 

methods. A possible interpretation of this outcome is that for a different sample of river 

discharge time series, the average-case rankings would differ as well, and that there might 

be no particular reason to choose some methods over others for this specific process. 

Given the claims that in linear situations (e.g., the simulation experiments of this study) 

the ML methods are more likely to be inferior to the stochastic ones, while in non-linear 

situations, as it is usually asserted to apply to river discharge processes, the ML methods 

are more likely to outperform, the algorithmically obtained results of the present study 
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are even more interesting. Noteworthy is also the fact that our results differ from the 

results of Makridakis et al. (2018), which favour the stochastic methods, probably due to 

the different experimental setting adopted therein (determined by the required degree of 

forecast accuracy, the lengths of the examined time series, the selected algorithms for 

performing multi-step ahead forecasting, the forecast quality metrics used for evaluating 

the methods and the optimization procedures of the ML methods, among others). 

In this view, we would like to emphasize that the ML algorithms are accurate enough. 

Yet they have the worth-mentioning particularity that their forecasting performance 

might be largely affected by the number of the utilized lagged variables. This number is 

directly related to the length of the segment used for model fitting (Tyralis and 

Papacharalampous 2017). Specifically, a significant decrease of this length may 

deteriorate the forecasting performance of a ML algorithm, as largely perceivable through 

the examination of the results obtained for the NN methods of the present study. In detail, 

for the simulation experiments using 90-value training segments, NN_1 exhibits a bad 

performance in terms of type 1 accuracy, a fact not applying to NN_2 and NN_3 that use 

less and very few lagged variables respectively. On the contrary, for the simulation 

experiments using 290-value training segments, NN_1 is amongst the most accurate 

methods. The same number of lagged variables is used by RF_1 and SVM_1. Nevertheless, 

the performance of the herein implemented RF and SVM algorithms seems to be less 

affected by the number of lagged variables than the NN algorithm. These large-scale 

results on time lag (or lagged variable) selection could be encountered as contributed 

information to the subject. 

Another particularity of the ML methods is related to their computational 

requirements, which seem to considerably increase with increasing length of the training 

segment. In fact, for our regular home PC the computational time consumed by the NN 

and SVM methods is found to be approximately four to eight times higher for 290-value 

training segments than for 90-value training segments. The respective difference in 

computational time is smaller for the SVM methods. The number of lagged variables 

seems to also affect the computational requirements. Specifically, the computational time 

increases when moving from the third to the first time lag selection procedures of Table 

5, i.e., from less to more lagged variables, indicating increasing computational 

requirements (although the length of the lagged time series decreases), with this increase 

to be higher for the NN methods. Overall, the computational time collectively consumed 
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by the herein implemented ML methods is considerably higher than the respective time 

measured for the stochastic methods. Nonetheless, it is also shown that there are 

computational intensive stochastic methods (mainly BATS), as well as ML methods with 

lower or comparable computational requirements with stochastic methods (e.g., NN_3, 

RF_3). 

While there are forecasting methods regularly better or worse than others with respect 

to specific criteria, this does not apply to all the forecasting methods neither to all the 

criteria. For example, we observe that Theta can exhibit good, moderate or bad average-

case performance in terms of specific forecast quality metrics depending on the 

simulation experiment. Furthermore, sophisticated forecasting methods (such us the 

above mentioned ones) do not necessarily (but mostly) provide better forecasts than the 

simple Naïve and RW, as also shown in previous studies (e.g., Makridakis and Hibon 2000; 

Cheng et al. 2017). These two methods perform almost identically in the experiments of 

the present study, but not for longer forecast horizons (see Papacharalampous et al. 

2017b, 2018b). Another pair of similarly performing forecasting methods is SES and 

Theta. This latter outcome is consistent with Hyndman and Billah (2003). 

In general, we cannot decide on a universally best or worst forecasting method 

(stochastic or ML), neither we can rank the forecasting methods based on the results of 

the simulation experiments. Even the relative metrics, i.e., the corresponding to the same 

criterion (see Table 6), provide measurements which lead us to different aspects of the 

same information to an extent larger or smaller depending on the pair of forecast quality 

metrics considered. Some of these 18 different aspects are also conflicting to each other. 

