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Abstract

The concept of return period and its estimation are pivotal in risk manage-

ment for many geophysical applications. Return period is usually estimated

by inferring a probability distribution from an observed series of the random

process of interest and then applying the classical equation, i.e. the inverse of

the exceedance probability. Traditionally, we form a statistical sample by se-

lecting, from the ”complete” time series (e.g. at the daily scale), those values

that can reasonably be considered as realizations of independent extremes,

e.g. annual maxima or peaks over a certain high threshold. Such a selec-

tion procedure entails that a large number of observations are discarded; this

wastage of information could have important consequences in practical prob-
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lems, where the reduction of the already small size of common hydrological

records significantly affects the reliability of the estimates. Under such cir-

cumstances, it is crucial to exploit all the available information. To this end,

we investigate the advantages of estimating the return period without any

data decimation, by using the full data-set. The proposed procedure, denoted

as Complete Time-series Analysis (CTA), exploits the property that the av-

erage interarrival time (i.e. return period) of potentially damaging events is

not affected by the dependence structure of the underlying process, even for

cyclo-stationary (e.g. seasonal) processes. For the sake of illustration, the

CTA is compared to that based on annual maxima selection, through a sim-

ple non-parametric approach, discussing advantages and limitations of the

method. Results suggest that the proposed CTA approach provides a more

conservative return period estimation in an holistic implementation frame-

work within a broader range of return period values than that pertaining to

other methods, which means not only the largest extremes that are the focus

of extreme value theory.

Keywords: Return period; Interarrival time; Complete Time-series

Analysis; Persistence; Seasonality; Annual maxima

1. Introduction1

Hydraulic risk analysis relies on finding the probability of failure of a given2

hydraulic structure or, more generally, system due to the occurrence of in-3

tense hydrological events, where the probability of failure is usually expressed4

in terms of return period. Different failure mechanisms could be considered,5

where each of them results from the combination of multiple characteristics6
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of the hydrological loads (Schumann, 2017). Hence, under general condi-7

tions, the return period of structure failure should be quantified taking into8

account the joint probability of failure mechanisms, i.e. the joint probability9

of the random variables describing the hydrological load and the complex10

interactions between the structure and the hydrological loads acting on it11

(see, e.g. Volpi and Fiori, 2014).12

In the simplest case, we have a single failure mechanism that is ruled13

by a single random variable describing the hydrological load, for example a14

bridge destroyed by a flood. Under such circumstances, the return period15

of structure failure corresponds to that of the hydrological load. Once the16

key variable representing the hydrological load is identified, the problem is17

solved by inferring a probability distribution from a series of realizations18

of this random variable, in order to determine the magnitude of the event,19

corresponding to a given return period or probability of failure.20

Given this premise, it is clear that the concept of return period and how21

it is estimated from observations is central to risk management problems in22

hydrological/hydraulic applications; yet this is true also in many other geo-23

physical and engineering fields. Even if return period is a widely applied24

and well established probabilistic tool for hydrological applications, since the25

pioneering work of Alexander (1959) there have been few studies attempt-26

ing to analyze the differences between estimated return periods of hydro-27

logical extremes using different methods of estimation. Nonetheless, some28

researchers have recently investigated the concept of return period when the29

basic assumptions of stationarity and independence are omitted; see, among30

others, Rootzén and Katz (2013); Obeysekera and Salas (2016); Read and31
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Vogel (2016); Fernández and Salas (1999); Douglas et al. (2002); Bunde et al.32

(2003); Eichner et al. (2011); Volpi et al. (2015) and references therein. As33

detailed in the following, the purpose of our work is to investigate a new sta-34

tistical approach to infer return period from a complete record of observed35

data; therefore, we must assume a dependence structure in time and a sta-36

tionary framework, because the non-stationary hypothesis implies a priori37

attributions, supported by deductive reasoning, that go beyond the scope of38

this paper (Koutsoyiannis and Montanari, 2015; Serinaldi et al., 2018).39

Under the assumption of stationarity, Bunde et al. (2003) and Volpi et al.40

(2015) have shown that the independence condition is not necessary in or-41

der to apply the classical equation of return period, i.e., the inverse of the42

exceedance probability. Following Volpi et al. (2015), this paper highlights43

how temporal dependence does not alter the average interarrival time for-44

mulation, even in stochastic processes characterized by cyclo-stationarity,45

a characteristic that hydrological and other geophysical processes exhibit at46

sub-annual scales. Furthermore, we investigate here the potential application47

of this important property of return period, derived from the full available48

record, for frequency analysis; specifically, we show how the return period49

can be directly estimated from raw data records of a time-dependent process,50

regardless of its dependence structure, under stationary or cyclo-stationary51

conditions.52

This alternative approach for return period estimation, which is proposed53

here for the first time and denoted as Complete Time-series Analysis (CTA),54

is compared to the traditional approach based on frequency analysis of An-55

nual Maxima (AM), which constitutes the basis of traditional extreme value56
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analysis. Indeed, we usually analyze AM to catch the tail of the distribution57

of the parent process, where the latter is the process of interest. Hence, the58

rationale behind CTA is to exploit all the information provided by obser-59

vational data (Marani and Ignaccolo, 2015; Zorzetto et al., 2016), with the60

objective of better estimating the return period in a wider range of values,61

not only at the largest extremes that are the focus of extreme value theory.62

Note, indeed, that small to moderate return period values are still of interest63

in several practical problems, such as pluvial flooding. Furthermore, it is64

important to stress that CTA provides different return period estimates with65

respect to annual maxima by considering all the occurrences of the dangerous66

values (e.g. exceedance of the random variable above any threshold value of67

interest) within the observed record, as it will be discussed later on.68

Hence, we aim at exploring the potential conveniences of CTA compared69

to traditional approaches, and not to elaborate on the return period concept70

(see Volpi et al., 2015). For this reason, in this article we base and limit our71

investigation to the non-parametric approach. Two illustrative examples are72

presented, both relying on synthetic processes: the first one makes use of a73

very simple process whose correlation structure is known a priori; the second74

example resembles the main characteristics of a real-word process. Future75

research will focus on the parametric implementation of CTA for its practical76

use in real world cases; indeed, the problem of fitting a model to the complete77

record of observations and the evaluation of the related uncertainty deserves78

further attention.79

The remainder of this paper is organized as follows. Section 2 briefly re-80

calls the definitions of return period available in the literature and illustrates81
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the properties of the interarrival time for stationary and cyclo-stationary82

