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Abstract As time irreversibility of streamflow is marked for time scales up to several days, while 

common stochastic generation methods are good only for time symmetric processes, the need 

for new methods to handle irreversibility, particularly in flood simulations, has been recently 

highlighted. From an investigation of the historical evolution of existing stochastic generation 

methods, which is a useful step before proposing new methods, the strengths and weaknesses of 

current approaches are located. Following this investigation, a generic solution to the stochastic 

generation problem is proposed. This is an analytical exact method based on an asymmetric 

moving average scheme, capable of handling time irreversibility in addition to preserving the 

second-order stochastic structure, as well as higher-order marginal statistics, of a process. The 

method is studied theoretically in its general setting, as well as in its most interesting special 

cases, and is successfully applied to streamflow generation at hourly scale.  
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1 Introduction 

Simplicity is the final achievement.  

 Frédéric Chopin 

A recent study (Koutsoyiannis 2019b) has investigated the possible existence of time 

irreversibility in hydrometeorological processes and the related theoretical framework. 

According to the latter, a simple definition of time reversibility within stochastics is the 

following, where underlined symbols denote stochastic (random) variables and non-underlined 

ones denote values thereof or regular variables.  

A stochastic process 𝑥(𝑡) at continuous time t, with nth order distribution function: 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑡1, 𝑡2, … , 𝑡𝑛)  ≔ 𝑃{𝑥(𝑡1) ≤ 𝑥1, 𝑥(𝑡2) ≤ 𝑥2, … , 𝑥(𝑡𝑛) ≤ 𝑥𝑛} (1) 

is time-symmetric or time-reversible if its joint distribution does not change after reflection of 

time about the origin, i.e., if for any n, 𝑡1, 𝑡2, … , 𝑡𝑛, 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑡1, 𝑡2, … , 𝑡𝑛) = 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛;−𝑡1, −𝑡2, … , −𝑡𝑛)  (2) 

If times 𝑡𝑖 are equidistant, i.e. 𝑡𝑖 − 𝑡𝑖−1 = 𝐷, the definition can be also written by reflecting the 

order of points in time, i.e.:  
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𝐹(𝑥1, 𝑥2, … , 𝑥𝑛−1, 𝑥𝑛; 𝑡1, 𝑡2, … , 𝑡𝑛−1, 𝑡𝑛) = 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛−1, 𝑥𝑛; 𝑡𝑛, 𝑡𝑛−1, … , 𝑡2, 𝑡1) (3) 

A process that is not time-reversible is called time-asymmetric, time-irreversible or time-

directional. Important results related to time (ir)reversibility are the following: 

 A time reversible process is also stationary (Lawrance, 1991). 

 If a scalar process 𝑥(𝑡) is Gaussian (i.e., all its finite dimensional distributions are 

multivariate normal) then it is reversible (Weiss, 1975). The consequences are: (a) a 

directional process cannot be Gaussian; (b) a discrete-time ARMA process (and a 

continuous-time Markov process) is reversible if and only if it is Gaussian. 

 However, a vector (multivariate) process can be Gaussian and irreversible at the same 

time. A multivariate Gaussian linear process is reversible if and only if its autocovariance 

matrices are all symmetric (Tong and Zhang, 2005). 

 Time asymmetry of a process can be studied through the differenced process, i.e.: 

�̃�𝜏 ≔ 𝑥𝜏 − 𝑥𝜏−1 (4) 

where 𝑥𝜏 is the process representation in discrete time τ (denoting the continuous-time interval 

[(𝜏 − 1)𝐷, 𝜏𝐷]), i.e.: 

𝑥𝜏 ≔
1

𝐷
∫ 𝑥(𝑢)d𝑢

𝜏𝐷

(𝜏−1)𝐷

 (5) 

For a stationary stochastic process 𝑥(𝑡), the differenced process �̃�𝜏 has mean zero and variance: 

�̃�1 ≔ var[�̃�𝜏] = 2(𝛾1 − 𝑐1) (6) 

where 𝛾1 and 𝑐1 are the variance and lag-one autocovariance, respectively, of 𝑥𝜏. Then the time 

asymmetry is quantified by the skewness coefficient:  

�̃�S ≔
𝜇3[�̃�𝜏]

(var[�̃�𝜏])
3/2

 (7) 

where 𝜇3[ ] denotes the third moment. Alternatively, it is quantified by the probability of �̃�𝜏 

being negative: 

�̃�N ≔ 𝑃{�̃�𝜏 ≤ 0} = �̃��̃�𝜏(0) (8) 

Processes with large �̃�S or large departure of �̃�N from the value 1/2 signify high (positive) time 

irreversibility. A sketch of a realization of such a process is given in Figure 1. The graph is 

characterized by rapid increases followed by gradual decreases. The entire setting in 

constructing the time series of Figure 1 is nonlinear (the values are obtained by optimization 

rather than generated by a linear stochastic model) and while the marginal distribution is by 

construction Gaussian, the multivariate one is not, so there is no conflict with Weiss’s (1975) 

result mentioned above. 

The study by Koutsoyiannis (2019b) has provided evidence that time irreversibility may be 

profound in the streamflow process at scales of several days or lower. In atmospheric processes 
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irreversibility appears as well, but at much finer time scales. On the other hand, most stochastic 

simulation methods do not account for irreversibility. In the same study two methods have been 

proposed for a stochastic generation that respects irreversibility and reproduces it in a 

controlled manner, quantifying it by the skewness of the differenced process. After exploring 

them, one of the two methods proved successful. A disadvantage of that method is that it needs 

iterations to converge to a solution, in which vector derivatives need to be evaluated.  

 

Figure 1 Plot of two synthetic time series generated by maximizing time irreversibility properties of a 

process restricted to be marginally Gaussian (N(3, 1)) with lag-one autocorrelation 0.5, so that the 

variance of the differenced process is also 1 (equal to that of the original process). Solution 1 maximizes 

the skewness of the differenced process. Solution 2 maximizes the frequency that the differenced process 

has a negative value, without taking into account the skewness. In both series the frequency that the 

differenced process has negative values is 0.94. The coefficients of skewness of the differenced processes 

for series 1 and 2 are 4.10 and 3.34, respectively. (Source: Koutsoyiannis 2019b.) 

Here we present a simple method that is exact, analytical and direct, and its application is fast 

avoiding the need of iterations. As far as the general framework related to time’s arrow and time 

irreversibility of atmospheric and hydrological processes is concerned, the interested reader is 

referred to the study by Koutsoyiannis (2019b) and its extended list of references. However, in 

terms of the stochastic synthesis per se, the current paper is a stand-alone study with a detailed 

presentation, starting from main historical landmarks and ending with proposing a generic 

method of stochastic synthesis which is entirely new (to the author’s knowledge). In this 

manner, an earlier study for a generic and parsimonious stochastic modelling scheme 

(Koutsoyiannis 2016) is complemented and extended to time irreversible processes. 