Any ranking of the forecasting methods would require the a priori selection of an 

experiment and a criterion of interest, as well as the application of a simplification 

procedure (e.g., use of the median values of the selected metric) and, thus, would not be 

general. However, the clustering of the forecasting methods is possible, though only to 

some extent. This clustering could be based on the similar or contrasting performance of 

the forecasting methods with respect to the various metrics. For example, the simulation 

models (ARIMA_s, auto_ARIMA_s and ETS_s) exhibit the best average-case performance 

with respect to the capture of the variance, while they are clearly the worst performing in 

terms of type 1 accuracy. This happens, since these two criteria are contradictory. For 

instance, the optimum forecast for an ARFIMA model is obtained when the innovations 

are set to zero. 
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Our contribution in the field of hydrology also includes the implementation of several 

forecasting models barely used in hydrometeorological concepts, but commonly used in 

the forecasting field (RW, BATS, ETS, SES and Theta) or for regression purposes (RF). This 

innovation holds, especially if we could exclude from the hydrological literature the large-

scale companions of this study, i.e., Papacharalampous et al. (2017b, 2018a, b), and Tyralis 

and Papacharalampous (2017), while its practical value is indisputable. One could claim 

that there may be an undiscovered forecasting method (stochastic or ML), which will be 

better than the existing ones. As regards the “myth of the best method” the reader is 

referred to Hong and Fan (2016), who mention that the original techniques are countable 

and have been exhausted, while the hybrid techniques, i.e., combinations of original 

techniques, cannot further improve the forecasting performance. 

Another important contribution of the present study is related to the so-called “no free 

lunch theorem” by Wolpert (1996). According to this theorem, in the space of all possible 

problem instances, there is not a model that will always perform better than the other 

models in the absence of significant information for the problem at hand. The present 

empirical study shows that even in the finite space of simple (simulated) and real-world 

time series examined herein there is not an optimal forecasting solution. Finding the best 

algorithm mostly depends on our knowledge of the system. For example, using ARFIMA 

models for forecasting the ARFIMA simulated time series is obviously the best choice, due 

to the prior known information about the system. The other methods are equivalent in 

performance since they cannot incorporate this knowledge. In the specific class of 

hydrological process forecasting finding information about the examined system could be 

possible, for example, with the application of principles of physics, such as the maximum 

entropy principle, incorporation of information from deterministic models (see, e.g., 

Tyralis and Koutsoyiannis 2017), understanding the processes from a chaotic perspective 

(see, e.g., Sivakumar 2004) and other approaches. Obviously, the knowledge of the system 

is not simply equivalent to the knowledge of its statistical properties (e.g., the mean, 

variance, ACF), but should be deeper. Therefore, the frequently met in the hydrological 

literature blind use of forecasting methods is not suggested. 

Additionally, it seems that major advancements in the time series forecasting 

performance of all methods can be achieved by incorporating appropriate exogenous 

variables in the model, while the potential for improving their performance in univariate 

time series forecasting seems limited. The latter in our opinion is also due to the nature 
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of the problem, which is simple. Therefore, methods that are more complicated will not 

necessarily yield better results. A relevant example is, for instance, the difference in the 

games of tic-tac-toe and Go. The former game is simple and can be solved by simple 

algorithms; therefore, the choice of a complex method is not necessary. On the other hand, 

the best performance on the more complex game of Go was achieved by the use of 

complicated machine learning algorithms (see Silver et al. 2016). 

Regarding the extent to which the conclusions could be generalizable for the 

forecasting of short hydrological time series at large time scales, we note that the 

stationarity assumption and the reasoning of its appropriateness for the modelling of 

geophysical properties, documented in Koutsoyiannis and Montanari (2015), is 

consistent with the no free lunch theorem. In particular, if we cannot explain the 

behaviour of a geophysical process based on a deterministic mechanism, then the most 

appropriate models are stationary. Even in cases of deterministic systems, stochastic 

approaches are appropriate (Koutsoyiannis 2010). This is a frequently met case in the 

modelling of geophysical processes (i.e., there is not an adequate explanation for the 

behaviour of the geophysical process), proving that our conclusions could be 

generalizable. 