processes. In Section 3 the new approach for return period estimation, re-83

lying on frequency analysis of complete times-series (CTA), is introduced as84

an alternative to traditional methods based on annual maxima and peaks85

over threshold (Section 4). In sections 5 and 6, complete time-series analy-86

sis is compared to the standard approach using annual maxima for a simple87

stationary process and for a cyclo-stationary process, that mimics the char-88

acteristics of a real world phenomenon, respectively. Section 7 is concerned89

with the potential issues related to the application of the proposed approach90

in real word problems, while the Conclusion Section summarizes the main91

findings of this paper.92

2. Return period: Definitions and properties93

Let Z(τ) be a stochastic process that represents a natural process evolving94

in continuous time τ . As observations of Z are only made in discrete time,95

we consider here the corresponding discrete-time process Zj that is obtained96

by sampling Z(τ) at constant time intervals ∆τ , i.e. Zj = Z(j∆τ) where97

j (= 1, 2, ...) denotes discrete time. We make the only assumption that Zj98

is a stationary process, fully described in terms of its marginal probability99

function PZ(z) = Pr {Z ≤ z} and, up to the second order in terms of joint dis-100

tribution, by its autocorrelation function ρθ = γθ/γ0 (with θ = 0,±1,±2, ...),101

where γθ = cov[Zj, Zj+θ] and ρθ ∈ [−1, 1]; further, we denote the mean of102

the process as µ = E[Zj] and its standard deviation σ =
√
γ0.103

For design and risk assessment purposes, we are interested in the occur-104

rence of dangerous events that might result in a system or structure failure.105
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We define here a dangerous event as the exceedance at the ∆τ scale of a106

threshold level, A = {Z > z}, for instance the discharge exceeding a given107

high threshold level, potentially causing the flooding of an urbanized area.108

The probability of A is given by PrA = Pr {Z > z} = 1−PZ(z) = 1−PrB,109

where B denotes the complementary event of A. In hydrological applications,110

as well as in many other engineering fields, the rareness of the dangerous111

events is usually measured in terms of return period T (z), thus assuming112

that the event A will occur on average once every T years, which is the time113

unit commonly used for return periods in hydrology. Mathematically, it is114

T

∆τ
= E[X] =

∞∑
x=1

xfX(x) (1)115

where X is the number of discrete time steps to an occurrence of the event A116

and fX(x) = Pr {X = x} is its probability mass function (pmf). Note that in117

eq. (1), which only refers to discrete-time processes, T is measured in units118

of time, i.e. ∆τ ; if ∆τ = 1 year the return period is measured in years.119

As highlighted by previous literature studies (see, e.g. Fernández and120

Salas, 1999; Douglas et al., 2002), the return period can be defined as the121

average of (i) the waiting time, that is the time interval ranging from the122

present to the next threshold exceedance, or (ii) the interarrival time, that123

is the time elapsing between any two successive realizations of the dangerous124

event. As explained later on, we adopt here the second definition, which im-125

plicitly assumes that a dangerous event has just occurred. We remark that126

such a definition is customary in hydrological applications (see, e.g. Chow127

et al., 1988; Kottegoda and Rosso, 1997; Salvadori et al., 2007). For conve-128

nience, herein we express discrete time as t = j − j0, where j0 is the current129

instant of time (when the dangerous event has just occurred); therefore, the130
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discrete-time process is indicated as Zt, and t = 0 denotes the present. As a131

consequence, the pmf of the interarrival time can be written as (Fernández132

and Salas, 1999)133

fX(x) = Pr(B1, B2, ...Bx−1, Ax|A0)

=
Pr(A0, B1, B2, ...Bx−1, Ax)

PrA0

(2)134

Then, the definition of return period based on the concept of interarrival time135

relies on a conditional probability. The average interarrival time is obtained136

by substituting Equation (2) into (1).137

If Zt is a purely random process, then the return period T is given by138

(e.g. Stedinger et al., 1993)139

T (z)

∆τ
=

1

1− PZ(z)
(3)140

regardless of the definition used for X in Eq.(1), i.e. waiting time or inter-141

arrival time. The above relationship holds true even if the stationary and142

independent process is not sampled at constant time intervals; in this case143

∆τ is the average time interval between consecutive samples (Koutsoyiannis,144

2008).145

Although the independence condition is typically assumed as a necessary146

condition for Equation (3), it has been recently demonstrated by Volpi et al.147

(2015) - independently from the conceptual arguments presented by Bunde148

et al. (2003) - that the return period T (z), defined as the average interarrival149

time, is expressed by Eq. (3) even for processes correlated in time, with any150

type of dependence structure of Z, an important and not very well-known151

fact that is exploited in the following development.152
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Conversely, when based on the concept of waiting time, the formulation of153

the return period strictly depends on the correlation structure of the process;154

specifically, for any dangerous events A (or threshold levels z), the average155

waiting time is an increasing function of the correlation of the process, thus156

resulting in values larger than the average interarrival time (which ignores157

correlation). Hence, for processes which are positively correlated in time158

(such as most hydrological processes) Equation (3) returns a lower bound in159

terms of T (z).160

Although the average interarrival time T (z) remains the same for cor-161

related and independent processes, the probability that the threshold z is162

exceeded in a given period can be very different in the two cases. In fact, if163

a dangerous event occurs at present time, then the conditional probability of164

occurrence of another dangerous event at successive instants of time will be165

greater than the independent case; this yields that the probability mass func-166

tion of the interarrival time (that corresponds to the probability of failure)167

will have a larger mass for small temporal values and a lower mass elsewhere,168

hence a larger variance with respect to the independent case. Since the aver-169

age waiting time is an increasing function of the variance of the interarrival170

time, as shown in Volpi et al. (2015), the latter characteristic of the interar-171

rival time distribution explains why the average waiting time is larger than172

the average interarrival time. As a further consequence, the definition of173

return period based on the interarrival time might result in higher values of174

the probability of failure with respect to the independent case; the reader is175

referred to Volpi et al. (2015) for further details on the theoretical properties176

of both definitions of T .177
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2.1. Cyclo-stationary processes178

The property of interarrival time mentioned above has been derived based179

on the assumption that the underlying process Z is stationary (see the Ap-180

pendix B in Volpi et al. (2015) for details). However, many natural processes181

exhibit statistical properties that are invariant to a shift of the time origin by182

integral multiples of a certain period Π, due to e.g. the seasonal variability183

of environmental phenomena at sub-annual scales (Koutsoyiannis, 2016). In184

stochastic hydrology, such processes are usually modelled by cyclo-stationary185

processes with period Π.186

Let us consider a cyclo-stationary process that is characterized by a joint187

distribution function that varies within the time period Π (typically equal to188

one year), such that PrBt = PrBΠ+t, Pr(Bt, Bt+1) = Pr(BΠ+t, BΠ+t+1) and189

so on. For such a process, the pmf given in Equation (2) can be regarded as190

the pmf of the interarrival time conditional to the occurrence of the dangerous191

event at time t = 0, i.e. fX(x|t = 0). For any value of t, this conditional pmf192

can be written as193

fX(x|t) =
Pr(At, Bt+1, Bt+2, ...Bt+x−1, At+x)