2 Approaches in stochastic synthesis 

It is common knowledge that when we want to model the (marginal) distribution of a stochastic  

variable, we usually fit a model (a distribution such as Gaussian, gamma, generalized extreme 

value, etc.) using the available data, typically given as a time series 𝑥𝑛, 𝑛 = 1,… ,𝑁. But let us 
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consider for a minute a different tactic: We estimate from the data sufficiently many, say J, 

moments, and instead of fitting a customary distribution, we approximate the distribution 

through moments. These moments are 𝜇𝑗
′ ≔ E[𝑥𝑗], 𝑗 = 1,2,… , 𝐽, and their unbiased estimates 

from the data are �̂�𝑗
′ ≔ ∑ 𝑥𝑛

𝑗𝑁
𝑛=1 /𝑁. From the moments we could recover the density function 

𝑓(𝑥) of the stochastic variable of interest 𝑥, in at least two ways: 

1. We could exploit the inversion formula (e.g. Papoulis, 1991, p. 116): 

𝑓(𝑥) =
1

2π
∫ 𝜑(𝜔)e−i𝜔𝑥d𝜔

∞

−∞

 (9) 

where 𝜑(𝜔) is the characteristic function of the distribution and i ≔ √−1 is the 

imaginary unit, combine it with the moment theorem, according to which the jth 

derivative of 𝜑(𝜔) is: 

𝜑(𝑗)(𝜔) = i𝑗𝜇𝑗
′  (10) 

and then use some type of expansion to approximate 𝜑(𝜔) and eventually 𝑓(𝑥) based on 

a number J of moment estimates.  

2. We could use as an approximation of 𝑓(𝑥) the maximum entropy distribution conditional 

on the specified moments, which is (e.g. Papoulis 1991, p. 571): 

𝑓(𝑥) = exp(∑𝜆𝑗𝑥
𝑗

𝐽

𝑗=0

) (11) 

where 𝜆𝑗 are constants determined so that the distribution have the specified moments.  

This tactic, if implemented in either variant, would have problems, including the following: 

 Assuming that the number J is not very small, the resulting models would not be 

parsimonious, as they would include J moments and an equal number of parameters. 

 The moment estimates beyond second are unreliable for typical sample sizes, despite the 

fact that unbiasedness is theoretically guaranteed (see the work by Lombardo et al. 

2014, with the characteristic title “Just two moments”.) 

 In particular, heavy tailed distributions would never appear as models, because in these 

distributions all moments beyond a threshold are infinite, while their sample estimates 

are finite. 

The origin of problems in such a tactic is not actually the approximate character of the 

specified distribution—after all, any model is an approximation of some real phenomenon. 

Rather, it is the lack of parsimony and the direct link of the parameters (such as 𝜆𝑗 in (11)) with 

the data, on which their estimation is based. In contrast, the same approximation of the 

distribution would be valid and not problematic if coefficients 𝜆𝑗 were not model parameters 

and if they were determined theoretically rather than estimated from the data. 

Fortunately, however, this tactic is not commonly implemented. Rather, a parametric model 

is assumed based, on the one hand, on some theoretical considerations (e.g. central limit 
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theorem, maximum entropy principle, asymptotic theory of distribution of extremes) and on the 

other hand, on some exploration of the available data.  

Strangely enough though, this tactic has been the rule in fitting and applying so-called time 

series models—and it is still the norm even today—despite the fact that fitting a stochastic 

process is more demanding a task than fitting a marginal distribution and, at the same time, the 

presence of autocovariance increases uncertainty in model fitting. Indeed, time series models 

are typically fitted based on estimates of the autocovariance (or autocorrelation) function and 

even the model formulation (in terms of the multivariate distribution) is determined by the 

number of the autocorrelation coefficients they are used—similar to what equation (11) 

suggests for the marginal distribution. Apparently, the alternative of fitting a parametric model 

to the multivariate distribution is valid (Koutsoyiannis 2000, 2016) but it has not been the norm. 

The reasons for following such a weird practice in most disciplines whose modelling relies on 

data, including hydrology, are historical. An attempt to trace their evolution is contained in the 

next section. 

3 An historical overview of stochastic modelling 

Current stochastic modelling practices have been influenced by at least three Schools of thought, 

which will be referred to as (a) the Stochastic School, (b) the Time Series School and (c) the Monte 

Carlo School. We attempt to trace out the evolution in each of them in the next subsections, while 

an individual subsection is devoted to hydrology.  

3.1 The Stochastic School 

Perhaps Ludwig Boltzmann (1844 –1906, Universities of Graz and Vienna, Austria, and Munich, 

Germany) was the first to introduce fundamental concepts related to stochastic process. In 

particular, Boltzmann (1877) explained the concept of entropy in probability theoretic context 

and Boltzmann (1884/85) introduced the notion of ergodic systems1, which is central in 

stochastics. Later George D. Birkhoff (1884 – 1944; Princeton, Harvard, USA) discovered the 

ergodic theorem (Birkhoff 1931) also known as Birkhoff–Khinchin theorem to give credit to 

Aleksandr Khinchin (also spelled Khintchine, 1894 – 1959; Moscow State University, Russia) 

who gave a purely measure-theoretic proof of the theorem (Khintchine 1933). In addition, 

Khintchine (1934) defined the stationary stochastic processes and introduced a probabilistic 

setting of the Wiener-Khinchin theorem relating autocovariance and power spectrum.  

 But it was Andrey N. Kolmogorov (1903 – 1987; Moscow State University, Russia) the great 

scientist who founded the stochastic theory. Kolmogorov (1931) introduced the term stochastic 

                                                             
1 Boltzmann coined the terms ergode and isodic, both of which are etymologized from Greek words but 
which ones exactly is uncertain. Most probably, ergodic comes from the Greek ἔργον (ergon = work) and 
ὁδός (hodos = pathway). According to another interpretation, the second noun is εἶδος (eidos = form, kind, 
nature), or the whole word is a transliteration of the Greek adjective ἐργώδης (ergodes = laborious, 
troublesome; see Mathieu 1988).  
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process2, identifying process with change. He also used the term stationary to describe a 

probability density function that is unchanged in time. Kolmogorov (1933) defined probability 

(founded on measure theory) in an axiomatic manner based on three fundamental concepts (a 

triplet called probability space) and four axioms (non-negativity: normalization, additivity and 

continuity at zero). Kolmogorov (1937, 1938) gave a concise presentation of the concept of a 

stationary stochastic process and Kolmogorov (1947) defined wide-sense stationarity.  

The concept of stationarity (and its negation, nonstationarity), has a central role in 

stochastics yet is widely misunderstood and broadly misused (Montanari and Koutsoyiannis, 

2014; Koutsoyiannis and Montanari, 2015). Stationarity is tightly connected to ergodicity, which 

in turn is a prerequisite to make inference from data, that is, induction. If a system that is 

modelled in a stochastic framework has deterministic dynamics then it is stationary if it is 

ergodic and vice versa (Mackey 2003, p. 52). Likewise, a nonstationary system is also non-

ergodic and vice versa. If the system dynamics is stochastic, then ergodicity and stationarity do 

not necessarily coincide. However, recalling that a stochastic process is a model (not part of the 

real world), we can always devise a stationary stochastic process that is ergodic.  