4.2 On the methodological approach 

The above section highlights the efficiency of our methodological approach in producing 

large-scale and representative for the field of hydrology results. Moreover, the real-world 

experiment particularly accounts for the case of river discharge forecasting. Someone 

who examines both the results of the simulation experiments and the real-world 

experiment has a more complete picture of the underlying phenomena than whom 

considering only the results of the simulation experiments. On the other hand, the use of 

simulated processes combined with benchmarking has proved pivotal in achieving our 

aim under the linearity and stationarity assumptions. Additionally, the use of an adequate 

number of forecasting methods and forecast quality metrics in the present study is also of 

crucial importance. Using fewer forecasting methods and fewer forecast quality metrics 

would have led to a very different overall picture, particularly if those fewer metrics 

corresponded to fewer criteria. Besides, the comparison is rather the only available 

research method for any evaluation and, consequently, the larger its scale the more 

generalized the derived results. For this specific reason, the novel (mainly for hydrology) 
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methodological approach of the present study is considered appropriate for the 

assessment of forecasting methods in hydrology. Furthermore, the qualitative form of the 

results facilitates their handy examination and, thus, eases the delivery of the large-scale 

findings. In fact, our methodology enables the assessment of the failure risk or, 

alternatively worded, the available opportunities for success that accompany the use of a 

specific forecasting method to a significant extent, while it also leads to the recognition of 

several advantages/disadvantages characterizing the latter. This knowledge is 

fundamental to the forecasters and the users of the forecasts, since a specific forecasting 

method can be both useful and useless, depending on the forecasting task. 

5. Conclusions	

We conduct an extensive comparison between several stochastic and machine learning 

methods for the multi-step ahead forecasting of hydrological processes by performing 

large-scale computational experiments based on simulations under the linearity and 

stationarity assumptions. The implemented stochastic methods include simple models, 

models from the frequently used families of Autoregressive Moving Average and 

Autoregressive Fractionally Integrated Moving Average, as well as Innovations State 

Space and Exponential Smoothing models, while the machine learning ones are Neural 

Networks, Random Forests and Support Vector Machines. The aim is to provide large-

scale results, while the respective comparisons in the literature are usually based on case 

studies. We also run a real-world experiment on the largest river discharge dataset ever 

used for forecasting purposes within a framework that is purely statistical. Despite this 

specific focus, the results concern all natural processes in large time scales (e.g., annual or 

monthly) that could be modelled by stationary processes. The findings suggest that 

stochastic and machine learning methods do not differ dramatically. In fact, methods from 

both these categories are found to be equally useful in univariate short time series 

forecasting at large time scales. This is particularly important, because it reveals that the 

forecast quality is subjected to limitations. The latter are imposed by the nature of the 

examined problem and manifest themselves in the computed forecast quality metric 

values. We have empirically proved that these values do not favour any specific 

forecasting method, stochastic or machine learning, in a long run. In fact, the results are 

consistent with the no free lunch theorem, albeit the theorem refers to an infinite space 

of problem instances, while here we examine a finite space of problems. The empirical 
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investigation shows that in the given finite space, formed by simulated and annual river 

discharge time series, the no free lunch theorem is still satisfied. 
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Appendix	A Statistical	software	and	supplementary	material 

The analyses and visualizations have been performed in R Programming Language (R 

Core Team 2018). We have used the following contributed R packages: cgwtools 

(Witthoft 2015), devtools (Wickham and Chang 2018), EnvStats (Millard 2013, 

2018), forecast (Hyndman and Khandakar 2008; Hyndman et al. 2018), fracdiff 

(Fraley et al. 2012), gdata (Warnes et al. 2017), ggplot2 (Wickham 2016a; Wickham 

et al. 2018), HKprocess (Tyralis 2016), kernlab (Karatzoglou et al. 2004; Karatzoglou 

et al. 2018), knitr (Xie 2014, 2015, 2018), nnet (Venables and Ripley 2002; Ripley 

2016), plyr (Wickham 2001, 2016b), randomForest (Liaw and Wiener 2002; Liaw 

2018), readr (Wickham et al. 2017), rmarkdown (Allaire et al. 2018), rminer (Cortez 

2010, 2016) and tidyr (Wickham and Henry 2018). 

The supplementary material is available in Papacharalampous and Tyralis (2018). We 

provide the fully reproducible reports together with their codes. We also provide the 

reports entitled “Definitions of the stochastic processes’’, “Definitions of the forecast 

quality metrics’’ and “Selected figures for the qualitative comparison of the forecasting 

methods’’, which we suggest to be read alongside with Sections  2.1, 2.4 and 3.1 

respectively. 
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