PrAt
(4)194

To account for the possible occurrence of A at every instant of time t within195

the period Π, we marginalize the above conditional probability by summing196

the pmf in Eq.(4) with respect to all the possible values of time t′ ∈ [t, t+Π−1]197

according to their probability of occurrence. The latter quantity is nothing198
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else than the conditional probability Pr(At′|t′ ∈ [t, t+ Π− 1]). Hence, it is199

fX(x|t) =
t+Π−1∑
t′=t

Pr(At′|t′ ∈ [t, t+ Π− 1])
Pr(At′ , Bt′+1, Bt′+2, ...Bt′+x−1, At′+x)

PrAt′

=
t+Π−1∑
t′=t

PrAt′∑t+Π−1
r=t PrAr

Pr(At′ , Bt′+1, Bt′+2, ...Bt′+x−1, At′+x)

PrAt′

(5)

200

Finally, the average interarrival time of the cyclo-stationary process is201

obtained by substituting in Equation (1) the pmf given in Eq. (5), thus202

obtaining203

T (z)

∆τ
=

1

1− PZ(z)
(6)204

where PZ(z) = 1∑t+Π−1
r=t PrAr

= 1

1−
∑t+Π−1

r=t PrBr
is the marginal probability of205

non-exceeding the threshold value z within any period [t, t + Π − 1]; since206

we are dealing with a cyclo-stationary processes, PZ(z) remains the same207

for any t. The derivation of Equation (6) is given in Appendix A. While208

for cyclo-stationary processes the exceeding probability PrAt′ = 1 − PrBt′209

varies with time t′ ∈ [t, t+ Π− 1], the return period of the dangerous event210

A is a constant value, independent of time t, and it is expressed again by the211

classical equation of return period.212

3. Novel return period estimation: Complete Time-series Analysis213

(CTA)214

The property that the average interarrival time (i.e. return period) is215

not affected by the dependence structure of the underlying process, even for216

cyclo-stationary processes, sheds a new light on the problem of return period217

estimation in practical problems. Under the hypothesis of stationarity, or218
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cyclo-stationarity in the case of processes exhibiting seasonality and sam-219

pled at the sub-annual scale, the return period can be estimated by using220

Equation (3) starting from any kind of observational data, independent or221

correlated in time, thereby potentially exploiting all the available information222

on the underlying process. Hence, the only necessary assumption is that of223

stationarity; but stationarity is also related to ergodicity, which in turn is a224

prerequisite to make inference from data. As previously mentioned, the sta-225

tionarity issue goes beyond the scope of this work; the interested readers are226

referred to the work of Koutsoyiannis (2014), Montanari and Koutsoyiannis227

(2014), Serinaldi and Kilsby (2015), Koutsoyiannis (2016), Serinaldi et al.228

(2018) and Luke et al. (2017) for a comprehensive discussion.229

Let z = z1, ..., zn be an observed realization of the stochastic process Zt,230

where n is the length of the data series. Following its formal definition based231

on the interarrival time, the empirical return period could be estimated by232

first deriving from z the sample of the interarrival time for each value of the233

threshold z, i.e. x(z) = x1, x2, ..., xη(z), and then averaging in time, as in234

Equation (1). This approach can be applied only in the case of very long235

time-series (very large n), for which the size of the interarrival series η(z) is236

large enough to return reliable estimates for high threshold values z.237

In hydrological applications the length of the observed series is usually238

less than one hundred years (e.g. at the daily or at the hourly scale); hence239

it is important to exploit all the available information for sample estimates.240

The empirical return period can be obtained by directly applying Equation241

(3) to the entire time-series z, where the cumulative probability function PZ242

is substituted by a probability model inferred from the observed data. For243
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simplicity, we adopt here a non-parametric approach, by substituting PZ with244

its empirical counterpart. The empirical distribution function (edf), denoted245

in the following as F̂n, provides an estimate of the distribution function of246

the underlying stochastic process (e.g. Kolmogorov, 1933). Let {Zi}ni=1 be a247

sequence of dependent and equally distributed random variables, then Fn is248

defined as the fraction of random variables that are less than or equal to the249

specified value z, i.e.250

Fn(z) =
1

n

n∑
i=1

I{Zi≤z} (7)251

where IZi≤z is the indicator of the event {Zi ≤ z}; the estimate, F̂n(z), is252

obtained by considering in Eq. (7) the outcome z instead of the random253

variables.254

The edf in Eq. (7) is an unbiased estimator of the marginal probability255

function, i.e. E[Fn(z)] = PZ(z); this means that the dependence structure256

of the underlying process does not affect the expectation of the edf, while it257

affects its covariance, as reported by Azriel and Schwartzman (2015). More-258

over, these Authors remark that the estimator in Eq. (7) is consistent for259

all Gaussian stationary ergodic processes, that are characterized by an au-260

tocorrelation function decreasing to zero as the lag-time goes to infinity (i.e.261

the necessary condition for ergodicity). The latter case includes both short262

and long-range dependent processes, such as the Hurst-Kolmogorov process263

(Koutsoyiannis, 2016). The consistency property of the edf continues to hold264

for non-Gaussian distributions under various forms of dependence (see, e.g.,265

Dedecker and Merlevéde, 2007; Wu, 2006). Note that in the case of cyclo-266

stationary processes, where the marginal probability distribution changes267

with time within the period Π, F̂n directly provides an estimate of PZ(z),268
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which takes into account the variability during the period of the marginal269

probability function (i.e. the alternation of events characterized by a different270

probability of exceedance).271

The computational approach based on the complete edf (complete time-272

series analysis, CTA), returns on average the same results to those based273

on the observed interarrival time-series, provided that n (hence η(z)) is very274

large. An illustration example showing the latter property will be presented275

in the following sections.276

The estimation approach proposed in this Section makes use of the whole277

available information on the process Z, i.e. the complete time-series z, with278

the aim of returning a reliable and robust estimate of the return period of279

the dangerous event {Z > z} for any threshold value z, i.e. in a broader280

range of values with respect to the traditional approaches used in extreme281

value analysis. It is important to stress that CTA requires the availability of282

an uninterrupted record of observations (i.e. z) where the process is sampled283

at constant time intervals (∆τ); indeed, this is a necessary condition for the284

property of the average interarrival time to hold true, as explained in Volpi285

et al. (2015).286

In the following sections, we compare CTA with the traditional sampling287

methods used in extreme value analysis, thus highlighting advantages and288

limitations of both the strategies.289

4. Traditional approaches for return period estimation290

Since independence of Zt is usually invoked for the derivation of Equation291

(3) (e.g. Benjamin and Cornell (1970), p. 233, Kottegoda and Rosso (1997),292

14



p. 190 and Chow et al. (1988), p. 383), it is common practice in hydrological293

applications to implement some techniques for data selection aimed to allow294

the assumption of the statistical independence of the observations. These295

techniques constitute the basis for the extreme value analysis, whose objec-296

tive is to quantify the stochastic behavior of a process at unusually large297

or small levels that potentially lead to the failure of a system (Salvadori298

et al., 2007; Coles, 2001). Classical methods for extreme (and independent)299

value selection are the block maxima approach, where the block generally300

coincides with the year (Annual Maxima, AM), and the more complex Peak-301

Over-Threshold approach (POT).302

The wide popularity of AM relies on its simplicity, but also on the limited303

access in the past to regularly-sampled, long observed series of the random304

variable of interest. Although it is necessary to have available the complete305

series to establish if an extreme event is an annual maximum, it was common306

practice to take note essentially of the values reached during extreme events,307