It may be useful to include here a reminder of the definitions of the two concepts. Following 

Kolmogorov (1931, 1938) and Khintchine (1934), a process is stationary if its statistical 

properties are invariant to a shift of time origin, i.e. the processes 𝑥(𝑡) and 𝑥(𝑡′) have the same 

(multivariate) distribution for any t and t΄. Based on the ergodic theorem (Birkhoff, 1931; 

Khintchine, 1933; see also Mackey, 2003, p. 54), a stochastic process 𝑥(𝑡) is ergodic if the time 

average of any (integrable) function g(x(t)), as time tends to infinity, equals the true (ensemble) 

expectation, i.e.:  

lim
𝑇→∞

1

𝑇
∫𝑔 (𝑥(𝑡)) 𝑑𝑡 = E[𝑔(𝑥(𝑡))]

𝑇

0

 (12) 

3.2 The Time Series School 

Contrary to the theoretical Stochastic School, the Time Series School is more intuitive and 

empirical and less rigorous. Its history was written more by economists and less by theoretical 

mathematicians. Perhaps the first who introduced time series analysis was W.M. Persons 

(American economist). In studying the problem “When to buy or sell”, Persons (1919) introduced 

the study of time series, which he called statistical series, and asserted that they: 

                                                             

2 The Greek adjective “stochastic[os/e]” was used by Greek philosophers, including Plato and Aristotle, 
and was transplanted to the international scientific vocabulary by Jacob Bernoulli (evidently aware of the 
Greek literature and in particular of Plato’s texts) in his famous book Ars Conjectandi (written in Latin in 
1684-89 but published after his death, in 1713). The term was revived by Bortkiewicz (1917; Russian 
economist and statistician of Polish ancestry) and also by Slutsky (1925, 1928a,b, 1929; 
Ukrainian/Russian/Soviet mathematical statistician and economist). It appears that the prevalence in 
USSR of the more sophisticated term “stochastic” (over the rather equivalent term “random”) must have 
been related to political and ideological reasons (incongruence of randomness with the dialectic 
materialism: models beyond strict deterministic were considered with a priori suspicion; see Mazliak 
2018). 
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result from the combination of four elements: secular trend, seasonal variation, cyclical 

fluctuation, and a residual factor.  

He also proposed methods for “Eliminating secular trends” and “Eliminating seasonal variation”. 

A definition of a time series was given ten years later by Bailey (1929) (American statistician): 

A time series is a series of observations taken at different times and recorded with the time at 

which they were taken. 

Interestingly, Slutsky (1927) demonstrated that what Persons (and other economists) 

regarded as cyclical component is nothing but a statistical artefact with no essential meaning 

(see e.g. Kyun and Kim 2006; Barnett, 2006). Subsequently, the notion of a cyclical component 

was abandoned but the decomposition of a time series to the remaining three components, 

trends, seasonal variation and residuals is popular even today.  

Yule (1927) and Walker (1931) (both British statisticians), starting from an analysis of 

sunspot numbers, studied autoregressive processes and in particular their periodogram and 

autocorrelation properties. But the biggest progress in the Time Series School was made in 

Uppsala by H.O.A. Wold (Norwegian-born econometrician and statistician with career in 

Sweden) and P. Whittle (New-Zealand-born mathematician and statistician) who in their 

doctoral theses provided the stochastic foundation of time series analysis. Wold (1938, 1948) 

proved that a stochastic process (even though he referred to it as a time series) can be 

decomposed into a regular process (i.e., a process linearly equivalent to a white noise process) 

and a predictable process (i.e., a process that can be expressed in terms of its past values). 

Whittle (1951, 1952, 1953) laid the mathematical foundation of autoregressive and moving 

average models in univariate and multivariate setting. Later, in their influential book, Box and 

Jenkins (1970) named these models with acronyms such as AR(p) (standing for autoregressive 

models of order p), MA(q) (standing for moving average models of order q), ARMA(p,q) 

(standing for autoregressive – moving average models) and ARIMA(p,d,q) (standing for 

autoregressive integrated moving average models). These became popular with these names 

and have also been known as Box-Jenkins models (cf. Stigler’s law of eponymy; Stigler, 2002). A 

useful extension of these models to apply to processes with long-range dependence was 

proposed by Hosking (1981). This is done by replacing the integer parameter d in ARIMA(p,d,q) 

with a real one (fractional differencing) and the models are usually termed ARFIMA(p,d,q). 

 Despite the wider influence of the Time Series School over the Stochastic School, there are 

several problems with the former. First, the term time series is ambiguous, sometimes denoting a 

series of observations as in the original definition of Bailey (1929) (or, equivalently, a realization 

of a stochastic process), and other times denoting the stochastic process per se as in the 

aforementioned use by Wold. We emphasize that here the term time series is used with the first 

meaning, a series of numbers, while for a series of random variables we use the term stochastic 

process. Second, with the exception of the simplest models of these families, such as the AR(1) 

and ARMA(1,1), time series models are too artificial because, being complicated discrete-time 

models, they do not necessarily correspond to a continuous time process, while natural 
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processes typically evolve in continuous time. Furthermore, their identification, typically based 

on the estimation of the autocorrelation function from data, usually neglects estimation bias and 

uncertainty, which in stochastic processes (as opposed to purely random processes) are often 

tremendous (Lombardo et al., 2014). 

Indeed, from their onset, time series models have been tightly associated with a large number 

of parameters and they usually become over-parameterized and thus not parsimonious. These 

parameters are estimated from data, which usually are too few to support a reliable estimation. 

In Whittle’s (1952) words (emphasis added):  

There is, of course, nothing special with the autoregressive scheme; we could equally well 

graduate with a high-order moving average, and there are many other possibilities. […] In 

practice, however, the autoregressive graduation has the advantage that the estimated residual 

sum of squares can be written down directly in terms of the observations […] without the 

need to solve explicitly for the estimates of the ‘a’ coefficients.  

… 

It is, of course, not possible to estimate an infinite number of parameters from a finite sample, 

but the series of a coefficients must converge, and by considering sufficiently many 

coefficients we should be able to obtain an arbitrarily good approximation to the real 

process.  

This is similar to fitting a distribution function using observations to estimate many moments as 

described in section 2.  

The decomposition of a time series to components, trends, seasonal variation and residuals, is 

fundamentally problematic, despite being popular. (In particular trend analysis of hydroclimatic 

processes is more fashionable today than ever before.) However, it should be noted that a 

meaningful definition of a trend has never been given. Also, for some, including this author, it is 

hardly conceivable how time per se could be regarded as an explanatory variable in a complex 

process and what the logical basis is in expressing the statistics of a process as a deterministic 

function of time. Accumulation of data series with long time spans is revealing that, what have 

been regarded as trends, are mostly parts of long term fluctuations (and in accord to Slutsky’s 

work, they could also be regarded as statistical artefacts). Hurst’s (1951) and Kolmogorov’s 

(1940) works provide a scientific basis to model what has been regarded as trends in the context 

of stationary stochastic processes. Finally, “deseasonalization” (in Persons’s original terminology 

“Eliminating seasonal variation”) is a delusion; we can hardly remove seasonality in the 

multivariate distribution of a stochastic process (what we typically do is in the marginal 

distribution). 

