
Nedontas river, located in SW Greece, flows in southwestern direction and is fed by

several small tributaries. Stage and rain data are available from two of its main

tributaries (Karveliotis and Alagonia) and at the basin outlet (Bakas). Further rain data

that are also available from three additional meteorological stations (Poliani, Nedousa,

Kalamata).

Nine flood events that occurred during the period 2012-2014 were isolated for
analysis. The analysis showed that the stations with the most reliable information for
explaining the river stage at the outlet station (Bakas) are the meteorological stations
Nedousa and Kalamata and the hydrometric stations Alagonia and Karveliotis.

Stage and Rainfall observations during a typical flood event

From the above it is noticeable that the hydrometric stations have a larger correlation
than the meteorological ones. The exact opposite occurs when it comes to the time
lag.

Based on our analysis of the correlation coefficients we decided to set the length of
the input sequence constant and equal to 20 timesteps (5 hours). We trained our
LSTM each time using a different episode as a test dataset and compared the results.

No matter the training set, the LSTM performed well enough on all regression models
we created, meaning it was able to make predictions two hours ahead of the observed
data.
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Outline of Methodology

Goal: The implementation of LSTMs to predict the river stage at the basin
outlet of a river using observed data across the upstream river network
and rainfall data from representative meteorological stations.

By isolating the historical flood events from the available timeseries data, we analyze the
correlations between the target variable y(t) (river stage at the outlet gauge station) and
alternative sets of explanatory variables, xi(t – τ), for several lead times τ = 1, …, N.

For each case study:

An explanatory variable may refer to a known (i.e., current or past) process, i.e.:

For each event and variable is calculated the sequence of empirical Pearson correlation 
coefficients, ρiτ, and  are extracted both the value of the maximun one, ρi

* = max (ρi1, … 
ρiN), and its corresponding lead time τi

*.

Based on the analysis of several flood events, we retain the n most informative
explanatory variables. These will be the ones we will use as input on our LSTM.

The architecture of LSTM we use is called sequence
to one. In sequence to one model, a sequence (rain
and stage timeseries) is passed in the LSTM and there
is a non-sequence output (stage at the basin outlet).

Since the input layer accepts a sequence, the length of that sequence is important, as
it must be enough to capture the dynamics of the phenomenon.
Based on our analysis of the correlation coefficients and the lag time they maximize we
choose the appropriate length p.

From the available timeseries for each variable we create multiple subsequences using a
sliding window p using one timestep. Each instance of the sliding window corresponds to
a record in the training set. So the input X corresponds to p sequential values for each
input feature. If n features (explanatory variables) are used as input, that means that X is
an (nxp) matrix. The output Y corresponds to the stage value at the desired timestep
t+h.

A schematic illustration of one iteration step in the LSTM training/calibration is provided

in the following figure. One iteration step during the training of LSTMs works with a

subset (called batch or mini-batch) of the available training data. The number of samples

per batch is hyperparameter of the neural network.

Note that, based on our hypothesis that each stage is a function of p steps of the

explanatory variables, the samples within a batch can be random. This approach is

entirely different from the procedure a traditional hydrological model would follow were

data are processed in order of appearance.

Since the goal is to predict the river stage at multiple timesteps and the model used

outputs only one prediction at a specific t+h timestep, we created h training sets. Each

of which has the same input X, but different output Y. By learning each training set

independently, we obtain h regression models fi(i=1,2,…,h). The models are then used

to predict the next h values as follows: yt+i=fi(X), i=1,2,…h.