especially in old times when the observation of the hydrological variables was308

not systematic (apart from a few noteworthy cases such as that described in309

Calenda et al. (2005)).310

When a complete time-series of observations is available, POT is adopted311

in practical applications (especially when the length of the observed period is312

short) to select the largest possible amount of data, yet respecting the inde-313

pendence assumption. POT originated in hydrology with the rationale that314

if additional information about the extreme upper tail were used besides the315

annual maxima, then more accurate and reliable estimates of the parame-316

ters and quantiles of extreme value distributions would be obtained (see, e.g.317
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Katz et al., 2002). This is the same rationale behind CTA, as described in318

the previous section; however, it is important to stress that while CTA does319

not require any data selection, POT asks for additional computational efforts320

to select only the peaks over the threshold (i.e. the maximum of a cluster321

of values all exceeding the threshold) and necessitates the introduction of322

further information or parameters in order to select among those peaks only323

independent ones (see, e.g. Coles, 2001).324

For simplicity, in this work we compare CTA to AM. To avoid confusion,325

we use Y to indicate the annual maximum of the random variable Z. The326

annual maximum time-series is derived from z as y = {y1, ..., yn/nY
}, where327

n is the number of observations, yi = max {znY (i−1)+1, ..., znY i} and nY is328

the number of time-intervals ∆τ per year (e.g. nY = 365 in the case Z is329

observed at the daily scale). The empirical return period of the values in330

y can be evaluated by using the same procedures described above for the331

time-series z and based on the edf (since (n/nY ) ≤ n).332

4.1. Purely random and stationary processes333

The probability distribution function of Y is by definition different from334

that of Z. Since we aim at exploring the difference between the two under335

general conditions (cyclo-stationarity and persistence), for the sake of clarity336

we start from the well known stationary and independent case (then ρθ = 0337

for θ 6= 0) by introducing a general framework that is instrumental to the338

discussion reported in the following sections. Given a threshold value z, the339

probability of annual maxima PY (z) = Pr{Y ≤ z} can be easily derived from340

that of the parent process as (e.g. Coles, 2001)341

PY (z) = PZ(z)nY (8)342
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By using Equation (3) the corresponding return period is derived343

TY (z) =
∆τ nY

1− PZ(z)nY
(9)344

where ∆τ nY is one year. Note that here nY is not a random variable, since345

z is an observed series of the stochastic process Z sampled at a constant time346

intervals ∆τ ; hence, the number of observations in each year is constant, be-347

ing uniquely determined by the time interval ∆τ . Conversely, in traditional348

extreme value theory the exponent in Eq. (8) is not a constant, being the349

number of peaks of clusters of values, but rather can be regarded as a realiza-350

tion of a Poisson distributed random variable; this yields a different form for351

the probability distribution of annual maxima, which gives numerical values352

not significantly different from those provided by Eq. (8) for large PZ(z)353

(Koutsoyiannis, 2004).354

If nY = 1 CTA obviously gives the same results of AM. If nY > 1 (which355

means that ∆τ < 1 year), Equation (9) results in larger values with respect356

to 1/(1 − PZ(z)), as shown in Figure 1. Note that the figure depicts the357

theoretical return period of annual maxima as function of that of the con-358

tinuous process, i.e. when assuming nY → ∞, for any kind of process Z;359

in other words, it is the case of infinite sample length (n → ∞). For con-360

venience, the return period of annual maxima is denoted by TY while that361

of the parent process by TZ ; both are measured in years from now on. The362

figure shows to what extent AM results in larger values of the return period363

with respect to that of the underlying process, or in other words, the prob-364

ability of {Y > z} is smaller than that of the dangerous events {Z > z}.365

This is due to a wastage of information. During any year, additional events366

may have occurred that are excluded by the analysis because such data are367
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not the annual maximum in the year they arose, as in the example depicted368

in Figure 2a. For the sake of illustration, Figure 2 shows one year of a log-369

normal AR(1) daily time-series with mean µ = 1, variance σ2 = 1 and lag-1370

correlation coefficient ρ1 = 0 (panel a) and ρ1 = 0.85 (panel b); note that371

seasonal variability is not considered in this independent and stationary ex-372

ample. The figure depicts with red dots the information discarded by the373

annual maxima approach (red circles), in the estimation of the return period374

of the event Z > 4. Furthermore, these events might be possibly larger than375

the maximum in other years. It also follows that the minimum value of the376

return period of annual maxima is equal to 1 year, which means that based377

on annual maxima analysis we cannot measure the rareness of events that378

occur more frequently than once every year.379

Figure 1: Return period of the annual maxima (TY ) as function of that of the continuous

parent process (TZ , nY → ∞). The difference between the two (D) significantly reduces

(D ≤ 0.05) only when when TZ becomes larger than about 10 years.

As the threshold z increases (we look to more and more intense events),380

the return period of annual maxima, TY , tends to that of the parent process,381
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Figure 2: One year of a lognormal AR(1) daily time-series with mean µ = 1, variance

σ2 = 1 and lag-1 correlation coefficient a) ρ1 = 0 and b) ρ1 = 0.85 (no seasonal variability).

The events exceeding the threshold (red dots) that are not annual maxima (red circle) are

discarded in AM, resulting in an overestimation of the average interarrival time of the

parent process, i.e. TY (z) > Tz(z).

TZ ; indeed, very large events are expected to be always selected as annual382

maxima, hence the wastage of information is reduced toward zero as the383

threshold increases. The difference TY − TZ (denoted in Figure 1 as D)384

reduces to less than 5% of TZ only when TZ becomes larger than about 10385

years. This means that relatively frequent events, that might be of interest386

when the expected damage is modest, are generally underestimated when387

only the annual maxima are available. The asymptotic convergence of the388

annual maxima distribution to that of the parent process for high threshold389

values, about TZ ≥ 10 years according to the above figure, is at the basis of390
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extreme value theory.391