3.3 The Monte Carlo School 

The Monte Carlo method is essentially a numerical technique for solving deterministic integro-

differential equations using random sampling. Ideas that could be classified as implementation 

of the Monte Carlo method are old. Georges Louis LeClerc (Comte de Buffon, French scientist; 
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1707-1788) became famous for “Buffon’s needle,” a method using needle tosses onto a lined 

background to estimate π (where, if the line distance is equal to needle length, π is found as 

twice the inverse of probability that the needle crosses a line).3 Random sampling is also old. 

Galton (1890) invented a set of three modified dice to generate samples from a normal 

distribution. “Student” (pseudonym of W.S. Gosset) in 1908 performed simulation experiments 

using 3000 cards (in 750 groups of size 4) to find the distribution of the t-statistic and of the 

correlation coefficient. Tippett (1927) published a table of random numbers: he took 41 600 

digits at random from Census Reports and combined them by fours to give 10 400 numbers. 

Mahalanobis (1934) published tables of random numbers from normal distribution (208 sets of 

50 numbers each). (See more information in Stigler 2002.) 

The modern Monte Carlo method was conceived by Stanislaw Ulam in 1946.4 Soon after the 

method grew to solve neutron diffusion problems by himself and other great mathematicians 

and physicists in Los Alamos (John von Neumann, Nicholas Metropolis, Enrico Fermi), and was 

first implemented on the ENIAC computer (Metropolis, 1989; Eckhardt, 1989). The ‘official’ 

history of the method began in 1949 with the publication of a paper by Metropolis and Ulam 

(1949). One prominent characteristic of the Monte Carlo method as a numerical integration 

method is that it does not suffer from the well-known curse of dimensionality, unlike the classical 

(grid-based) numerical integration method, which does suffer. Thus, it is easily shown (e.g. 

Metropolis and Ulam, 1949; Niederreiter, 1992) that for a number of dimensions d > 4, the 

Monte Carlo integration method (in which the function evaluation points are taken at random) is 

more accurate (for the same total number of evaluation points) than classical numerical 

integration, based on a grid representation of the integral space. For large dimensionality, e.g. 

for d > 20, the classical method is infeasible while the Monte Carlo method is always feasible. 

3.4 The onset of stochastic modelling in hydrology 

Techniques that could be classified as applications of the Monte Carlo method had appeared in 

the hydrological literature much earlier than the “official start” of the method in 1949. Hazen 

                                                             
3 LeClerc’s Monte Carlo method to calculate π became popular among scientists and his experiment was 
later repeated by many. There are many other Monte Carlo algorithms to estimate π. However, these are 
good only for fun, as much faster and much more accurate deterministic algorithms exist to calculate π. 
Reitwiesner (1950) calculated by a deterministic algorithm, running on the ENIAC computer, the first 
2035 decimal digits of π. Metropolis et al. (1950) examined their randomness, an exercise made thereafter 
many times showing that the digits of π have no apparent pattern and pass tests for statistical 
randomness. Dodge (1996) promoted an idea opposite to LeClerc’s: that the digits of π form a “Natural 
Random Number Generator”. Since January 2019, 31.4 trillion digits of π are known (found by the 
Chudnovsky algorithm); this information, equivalent to ~100 million books of 1000 pages each (note for 
comparison that the British Library has 25 million books), can serve as a basis for any simulation 
experiment. However, simple random generators are more economic and convenient. 

4 Notably, Ulam conceived the method while playing solitaires during convalescing from an illness, in his 
attempt to estimate the probabilities of success of the plays. As Ulam describes the story in some remarks 
later published by Eckhardt (1989): 

After spending a lot of time to estimate them by pure combinatorial calculations, I wondered whether a 
more practical method than ‘abstract thinking’ might not be to lay it out say one hundred times and 
simply observe and count the number of successful plays. 



10 

(1914), made a pioneering study in which he introduced the reservoir storage-yield-reliability 

relationship, a concept that would remain unexploited in the western hydrological literature yet 

constituting the scientific basis of modern reservoir design (Klemes 1987). In that study he 

proposed an empirical simulation technique and formed a synthetic time series by combining 

historical flow records of different rivers ‘spliced’ sequentially together. Sudler (1927) extended 

the work of Hazen by resampling from a sequence of historical river flows using cards, which he 

shuffled to form new sequences of data. Obviously, this method heavily distorts the time 

dependence of river flows whose importance was not known at that time. For it was Hurst 

(1951) who understood that importance along with the omnipresence in natural processes of a 

clustering behaviour of similar events in time, a behaviour that is now called long-term 

persistence (LTP) or long-range dependence (LRD). It is also known as the Hurst-Kolmogorov 

behaviour, to give also credit to Kolmogorov (1940) who had proposed a mathematical model 

representing that behaviour before it was verified in natural processes by Hurst. In his attempt 

to compare natural and random events, Hurst performed physical experiments to generate 

random numbers. Specifically he tossed 10 coins (sixpences) simultaneously and repeated this 

1025 times (note that 10 binary digits are equivalent to about 3 decimal digits). As he notes, his 

rate was 100 random numbers per 35 min (while that would be of the order of a microsecond in 

modern computer environments, even slow ones). He also used another method, shuffling and 

cutting a pack of 52 cards, in which he improved the rate to 100 random numbers per 20 min.  

It would take decades before the hydrological community assimilate Hurst’s discovery of LTP 

(O’Connell et al. 2016), even though some of the pioneering studies appeared towards the end of 

the 1960s (Mandelbrot and Wallis, 1969). The initial studies implementing primitive variants of 

stochastic simulation did not reproduce LTP. Barnes (1954), in designing a reservoir in 

Australia, used a table of random numbers from normal distribution to generate a 1000-year 

sequence of synthetic annual data. Thomas and Fiering (1962) generated flows correlated in 

time, but using only the lag one autocorrelation, obviously neglecting LTP. Beard (1965) and 

Matalas (1967) generated concurrent flows at several sites. Chow (1969), and Chow and 

Kareliotis (1970) systematized the use of time series models (in particular—and using their 

terminology—moving average models, sum of harmonics models and autoregression models) 

and highlighted their value in the economic planning of water supply and irrigation projects. It is 

evident from the above pioneering studies, as well as of subsequent myriads of studies, that 

hydrologists have followed (and today still do) the Time Series School rather than the more 

rigorous Stochastic School. 