Moreover each of these stations provided us with 15-minute interval data. We decided

to make predictions for the following two hours so that led in creating h=8 different

regression models.
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Loss

For more than two decades, the use of artificial neural networks (ANNs) in hydrology has
become an effective and efficient alternative against traditional modeling approaches, i.e.
physically-based or conceptual. These can take advantage of any type of available
information to predict the hydrological response of complex systems, with missing data
and limited knowledge about the transformation mechanisms. A promising area of
application is the real-time prediction of flood propagation, which is essential element of
early warning and early notification systems. In this work we focus to flash floods,
considering as areas of application two medium-scale catchments in Greece with
substantially different characteristics. The first one is the highly urbanized river basin of
Kephissos (380 km2), which is the main drainage channel of the Athens Metropolitan area,
while the second is the rural catchment of Nedontas, SW Greece (120 km2). Both areas
have been recently equipped with automatic hydrometric stations, while online rainfall
data are also available at a representative number of meteorological stations. For the two
case studies we investigate several setups of ANNs, in order to predict the river stage at
the catchment outlet for several lead times, using different combinations of input sets,
by means of upstream stage and point rainfall data.

Abstract

Flash flood forecasting 
challenges in the Mediterranean

LSTM Neural Networks

They learn to predict the output but

they also learn how to compact all of

the previous inputs.

A Long-Short Term Memory (LSTM) Neural Network is a type of RNN (Recurrent Neural
Network) that scans its input layer across sequences and learns how to extract
information from a given event in order to make use of it at a later point in a sequence.
The reason an LSTM is able to create representations of the past is that they are able to
remember what they’ve seen previously, because they have a recurrent connection
between their hidden layer and their input. The key characteristics of an LSTM are the
following:

All of the above make LSTM a promising tool with multiple applications in hydrology

where time series prediction with long range dependencies often occur.
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The input to an LSTM is a

concatenation of the original

stateless input and the hidden state.

This idea of a persistent hidden state

that is learned from ordered inputs is

what distinguishes an LSTM from

linear and deep neural networks. In a

DNN the hidden state is not updated

during prediction. In RNN, it is.

They are designed for modelling long-

term dependencies.
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x(t)

Y(t)

Relatively small or medium-scale 
catchments leading to fast response times

Complex relief and complex hydroclimatic 
regime → significant spatiotemporal 
heterogeneity of storms

Highly uncertain rainfall forecasts 
provided by Numerical Weather Prediction 
Models (more suitable for large scales, 
limited predictive capacity for small lead 
times) → questionable operational 
usefulness of typical hydrometeorological 
forecasting schemes, i.e., NWPM’s 
coupled with hydrological and hydraulic 
models, to translate weather predictions 
to flooded areas and related impacts

New opportunities arising by the 
vast expansion of automatic 
monitoring networks, by means 
of meteorological and 
hydrometric stations, offering 
dense and finely-resolved data

Need for simple, data-
driven approaches, taking 
advantage of real or near 
real- time information 
across the catchment
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Case study: 
Prediction of Nedontas river stage (SW Greece) based 
on combined stage and rain data

Regression Model with Time Lag t = t+1

R MSE RMSE # SAMPLES

TEST SET 0.9611 0.00019954 0.0022 285

TRAIN SET 0.9889 0.00028015 0.0021 1789

Regression Model with Time Lag t = t+8

R MSE RMSE # SAMPLES

TEST SET 0.9197 0.00045699 0.0098 278

TRAIN SET 0.9821 0.00053478 0.008 1733
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The LSTM seems to do a pretty good job at the training stage and its outputs are pretty

close to the observed values. The output values for a lag of t=t+8 are a bit off, but that is

expected, due to the missing data. Note that, the purpose of this project was to explore

the potential of these networks and not to find the optimum solution using them.

Error Histogram of the test dataset for 
predicting the values at timestep t=t+1.

Error Histogram of the test dataset for 
predicting the values at timestep t=t+8.

Observed values vs Outputs from the training stage from different time lag regression models

A similar conclusion can also be drawn by looking at the results from the testing stage.

Prediction for time lag t=t+8 tends to underestimate the river stage but no more than 5

cm. It is important to remind that the LSTMS were used in order to explore their

potential for solving timeseries problems in the field of hydrology and ultimately

becoming useful tools in flood prediction.

The use of Artificial Neural Networks with different sources of spatiotemporal information for flash flood predictions
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