5. Persistent stationary processes392

The difference between annual maxima and the parent process for those393

events that are characterized by small to medium values of the return period394

is expected to worsen in the case of time-dependent, positively correlated395

processes, where the dangerous events tend to occur in clusters; see the ex-396

ample shown in Figure 2b, where the number of events neglected by annual397

maxima approach (the red dots) increases with respect to the independent398

case depicted figure 2a. The latter condition is that usually matched in hy-399

drological applications; for instance, the rainfall amount observed at given400

time-scale exhibits a complex, persistent behavior in time, affected by sea-401

sonality, which depends on the time-scale itself. Hence, we compare here the402

empirical return period of the complete time-series to that of annual maxima403

for time persistent processes by making use of a simple synthetic example.404

In this section we consider an autoregressive process of order one, AR(1),405

supposed to represent a stationary and persistent natural process observed406

at the daily scale (i.e. ∆τ = 1 day). The process analyzed here is charac-407

terized by a marginal lognormal probability distribution function with mean408

µ and variance σ2, while its time-dependence structure is ruled by the lag-1409

correlation coefficient, ρ1. We assume here µ = 1 and two different values410

for the variance, σ2 = 1 or σ2 = 5; further, we let the correlation coefficient411

vary between 0 (independent process) and 0.99 (persistent process), noting412

that we are ignoring seasonality here.413
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5.1. Theoretical difference between CTA and AM for persistent processes414

We first compare the empirical return period of the annual maxima to415

that of the complete series by analyzing a very long series, specifically n =416

365 × 105 days (i.e. 105 years). This analysis is intended to investigate the417

theoretical difference between CTA and AM for persistent processes, when418

the accuracy of the return period estimate is essentially not affected by the419

length of the observed period (as in the independent case discussed in Section420

4.1). Results are represented in Figure 3 for several values of ρ1 ranging421

between 0.5 and 0.99 and for σ2 = 1 (Figure 3a) and σ2 = 5 (Figure 3b); the422

independent case (ρ1 = 0) is reported as a reference. Values of ρ1 ∈ [0, 0.5]423

are not considered since the difference with the independent case is negligible;424

finally, we look at results for return period values included between 1 day,425

that is the the minimum value that can be explored based on the temporal426

resolution of the available series, and 1000 years, such that estimates are not427

influenced by the finite length of the simulated series.428

We recall here that the theoretical return period (according to Equation429

(3)) of the parent process is fully determined by the lognormal probability430

distribution, which is represented in Figure 3 by the magenta curve. The431

return period estimated from the complete series returns for any ρ1 the the-432

oretical distribution (black dashed curves that overlap for all ρ1 the magenta433

curve); thus, it is not affected at all by the correlation structure of the process434

(as demonstrated by Volpi et al. (2015)).435

Since in this numerical experiment n is very large, also the empirical436

return period computed as the average of the interarrival time between suc-437

cessive events {Z > z}, i.e. by strictly following Equation (1), returns the438
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Figure 3: Lognormal AR(1) daily process with µ = 1, variance σ2 = 1 (a) or σ2 = 5

(b), and lag-1 correlation coefficient ρ1: empirical return periods of the complete series

(TZ , black dashed curves indistinguishable from the theoretical, thick magenta curves)

and of the annual maxima (TY , colored continuous curves) for several values of ρ1 ranging

between 0.5 and 0.99 compared to the theoretical one (magenta curve). The independent

case (ρ1 = 0) is depicted as a reference.

theoretical value for any ρ1 and for threshold values z up to that represented439

in the figure. The latter result, which numerically demonstrates the theoret-440

ical finding by Volpi et al. (2015), is illustrated in Figure 4 for the specific441

process characterized by the parameter combination σ2 = 5 and ρ1 = 0.85.442

In Figure 3, the return period estimated by selecting the annual maxima,443

TY (colored curves) assumes values larger than the theoretical ones pertaining444

to the parent process or the independent case (ρ1 = 0, black curve); this445

implies that the corresponding z-values are smaller. We also notice that for446

ρ1 ≥ 0.9 the annual maxima span over a wide range, covering values that447

are even smaller than the mean of the process (µ = 1, vertical dashed line448
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Figure 4: Lognormal AR(1) daily process with µ = 1, variance σ2 = 5 and lag-1 correlation

coefficient ρ1 = 0.85: empirical return period of the complete series TZ , derived based on

the ecdf (black dashed curves) and as the average of the empirical interarrival times (black

circles) compared to the theoretical one (magenta curve).

in the figure). On average, the number of daily data exceeding the threshold449

{Z > min (y)} that are discarded by AM per year ranges in between 10 and450

350 values when ρ1 increases from 0 to 0.99 respectively, for both σ2 = 1 and451

σ2 = 5.452

Further, the return period estimate converges only for large values of453

z to the theoretical value, with a rate of convergence that depends on the454

persistence of the process. Hence, the larger is ρ1 the slower is the rate of455

convergence of TY to TZ . An important role is also played by the variance of456

the process; in the case σ2 = 5 (Figure 3b) the convergence of the complete457

distribution to the theoretical one is even slower than in the case depicted458

in Figure 3a (σ2 = 1). To give a quantitative measure of the deviation of459

the annual maxima estimate from the theoretical return period of the parent460
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process, the difference D = TY − TZ for TZ = 10 years moves from 0.5 years461

for ρ1 = 0 (i.e. ∼ 5%, as in the theoretical independent case depicted in462

Figure 1), to 150 (200) years, for ρ1 = 0.99 and σ2 = 1 (5).463

Note that return period estimate based on CTA is compared here only464

to that pertaining to annual maxima, but a similar comparison could be465

made by considering the POT approach. It is expected that return period466

estimates based on POT result in intermediate values between AM and CTA,467

as a function of the threshold used to select peaks, but closer to AM estimates.468

Note indeed, that CTA considers all the values exceeding the threshold z (see,469

e.g., figure 2b), while POT uses only the independent maxima of clusters of470

values exceeding z. The difference between the two approaches might be471

relevant for practical purposes, as discussed later in Section 7.472

5.2. Effects of finite time-series length473

The situation depicted in Figure 3 is not met in practical applications,474

when the limited length of the observed series significantly affects the re-475

turn period estimation in terms of both accuracy and uncertainty. Generally476

speaking, accuracy is expected to improve while uncertainty decreases when477

increasing the length of the dataset of observations of a given process; note478

that here the number of observations is not a direct measure of the amount of479

information provided by data because of the correlation among the observed480

values in complete time-series. Hence, we aim at comparing the overall ro-481

bustness of return period estimates for small sample lengths, obtained by482

CTA instead of the selected annual maxima (which are commonly assumed483

to be independent). To investigate the latter issue, we repeated the above484

analysis for different values of n within the range from 10 to 200 years for a485
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large number a synthetic time-series (M = 10, 000).486