4 Premises 

Before we proceed to the formulation of the simulation scheme, it is necessary to list the main 

premises on which the scheme is based. These are consistent with the generic procedure in 

Koutsoyiannis (2016) and are summarized in the following points: 
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1. A stochastic model is always required for any stochastic task, such as estimation, testing 

and synthesis. In stochastics there cannot be model-free, also known as nonparametric, 

methods. Nonparametric methods are a delusion caused by an adherence to the classical 

statistical assumption of independence which, when dealing with natural processes is 

the ultimate—and most inappropriate—parameterization per se. As an example, 

Kendall’s rank correlation test (Kendall 1938), or its variant for trend detection (Mann 

1945), is an important and widely used statistical test that is regarded as nonparametric. 

And indeed it is nonparametric if it is applied on samples that are independent by 

construction, i.e. obtained by individual and independent experiments. But if the data are 

time series (consecutive observations in time of a single process) then application of the 

test needs parameterization of the dependence structure. As usually applied, the test 

includes in its null hypothesis the sub-hypothesis that autocorrelations for all lags are 

zero. Thus, the rejection of the null hypothesis could be regarded as rejection of 

independence, even though the popular interpretation favours the existence of a trend. 

There exist of course consistent parametric variants of the test, which take the stochastic 

structure into account (e.g. Hamed 2008). 

2. As natural time runs continuously, the model needs to be formulated for continuous time 

to avoid the risk of making artificial constructs. The discrete-time representation, which 

is certainly necessary in simulation, should be derived from the continuous time one. 

Second-order stochastic tools, such as autocovariance and power spectrum, are affected 

by discretization and the effect should always be accounted for. The climacogram5, i.e. 

the variance 𝛾(𝑘) of the process averaged at time scale k, is an exception, as it is not 

affected by discretization, and has some additional advantages (Dimitriadis and 

Koutsoyiannis, 2015) which make it the preferable tool in stochastic modelling. 

3. The model needs to be parsimonious in order to be useful (Gauch 2003). Inflationary 

models, while giving an impression of a good fit, in fact entail (often hidden) high 

uncertainty. An example of a (parametric) parsimonious model is the Filtered Hurst-

Kolmogorov process with a generalized Cauchy-type climacogram (FHK-C; 

Koutsoyiannis 2016, 2017). This is defined through its climacogram:  

𝛾(𝑘) = 𝜆 (1 + (
𝑘

𝛼
)
2𝑀

)

𝐻−1
𝑀

 (13) 

                                                             
5 The term climacogram, from the Greek κλιμακόγραμμα, deriving from κλίμαξ (climax = scale, as well as 
ladder; pl. κλίμακες) and γράμμα (gramma = written, drawn), was coined by Koutsoyiannis (2010) and 
could be translated in English as scale(o)gram, but the latter term is used for another concept. 
Climacogram should not be confused to climatogram which has another meaning related to the climatic 
regime of temperature and precipitation at a site or area. The latter term, deriving from the noun κλίμα 
(clima, originally meaning slope; pl. κλίματα), was first used in the Hellenistic period by the astronomer 
Hipparchus to describe climate (in relationship to the slope of the sun's rays) and is different from the 
other derivative noun κλίμαξ. Interestingly though, both κλίμαξ and κλίμα are eventually etymologized 
from the same verb κλίνειν (klinein = to slope).   
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where α and λ are scale parameters with dimensions of [𝑡] and [𝑥2] , respectively, while 

M (fractal parameter) and H (Hurst parameter) are dimensionless determining the 

dependence structure at a local (smoothness or fractality) and global (LRD) level, 

respectively. Both M and H take on values in (0,1), with M < ½ or > ½ indicating a rough 

or a smooth process, respectively, and with H < ½ or > ½ indicating an antipersistent or 

a persistent process, respectively. It should be stressed that the quantities α, λ, M and H 

in the above expression (plus the process mean, and perhaps a shape parameter of the 

marginal distribution and a parameter quantifying irreversibility) are the only model 

parameters. Any other quantity that would emerge in the generation phase should be 

theoretically calculated (as internal coefficients of the generation scheme) from these 

parameters and no longer estimated from data. If the data cannot support the estimation 

of four parameters of equation (13) for the dependence structure, simplifications could 

be made. For example, assuming 𝑀 = 𝐻 = 1/2 we obtain a two-parameter near-Markov 

model while with 𝑀 = 1/2 and 𝛼 → 0 we obtain a two parameter Hurst-Kolmogorov 

model. Examples of models additional to equation (13) can be found in Koutsoyiannis 

(2017). 

4. Parameter estimation needs to consider statistical bias, which is present in all estimators 

(Koutsoyiannis 2016), including very simple and common ones, such as variance and 

correlation (a known exception is the mean whose standard estimator is not affected by 

bias in the presence of dependence; higher order noncentral moments are also unbiased 

in theory, but suffer from unknowability; Koutsoyiannis 2019a). 

5. Awareness of stochastics (the mathematics of stochastic variables and processes), 

theoretical consistency and logical rigour are always necessary to avoid misleading or 

erroneous calculations, results and interpretations. 

5 Simulation method 

Let 𝑥(𝑡) be a stationary stochastic process representing the instantaneous quantity of a certain 

hydrological or other physical process in continuous time t. For simplicity and without loss of 

generality we assume that it has zero mean and (instantaneous) variance: 

𝛾0 ≔ var[𝑥(𝑡)] (14) 

which is arguably (Koutsoyiannis, 2017) assumed to be finite. The discrete-time representation 

of the process (equation (5)) can also be written as: 

𝑥𝜏 ≔
1

𝐷
∫ 𝑥(𝑢)d𝑢

𝜏𝐷

(𝜏−1)𝐷

=
𝑋(𝜏𝐷) − 𝑋((𝜏 − 1)𝐷)

𝐷
 (15) 

where 

𝑋(𝑡) ≔ ∫𝑥(𝜉)d𝜉

𝑡

0

 (16) 
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is the cumulative process, which if 𝑥(𝑡) aims to represent a natural processes, should necessarily 

be nonstationary. Its variance at time t, known as cumulative climacogram, is: 

𝛤(𝑡) ≔ var[𝑋(𝑡)] = 𝑡2𝛾(𝑡) (17) 

where γ( ), is the variance of the averaged process. This latter, as a function of time scale k, is 

called climacogram: 

𝛾(𝑘) ≔ var [
𝑋(𝑘)

𝑘
] (18) 

The autocovariance function c(h) of the continuous-time process 𝑥(𝑡) for time lag h is 

(Koutsoyiannis 2016): 

𝑐(ℎ) ≔ cov[𝑥(𝑡), 𝑥(𝑡 + ℎ)] =
1

2
 
d2𝛤(ℎ)

dℎ2
 (19) 

and the power spectrum s(w) for frequency w is the Fourier transform of the autocovariance 

function, i.e.: 

𝑠(𝑤) ≔ 4∫ 𝑐(ℎ) cos(2π𝑤ℎ)dℎ

∞

0

, 𝑐(ℎ) = ∫ 𝑠(𝑤) cos(2𝜋𝑤ℎ) d𝑤

∞

0

 (20) 