Results obtained when assuming σ2 = 5 and ρ1 = 0.6 are depicted in487

Figure 5; the figure summarizes the empirical probability estimates together488

with their 95% uncertainty bounds derived by using both methods for some489

values of n ranging in between 10 and 200 years. Note that results are pre-490

sented here in terms of edf to avoid infinite values of return period that might491

occur due to the use of Equation (1) when z is larger than the maximum ob-492

served value in the dataset. If the edf in Equation (7) is normalized with493

respect to n+ 1 instead of n, we obtain the classic Weibull plotting position494

formula (Makkonen, 2006); indeed, the latter is usually adopted to avoid in-495

finite values of the estimated return period for the sample maximum. This496

issue goes beyond the scope of this analysis, which is intended to discuss the497

variability of return period estimate due to finite sample lengths; it will be498

considered in future works together with the problem of model fitting.499

Figure 5 shows how the AM estimate converges on the average only with500

increasing T (moving from Figure 5a to c) to that of the complete time-series,501

which overlaps the theoretical one for any sample length n . As expected, the502

uncertainty bounds reduce with the sample size n. Uncertainty also reduces503

as T increases; however, this unexpected behavior is a consequence of the504

fact that probability is upper bounded to unity and due to the adoption505

of the edf given in Eq. (7). Notwithstanding this, it is worth noting that506

AM uncertainty bounds are narrower than those pertaining to CTA for any507

value of T . This means that the selection of annual maxima results in an508

undersampling effect, that manifests itself in terms of underestimation of the509

exceeding probability of the parent process (i.e. overestimation of the non-510
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exceeding probability or of the return period as discussed in Figure 3), and511

of its sampling variability.512

Figure 5: Lognormal AR(1) daily process with µ = 1, variance σ2 = 5 and lag-1 correlation

coefficient ρ1 = 0.6: CTA (black curves) and AM (blue curves) empirical probability for

some values of the return period T as function of the time-series length, n; the estimated

probabilities are represented in terms of average values (dotted curve) and 95% uncertainty

bounds. In each panel the theoretical probability is reported as a reference (magenta

curve).

Correlation in time, which in this case is fully represented by the lag-1513

correlation coefficient ρ1, significantly affects the accuracy and the variability514

of the return period estimates obtained by both methods. Results for all515

values of ρ1 considered in this illustrative example, are summarized in Figure516

6 for T = 5 years. Figure 6a and b depict the behavior of the average517

probability estimates based on AM (panel a) and CTA (panel b). It can518

be noticed that the bias resulting from AM is strongly enhanced by high519

values of ρ1. Conversely, the average probability estimates based on CTA520

are unbiased for any ρ1 and n.521

Further, the underestimation of the sampling variability which is observed522

in Figure 5 for ρ1 = 0.6 when using AM, magnifies in the cases of processes523
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strongly correlated in time. To illustrate the latter issue we depict in Figure524

6 also the coefficient of variation, CV of the probability estimates for T = 5525

years, computed by analyzing annual maxima (Figure 6c) and the complete526

time-series (Figure 6d). The figure clearly shows that while CV is comparable527

for small values of ρ1, large differences arise when ρ1 approaches to one.528

While CV of CTA estimate increases with the persistence of the process,529

that of AM reduces; the latter behaviour is a consequence of the fact that530

probability, that is upper bounded by one, is overestimated when analyzing531

annual maxima.532

A similar analysis could be performed in terms of quantiles, by investi-533

gating how the order statistics of annual maxima and complete time-series534

are influenced by the correlation structure of the process. However, slightly535

different results (not shown) are obtained in terms of empirical return period536

quantiles with respect to those obtained in terms of edf (as in Figure 6). In537

fact, the probability distribution of the order statistics does not correspond on538

average to the theoretical probability distribution of the underlying process539

(David and Nagaraja, 2003); moreover, it is affected by the autocorrelation540

structure of the process. Conversely, the edf expressed by Equation (7) is541

an unbiased estimator regardless of the type and strength of the correlation542

structure.543

6. Persistent and cyclo-stationary processes544

In order to provide some insights into the use of CTA in applications,545

we analyze here a synthetic process which resembles the main statistical546

properties of an hydrological observed series. Specifically, we analyze a daily547
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Figure 6: Lognormal AR(1) daily time-series, mean µ = 1, variance σ2 = 5, and lag-1

correlation coefficient ρ1 ∈ [0.50, 0.99]: AM (left panels) and CTA (right panels) ecdf F̂n

for T = 5 years; average values (upper panels) and variation coefficient (lower panels)

as function of the time-series length, n. In panels (a) and (b) the theoretical probability

(magenta line) and the independent case (ρ1 = 0, black curve) are reported as reference.

discharge process that is characterized by non-normality, a strong seasonal548

pattern and by long-range persistence.549

The type of analysis envisaged here requires a very long series of data.550

Hence, for the sake of illustration we consider a fractional autoregressive551

moving average process, FARMA(p, d, q), which models the Tiber River daily552

discharge time-series observed at Roma-Ripetta station. Observations cover553

a period of 54 years, from 1930 to 1983, but only the first 15 years were used554

to calibrate the linear parametric model; as an example, Figure 7a shows the555
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observed series (black line) for a time window of three years, from 1933 to556

1936. The seasonal pattern clearly emerges from the structure of the auto-557

correlation function, as depicted in Figure 7b (black line). The model was558

calibrated after normalizing the data (based on a log-normal transforma-559

tion) and removing seasonality; Figure 7 shows a subsample of the simulated560

series compared to the observed one (panel a) and the corresponding auto-561

correlation functions (panel b), thus highlighting the capability of the model562

in reproducing the complex behavior of the real word process. The reader563

is referred to Grimaldi (2004) for a detailed description of model structure,564

calibration and performance. We remark again that the model employed565

here is for the sole sake of illustration, and other general and more parsimo-566

nious methods could have been used to generate synthetic series from the567

observed process with any arbitrary autocorrelation structure, as discussed568

by Koutsoyiannis (2016), yet this goes beyond the scope of this work.569

Figure 7: Synthetic series compared to that of the Tiber River (1930-1985) for a time

window of three years: a) discrete-time daily discharge, and b) autocorrelation function,

where dashed lines show 95% Gaussian confidence band.
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We estimated the empirical return periods for both the annual maxima570

and the complete time-series by substituting in Eq. (3) the non-exceedance571

probability with the edf calculated using Equation (7), which gives the av-572

erage non-exceeding probability within the year (Π). The empirical return573

periods are depicted in Figure 8a; since the synthetic series is very long, the574

figure depicts the theoretical difference between the two (unaffected by sam-575

ple length). AM significantly overestimates the return period of the complete576

time-series, if the latter is considered as a benchmark, for return periods up577

to 100 years. Here the bias of AM with respect to CTA (D = TY − TZ)578

for TZ = 10 years is equal to ∼ 10 years, which means a 100% relative579

difference. The latter value is very close to that pertaining to the AR(1)580

lognormal process with similar value of ρ1 and σ2 = 5, discussed in Section581

5.2, although the variation coefficient here is smaller (about 0.7) with respect582

to that pertaining to the AR(1) process (about 2.3).583

If a finite length sample is used to estimate return periods, the difference584

between AM and CTA might be enhanced. The effects of finite sample length585

for this cyclo-stationary, long-range persistent process is illustrated in panels586

b)-d) of Figure 8; in panels b) and c) the empirical return periods of two sam-587

ples of 54 years (equal to the length of the observed time-series) drawn from588

the FARMA calibrated model are compared to the corresponding theoretical589

ones (the full length samples). The empirical return period estimates for the590

event {Z > 1500 m3/s} are depicted in panel (d); the average return period591

of annual maxima overestimates that pertaining to the complete time-series,592

also showing a smaller dispersion around its average value.593
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Figure 8: Synthetic daily process resembling the main statistics of the Tiber River daily

discharge series (1930-1985) with mean µ = 270 (m3/s), standard deviation σ = 181

(m3/s), lag-1 correlation coefficient ρ1 = 0.87 and Hurst coefficient H = 0.9: empirical

return period of the complete series (TZ , red curve) and the annual maxima (TY , blue

curve) considering the whole time-series (a) or analyzing a sub-sample of length equal

to that of the observed series (b, c). Note that panels b) and c) focus on z ≥ µ and

T ≥ 1 year. Panels d) shows the boxplot of the estimated return periods for the events

{Z > 1500 m3/s}, based on 54 years sample length and both the methods.

7. Discussion on CTA application in real-world cases594

It is important to note that the CTA approach to return period estimate595

considered here generally differs from the common methods used in hydrology596

(e.g. in flood frequency analysis), as explained in the following. CTA gives597

the return period of the event A defined as the exceedance of a threshold value598

(i.e. Zt > z) at the temporal resolution ∆τ at which the continuous process Z599

is sampled. In other words, it accounts for all the interarrival times between600

any successive values exceeding z at the ∆τ scale, including those elapsing601
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between successive values of Zt that remain above the threshold z (i.e. simply602

equal to ∆τ , see figure 2); instead, in the conventional flood analysis the603

above interarrival times are usually not considered. The significance of such604

a return period estimate depends on the particular goal at hand and on the605

temporal resolution ∆τ that should be comparable (not much smaller) with606

respect to the temporal scale that characterizes the natural phenomenon.607

The temporal scale should not be confused with the characteristic scale of608

the correlation structure (i.e. the integral scale), which itself depends on the609

temporal resolution ∆τ .610

For instance, in the example provided in Section 6, CTA accounts for611

the consecutive exceedance of any threshold value of flow discharge at the612

daily scale (∆τ = 1 day), which is a small temporal scale with respect to the613

average duration of a flood event. In this case, if the purpose of the analysis614

is the assessment of the levee system, it might be not of interest to know if the615

levee height is exceeded the day after once exceedance is already occurred616

the day before. On the other hand, it might be important to account for617

successive exceedances at the temporal resolution of the process ∆τ , e.g.618

when we are evaluating the return period of daily rainfall to design a urban619

drainage system against pluvial flooding and the critical duration of the620

system (that maximizes the peak discharge) is approximately one day.621

Further, as anticipated in the Introduction, for simplicity reasons we622

based our analyses on a non-parametric estimation approach, i.e. using the623

edf in Eq. (7) instead of a model fitted to the data. However, direct es-624

timation of the statistics of a process is generally not possible merely from625

the data and data alone do not enable extrapolation of estimates, as often626
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required for planning and design purposes (Koutsoyiannis, 2016). Thus, the627

issue of fitting appropriate models in the context of the proposed approach628

deserves further investigation. Although uncertainty is inherent in any sta-629

tistical model, such uncertainty could be reduced by the utilization of all the630

available information, as well as by judicious choices of model.631

The use of CTA naturally implements seasonality handling in frequency632

analysis. As recently discussed by Allamanno et al. (2011) (see also Ras-633

mussen and Rosbjerg (1991) and Strupczewski et al. (2012)), disregarding634

seasonality in hydro-climatic extreme value analysis, based on annual max-635

ima or POT, leads to an overestimation of return period, which is less safe.636

The problem is solved by taking into account the events that occurred in637

all the seasons by fitting different distributions to the maxima in separate638

seasons or months and mixing the seasonal distributions according to their639

probability of occurrence (see, e.g. Mascaro, 2018) or by directly including640

the seasonal rate of occurrence of the exceedance events in the POT ap-641

proach as in Rasmussen and Rosbjerg (1991) and Allamanno et al. (2011).642

CTA implements the former method, by considering for frequency analysis643

all the observed values in each of the seasons; this could eventually require644

the adoption of complex probability models (e.g. mixed models).645

The adoption of complex probability models could also help handle the646

heterogeneity due to the possible superposition of different physical processes647

ruling the statistical behaviour of the random variable of interest (rainfall,648

floods, etc.). In fact, the general understanding appears to be that low and649

ordinary hydrological events could be dominated by a different process (see,650

e.g. Merz and Blöschl, 2008), thus having little or no contribution to the651
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larger events. This might emerge from the edf of the annual maxima, by652

manifesting a different statistical behavior for ordinary and extreme events;653

this heterogeneity is expected to emerge more strongly when analyzing the654

complete time-series that brings a larger number of values (also on the upper655

tail of the probability distribution function) with respect to annual maxima.656

In this regard, we believe that a priori physical knowledge about the un-657

derlying processes, if available, could be included in the analysis to support658

the assumption of complex mixed models for modeling (and extrapolation)659

purposes (see, e.g. Calenda et al., 2009). In absence of additional knowl-660

edge on the physical process, the heterogeneity assumption cannot be truly661

tested; however, all events generally occur under the combination of numer-662

ous factors, so that the probabilistic treatment of processes is by definition663

a macroscopic approach that does not care about each of the specific factors664

and reduces to fitting the most appropriate model to the empirical distribu-665

tion of the complete data set (or to its part that is of interest for the specific666

problem at hand).667

Finally, we remark that CTA is based on the availability of a discrete-time668

uninterrupted record of observations with an adequate temporal resolution,669

which according to our analysis affects the results. In the case of few missing670

data within long observational records, some (temporal or spatial) interpola-671

tion techniques could be adopted to fill the gaps; in general, large gaps could672

affect CTA more than AM or POT. The improvement of large datasets of673

environmental observations is expected to favor CTA approach in the future.674
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8. Conclusions675