The discrete time autocovariance for integer time lag η is (Koutsoyiannis 2016): 

𝑐𝜂 =
1

𝐷2
(
𝛤(|𝜂 + 1|𝐷) + 𝛤(|𝜂 − 1|𝐷)

2
− 𝛤(|𝜂|𝐷)) (21) 

and is related to the discrete-time power spectrum by  

𝑠d(𝜔) = 2𝑐0 + 4∑ 𝑐𝜂

∞

𝜂=1

cos(2π𝜂𝜔) , 𝑐𝜂 = ∫ 𝑠d(𝜔) cos(2π𝜔𝜂) d𝜔

1 2⁄

0

 (22) 

where 𝜔 ≔ 𝑤𝐷 is dimensionless frequency. The power spectrum has some analogies with 

another stochastic tool, the so-called climacospectrum, which is directly given in terms of the 

climacogram. Specifically, it is proportional to the difference of the variances of the averaged 

process at time scales k and 2k:  

𝜁(𝑘) ≔
𝑘(𝛾(𝑘) − 𝛾(2𝑘))

ln 2
 (23) 

This tool is useful in the model fitting phase (see section 7). 

To simulate 𝑥𝜏 we use the generalized moving average scheme (Koutsoyiannis 2000): 

𝑥𝜏 = ∑ 𝑎𝑗𝑣𝜏−𝑗

𝐽

𝑗=−𝐽

 (24) 

where 𝑎𝑗 are weights to be calculated from the autocovariance function, 𝑣𝑗 is white noise 

averaged in discrete-time (and not necessarily Gaussian), also known as innovation process, and J 

is theoretically infinite, so that in all theoretical calculations we will assume 𝐽 = ∞, while in the 

generation J is a large integer chosen so that the resulting truncation error be negligible. Here 
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we stress that the above scheme is just the contrary to that suggested by Whittle (1952) in the 

quotation given in section 3.2. Specifically, (a) we use a purely moving average scheme instead 

of the autoregressive scheme favoured by Whittle and (b) we do not relate our scheme with 

observations, as the observations have been already used in the model fitting phase, which is 

totally isolated from the generation scheme. Since we do not use the observations, the moving 

average scheme has many advantages in calculations.  

Writing equation (24) for 𝑥𝜏+𝜂 , multiplying it with (24) and taking expected values we find 

the convolution expression for 𝐽 = ∞:  

𝑐𝜂 = ∑ 𝑎𝑙𝑎𝜂+𝑙

∞

𝑙=−∞

 (25) 

We need to find the sequence of 𝑎𝜂 , 𝜂 = ⋯ ,−1,0,1,…, so that (25) holds true. A known solution 

(Koutsoyiannis 2000) is the symmetric moving average (SMA) scheme in which 𝑎−𝜂 = 𝑎𝜂 . 

Nonetheless, the problem has infinitely many non-symmetric solutions, which are asymmetric 

moving average (AMA) schemes. A more common one is the ordinary backward asymmetric 

moving average (OBAMA) scheme in which 𝑎𝜂 = 0 for any 𝜂 < 0; this latter is typically 

formulated in a different manner and denoted as simply moving average—MA, but as we study a 

richer family of schemes, the distinct name OBAMA is necessary. 

Here, the following generic solution of the AMA scheme, giving the coefficients 𝑎𝜂 , is 

proposed:  

𝑎𝜂 = ∫ e2πi(𝜃(𝜔)−𝜂𝜔)𝐴R(𝜔)

1/2

−1/2

d𝜔 (26) 

where 𝜃(𝜔) is any (arbitrary) odd real function (meaning 𝜃(−𝜔) = −𝜃(𝜔)) and 

𝐴R(𝜔) ≔ √2𝑠d(𝜔) (27) 

We prove in Appendix A that the sequence of 𝑎𝜂:  

(1) consists of real numbers, despite the expression in equation (26) involving complex 

numbers;  

(2) satisfies precisely equation (25); and  

(3) is easy and fast to calculate using the fast Fourier transform (FFT). 

We can now convert this theoretical result into a numerical algorithm. This consists of the 

following steps: 

(a) From the continuous-time stochastic model, expressed through its climacogram 𝛾(𝑘), we 

calculate its autocovariance function in discrete time (assuming time step D): 

𝑐𝜂 =
(𝜂 + 1)2𝛾(|𝜂 + 1|𝐷) + (𝜂 − 1)2𝛾(|𝜂 − 1|𝐷)

2
− 𝜂2𝛾(|𝑗|𝐷) (28) 

(This step is obviously omitted if the model is already expressed in discrete time through 

its autocovariance function.) 
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(b) We choose an appropriate number of coefficients J that is a power of 2 and perform 

inverse FFT (using common software) to calculate the discrete-time power spectrum and 

the frequency function 𝐴R(𝜔) for an array of 𝜔𝑗 = 𝑗 𝑤1, 𝑗 = 0,1,… , 𝐽, 𝑤1 ≔ 1 𝐽𝐷⁄ : 

𝑠d(𝜔𝑗) = 2𝑐0 + 4∑𝑐𝜂

𝐽

𝜂=1

cos(2π𝜂𝜔𝑗) , 𝐴R(𝜔𝑗) = √2𝑠d(𝜔𝑗) (29) 

(c) We choose 𝜃(𝜔) (see below) and we form the arrays (vectors) 𝑨R and 𝑨I, both of size 2J 

indexed as 0,… , 2𝐽 –  1, with the superscripts R and I standing for the real and imaginary 

part of a vector of complex numbers, respectively:  

[𝑨R]𝑗 = {
𝐴R(𝜔𝑗) cos (2π𝜃(𝜔𝑗)) /2, 𝑗 = 0,… , 𝐽

[𝑨R]2𝐽−𝑗, 𝑗 = 𝐽 + 1,… ,2𝐽 − 1
 (30) 

[𝑨I]𝑗 = {

−𝐴R(𝜔𝑗) sin (2π𝜃(𝜔𝑗)) /2, 𝑗 = 0,… , 𝐽 − 1

0 𝑗 = 𝐽

−[𝑨I]2𝐽−𝑗. 𝑗 = 𝐽 + 1,… ,2𝐽 − 1

 (31) 

(d) We perform FFT on vector 𝑨R + i 𝑨I (using common software), and get the real part of 

the result for 𝑗 = 0,… , 𝐽, which is precisely the sequence of 𝑎𝜂 . 

We note that by choosing J as a power of 2, the vectors 𝑨R and 𝑨I will have size 2J which is 

also a power of 2, thus achieving maximum speed in the FFT calculations. More details are 

contained in a supplementary file which includes numerical examples along with the simple 

code needed to do these calculations on a spreadsheet.  

 It may be useful to note the following additional points about the method: 

 Equation (26) gives not a single solution, but a variety of infinitely many ones, all of 

which preserve exactly the second-order characteristics of the process. 

 A particular solution is characterized by the chosen function 𝜃(𝜔).  