A new approach for return period estimation is proposed, denoted as676

Complete Time-series Analysis (CTA). This approach relies on the property677

that the average interarrival time between successive events (e.g. {Z > z})678

is not affected by the correlation structure of the underlying process, regard-679

less of the persistence of the process. This means that independence is not680

a necessary condition when return period is defined as the average of the in-681

terarrival time; this also implies that no data selection techniques are needed682

to assure independence of the data for frequency analysis. Hence, once sta-683

tionarity can be assumed, the return period can be computed by using the684

classical equation of return period (the inverse of the exceedance probabil-685

ity) starting from any kind of observational data, independent or correlated686

in time, thereby potentially exploiting all the available information on the687

parent process. This property is extended herein to include cyclo-stationary688

processes, since hydrological and other geophysical processes typically man-689

ifest a weaker form of stationarity at sub-annual scales connected to the690

seasonal variability of the environmental phenomena.691

We compare the proposed approach to the simple method of Annual Max-692

ima (AM), typically adopted in extreme value analysis. Complete time-series693

(observed in discrete time, at constant time intervals) and annual maxima are694

inherently different processes, that give subtly different information on the695

same underlying continuous process; specifically, CTA describes the marginal696

behaviour of the whole parent process (sampled in discrete time at a given697

temporal resolution), while AM describes the statistical behavior of its ex-698

tremes.699
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The difference between CTA and AM are discussed herein by making700

use of two illustrative examples. In both cases, we adopt for the sake of701

illustration a non-parametric approach by using the empirical probability702

distribution function of the annual maxima and the complete time-series as an703

estimate of the marginal probability distribution function of the underlying704

process. Some general conclusions can be drawn from the analyses, as listed705

in the following.706

• CTA results in an accurate estimate of return period of the parent707

process for any intensity of the event (i.e. threshold value z) and,708

on the average, for any sample length, regardless of the correlation709

structure and the seasonality of the parent process, thus allowing to710

investigate a wider range of return period values, not only the largest711

extremes that are the focus of extreme value theory.712

• AM leads to an overestimation of the return period (and an underes-713

timation of its sampling variability) of the parent process for small to714

moderate return period values, converging to CTA estimates for large715

events. This behaviour, which is a consequence of data selection and is716

well known in the literature for independent processes, is enhanced by717

time-persistence of the underlying process; further, it is independent718

on average from the sample length.719

• Return period estimates provided by CTA are generally different with720

respect to that pertaining to annual maxima because CTA considers721

all the occurrences of the dangerous events within the observed record;722

their significance depends on the particular goal at hand and on the723
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temporal resolution of the process, that should be comparable with re-724

spect to the temporal scale that characterizes the natural phenomenon.725

• CTA could be easily applied in the case of complex hydrological time-726

series (such as that discussed here that reproduces the main features of727

the Tiber River daily discharge as observed at Rome-Ripetta station),728

which are typically characterized by non-normality, seasonality, long-729

range persistence and, possibly, heterogeneity.730

We found that the estimation of the return period using CTA could be731

a convenient alternative to existing methods as function of the problem at732

hand, for a few reasons. First, the method is easy to implement; it can733

be employed for any sample length, without any data selection (e.g. events734

selection in flood analysis). Moreover, CTA always results in more conser-735

vative return period estimates, i.e. smaller estimated values with higher736

uncertainty, by exploiting all the information content of the observed data,737

i.e. low, ordinary and extreme discharge values that make-up the complete738

time-series and fully describe the seasonal pattern.739

The difference between CTA and AM tends toward zero as we look at740

events that are more and more extreme simply because very large events are741

expected to be always selected as annual maxima. Thus, CTA and extreme742

value analysis are expected to give the same results in terms of the upper tail743

of the distribution, thus supporting the adoption of extreme value analysis744

when the interest is in large return period values. Note, however, that very745

intense events typically pertain to the extrapolation range, where differences746

among the methods could emerge when a probability distribution model is747

fitted to the sample.748
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Hence, additional work is needed to fully understand advantages and749

limitations of CTA in engineering practice. Since the main scope of this work750

was to explore the potential advantages of the complete time-series approach751

compared to traditional ones, we have not addressed the important issue752

of the inference of the statistical distribution of the hydrological variable753

of interest. Future work will investigate the problem of fitting appropriate754

candidate models able to reproduce the complex, potentially heterogeneous755

statistical behavior of complete time-series.756
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Appendix A. Mean interarrival time of cyclo-stationary and per-764

sistent processes765

The average interarrival time is obtained by substituting in the general766

expression (1) the pmf given in Eq. (5). Note that the latter pmf depends on767

time t; hence, in the following we derive the expression of the return period768
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T conditional on t, i.e. T
∆τ

= E[X|t]769

T

∆τ
=
∞∑
x=1

x
t+Π−1∑
t′=t

PrAt′∑Π−1
η=0 PrAη

Pr(At′ , Bt′+1, Bt′+2, ...Bt′+x−1, At′+x)

PrAt′

=
1∑t+Π−1

r=t PrAr

t+Π−1∑
t′=t

∞∑
x=1

x Pr(At′ , Bt′+1, Bt′+2, ...Bt′+x−1, At′+x)

=
1∑t+Π−1

r=t PrAr

t+Π−1∑
t′=t

[1 Pr(At′ , At′+1) + 2 Pr(At′ , Bt′+1, At′+2)+

+ 3 Pr(At′ , Bt′+1, Bt′+2, At′+3) + ...]

(A.1)

770

By making use of the identity Pr(CA) = Pr(C)−Pr(CB), where B always771

denotes the opposite event of A, we obtain (as in Volpi et al. (2015))772

T

∆τ
=

1∑t+Π−1
r=t PrAr

t+Π−1∑
t′=t

[(PrAt′ − Pr(At′ , Bt′+1)) + 2(Pr(At′ , Bt′+1)− Pr(At′ , Bt′+1, Bt′+2)) + ...]

=
1∑t+Π−1

r=t PrAr

t+Π−1∑
t′=t

[PrAt′ + Pr(At′ , Bt′+1) + Pr(A′t, Bt′+1, Bt′+2) + ...]

(A.2)

773
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Using once more the same identity, we find774

T

∆τ
=

1∑t+Π−1
r=t PrAr

t+Π−1∑
t′=t

[(1− PrBt′) + (PrBt′+1 − Pr(Bt′ , Bt′+1))+

+ (Pr(Bt′+1, Bt′+2)− Pr(Bt′ , Bt′+1, Bt′+2)) + ...]

=
1∑t+Π−1

r=t PrAr
[
t+Π−1∑
t′=t

1−
t+Π−1∑
t′=t

PrBt′ +
t+Π−1∑
t=t

PrBt′+1 −
t+Π−1∑
t′=t

Pr(Bt′ , Bt′+1)+

+
t+Π−1∑
t′=t

Pr(Bt′+1, Bt′+2)− ...]

=
Π∑t+Π−1

r=t PrAr
=

1

1− 1
Π

∑t+Π−1
r=t PrBr

(A.3)

775

which simplifies in Eq.(6) thanks to the periodic property of the cyclo-776

stationary process, such that
∑t+Π−1

t′=t PrBt′ =
∑t+Π−1

t′=t PrBt′+1,
∑t+Π−1

t′=t Pr(Bt′ , Bt′+1) =777 ∑t+Π−1
t′=t Pr(Bt′+1, Bt′+2) and so on, and that marginal probability of non-778

exceeding the threshold value z within any period [t, t+ Π− 1], i.e. PZ(z) =779

1

1− 1
Π

∑t+Π−1
r=t PrBr

, is independent on t.780
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