 Even assuming 𝜃(𝜔) = 𝜃0 sign𝜔 with constant 𝜃0, again there are infinitely many 

solutions. 

 The availability of infinitely many solutions enables preservation of additional statistics, 

e.g. those related to time asymmetry.  

 In addition, we always have several options related to the distribution of the white noise 

𝑣𝜏, which in general is not Gaussian, thus enabling preservation of moments of any order. 

A general scheme for preserving moments of any order has been outlined in 

Koutsoyiannis (2019a), while successful applications for moments up to fourth order 

with SMA have been presented in Dimitriadis and Koutsoyiannis (2018). It should be 

stressed that in typical sample sizes, high order moments should be evaluated 

theoretically through the distributional parameters rather than estimated from the data, 

as their sample estimates are unreliable (Lombardo et al. 2014). 

The special case 𝜃(𝜔) = 0 corresponds to the symmetric scheme (SMA), in which:  
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𝐴S(𝜔) ≡ 𝐴R(𝜔) = √2𝑠d(𝜔), 𝑎𝜂
S = ∫ √2𝑠d(𝜔) cos(2π𝜂𝜔)d𝜔

1/2

0

= 𝑎−𝜂
S  (32) 

where we have used the superscript S to denote the symmetric case. Another interesting special 

case is 𝜃(𝜔) = 1/4 sign𝜔 (or 2π𝜃(𝜔) = π/2 sign𝜔): This corresponds to an antisymmetric AMA 

scheme (ANTAMA) with 

𝐴A(𝜔) = 𝐴R(𝜔)δ(𝜔) + i𝐴R(𝜔), 𝑎𝜂
A = 𝛿0 +

1

2
∫ √2𝑠d(𝜔) sin(2π𝜂𝜔)d𝜔

1/2

0

 (33) 

where the superscript A denotes the antisymmetric case, δ(𝜔) is the Dirac delta function, and  

𝛿0 ≔
√2𝑠d(0)

2(2𝐽 + 1)
≈ √

𝛾𝐽
2𝐽 + 1

 (34) 

with 𝛿0 approaching zero as J becomes large. Any other case of constant 𝜃0 (where 𝜃(𝜔) =

𝜃0 sign𝜔) can be expressed in terms of the above two limiting cases through:  

𝑎𝜂 = 𝛿0 + (𝑎𝜂
S − 𝛿0) cos(2π𝜃0) + (𝑎𝜂

Α − 𝛿0) sin(2π𝜃0) (35) 

(the proof is omitted). In particular, the case 𝜃0 = 1/8 (or 2π𝜃0 = π/4) yields the interesting 

result: 

𝑎𝜂 =
√2

2
(𝑎𝜂
S + 𝑎𝜂

Α) − (√2 − 1)𝛿0 (36) 

If for some 𝜃0 and for 𝜂 < 0 it happens that 𝑎𝜂 ≈ 0, then it can be verified that: 

𝑎𝜂 ≈ {

0, 𝜂 < 0

𝑎𝜂
S cos(2π𝜃0) + (1 − cos(2π𝜃0) − sin(2π𝜃0))𝛿0, 𝜂 = 0

√2𝑎𝜂
S + (2 − √2)𝛿0, 𝜂 > 0

 (37) 

Such a sequence with almost zero coefficients for negative η, will be close to the OBAMA scheme. 

It is interesting to notice that in this approximate solution only 𝑎0 depends on the constant 𝜃0, 

while for 𝜂 > 0 the coefficients are approximately equal to those in the SMA, multiplied by √2.  

However, if full accuracy is needed, we must have in mind that a constant θ0 does not give a 

precise OBAMA. A generic analytical solution that would give a function 𝜃(𝜔) for OBAMA is not 

simple (this problem is known as factoring of the power spectrum; see Papoulis 1991, p. 402). 

However, solutions for simple special cases are not too difficult to find (e.g. for rational spectra; 

Papoulis 1991, p. 402-404). In particular, for a Markov process in continuous time (which in 

discrete time behaves as an ARMA(1,1) process; see equation (39)), as well as for any 

ARMA(1,1) process (including its special cases AR(1) and MA(1)), the following solution is exact 

(the proof is omitted): 
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𝜃(𝜔) =
1

2π
cos−1

(

 
 

1

√𝑠d(𝜔)

(
1

√𝑠d(0)
+

1

√𝑠d(1/2)
)

+
√𝑠d(𝜔)

√𝑠d(0) + √𝑠d(1/2)

)

 
 
  (38) 

For stochastic structures with LRD, the OBAMA scheme is difficult to achieve with full precision, 

but an approximation can be easily found as described in Appendix B.  

 

 

Figure 2 Illustration of the symmetric (SMA), antisymmetric (ANTAMA) and ordinary-backword 

(OBAMA) cases of the generic AMA model for (upper) a Markov and (lower) a FHK-C process. The 

parameter values are α = 10, λ = 1 (in both processes), H = 0.8, M = 0.7, and the number of weights is 2049 

(J = 1024 = 210). The panels of the left column show the coefficients a and those of the right column the 

autocovariance function.  

 The method is illustrated in Figure 2 using two example processes. The first is the Markov 

process, whose basic properties are: 

𝑐(ℎ) = 𝜆e−|ℎ|/𝛼 ,   𝛾(𝑘) =
2𝜆

𝑘 𝛼⁄
(1 −

1 − e−𝑘 𝛼⁄

𝑘 𝛼⁄
),   𝑐𝜂 =

𝜆(1 − 𝑒−𝐷 𝛼⁄ )
2

(𝐷 𝛼⁄ )2
 𝑒−(𝜂−1)𝐷 𝛼⁄ , 𝜂 ≥ 1 (39) 

The second is the FHK model defined in equation (13), which gives its climacogram, whilst all its 

other properties are evaluated through equations (21)-(22). Figure 2 shows three special cases, 
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SMA (equation (32)), ANTAMA (equation (33)) and OBAMA for the two processes. For the 

OBAMA case and the Markov process the exact equation (38) is used while for the FHK-C 

process the coefficients 𝑎𝜂 are determined from the approximate equation (B2) in Appendix B 

(with optimized coefficients of the equation). Some slight (rather invisible) deviations from zero 

are present in the left-bottom panel, which at a later step will be set to zero and the small 

resulting effect will be further handled as a truncation error (in the manner described by 

Koutsoyiannis 2016) to obtain an exact OBAMA scheme.  

All in all, this simple method of the AMA scheme renders ARMA models unnecessary, 

particularly because of the generic, analytical and fast solution it offers. Here it is important to 

stress that, while optimization of coefficients involved in the function 𝜃(𝜔) could sometimes be 

necessary as discussed above and specified in Appendix B, it is not necessary in general. Any odd 

real function 𝜃(𝜔), chosen arbitrarily, will give 𝑎𝜂 that will satisfy equation (25) (apart from a 

truncation error) and thus can directly be used in generation. Even if the sequence of 𝜃(𝜔𝑗) is 

constructed at random (e.g. as a sequence of random numbers in the interval [0,1/4]), again 

equation (25) will be satisfied and the resulting 𝑎𝜂 can directly be used in generation. (This case 

is also implemented on the spreadsheet provided as supplementary information). 

6 Additional methodological issues 

6.1 The AMA scheme in forecast mode 

It is generally believed that AR models are better suited to forecast as they depend on past 

variables rather than on multiple innovation variables. According to this logic, among the MA 

models, only backward schemes would be suitable for forecast, while the generic AMA scheme 

(including the special case of SMA) would not, because it involves convolutions for both positive 

and negative lags η. Such beliefs are not quite correct though. Arguably, the forecast problem 

could be regarded as totally independent from the stochastic model per se, while forecasts can 

be obtained from any stochastic model, not only from a backward one. Had this not been the 

case, we would be in a deadlock in providing forecasts even with AR models. To see this, we may 

consider the case of an AR(p) scheme used to approximate a process with LRD. Because of LRD, 

the value of p will be large, typically larger than the number (n) of known past observations 

(𝑝 > 𝑛). Therefore, the mathematical expression of the AR(p) as a weighted sum of past values 

could not be applied for forecast because some of the required past values would not be known. 

Koutsoyiannis (2000) formulated a simple and general solution of the forecast problem, 

which can be applied for any type of linear model and hence for AMA. This calculates the 

prediction 𝑥𝜏 for any future time τ combining, on the one hand, any simulation 𝑥𝜏 independent of 

the observations, and, on the other hand, the observations �̂�, through the equations: 

𝑥𝜏 = 𝑥𝜏 + 𝒄𝜏
T𝑪−1(�̂� − 𝒛), var[𝑥𝜏|�̂�] = 𝛾1 − 𝒄𝜏

T𝑪−1𝒄𝜏 (40) 

where �̂� ≔ [𝑥0, 𝑥−1, … , 𝑥−𝑛]
T

 is a vector containing the observations at the present (𝑥0) and past 

times (𝑥−1, … , 𝑥−𝑛), and 𝒛 ≔ [𝑥0, 𝑥−1, … , 𝑥−𝑛]
T

 is a vector containing the independently 
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simulated items of the stochastic process at the present and past, whilst 𝒄𝜏 ≔ cov[𝑥𝜏, 𝒛] and 

𝑪 ≔ cov[𝒛, 𝒛] are a vector and a matrix of covariances, respectively, with items determined from 

the chosen stochastic model (again, not estimated from the data).  

6.2 Time asymmetry 

Time irreversibility can very easily be handled within the AMA framework. Assuming that the 

white noise 𝑣𝜏 (in discrete time τ) has variance 1 and coefficient of skewness 𝐶S
(𝑣)

, we will have: 

var[𝑥𝜏] = ∑ 𝑎𝑗
2

𝐽

𝑗=−𝐽

, 𝜇3[𝑥𝜏] = ∑ 𝑎𝑗
3 𝐶S

(𝑣)

𝐽

𝑗=−𝐽

, 𝐶S ≔
𝜇3[𝑥𝜏]

(var[𝑥𝜏])
3/2
=

∑ 𝑎𝑗
3 

𝐽
𝑗=−𝐽

(∑ 𝑎𝑗
2𝐽

𝑗=−𝐽 )
3/2
𝐶S
(𝑣)

 (41) 

where 𝜇3[𝑥𝜏] and 𝐶S are the third moment and the coefficient of skewness of process 𝑥𝜏, 

respectively.  

Time asymmetry is quantified through the skewness of the differenced process �̃�𝜏, according 

to equation (4), which by virtue of (24) is written as: 

�̃�𝜏 ≔ 𝑥𝜏 − 𝑥𝜏−1 = ∑ (𝑎𝑗 − 𝑎𝑗−1)𝑣𝜏−𝑗

𝐽

𝑗=−𝐽

 (42) 

with 𝑎−𝐽−1 = 0. Thus its skewness will be: 

�̃�S ≔
𝜇3[�̃�𝜏]

(var[�̃�𝜏])
3/2
=

∑ (𝑎𝑗 − 𝑎𝑗−1)
3
 𝐽

𝑗=−𝐽

(∑ (𝑎𝑗 − 𝑎𝑗−1)
2𝐽

𝑗=−𝐽 )
3/2
𝐶S
(𝑣)

 (43) 

The ratio: 

�̃�S
𝐶S
=

∑ (𝑎𝑗 − 𝑎𝑗−1)
3
 𝐽

𝑗=−𝐽

(∑ (𝑎𝑗 − 𝑎𝑗−1)
2𝐽

𝑗=−𝐽 )
3/2

(∑ 𝑎𝑗
2𝐽

𝑗=−𝐽 )
3/2

∑ 𝑎𝑗
3 𝐽

𝑗=−𝐽

 (44) 

is independent of 𝐶𝑆
(𝑣)

 and primarily depends on 𝜃(𝜔), which determines the sequence of 𝑎𝜂 . 

The case 𝜃(𝜔) = 0, i.e. the SMA, results in complete time symmetry. However, a constant 𝜃0 ≠ 0 

(appropriately chosen) can make the ratio �̃�S 𝐶S⁄  as high as we wish, thus enabling preservation 

of time asymmetry.  

The above results make it clear that without skewness in the original process 𝑥𝜏 (e.g. in the 

case of Gaussian processes), there cannot be time asymmetry, a result that is consistent with 

Weiss’s (1975). 

7 Application 

Here we repeat the application in Koutsoyiannis (2019b) for the streamflow time series but 

using the new analytical framework. The data are from the database of the U.S. Geological Survey 

(https://nwis.waterdata.usgs.gov/md/nwis/uv/?site_no=01603000&agency_cd=USGS, 

retrieved: 2018-09-16) for the site USGS 01603000 North Branch Potomac River Near 

Cumberland, MD (39°37'18.5"N, 78°46'24.3"W, catchment area 2271 km2). They cover the 
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period 2013-10-01 to 2018-08-31 for a time step of 15 min, which was aggregated to hourly, 

while discharges were converted from cubic feet per second to m3/s. Missing values (4% for a 

total of 172 416 values) were left unfilled. Seasonality is not negligible and was treated by 

standardising the values of each month by an appropriate coefficient (see Koutsoyiannis 2019b). 

We note here that this standardization is just a rough modelling approximation, adequate for 

our aim to investigate time irreversibility, while an approach for operational use would require 

the construction of a cyclostationary model. 

The process 𝑥𝜏 is modelled as a FHK-C process; the fitting is impressively good and the 

parameters are M = 0.56 (indicating a slightly smooth process), H = 0.6 (a persistent process), 

α = 160 h and λ = γ(0) = 1.01 (for the standardized process). The fitting is shown in Figure 3 in 

terms of the climacogram, which is good for visualizing the behaviour at large time scales, and 

the climacospectrum, which provides a better visualization for small time scales.  

 

 

Figure 3 Comparison with the FHK-C model of the climacogram and climacospectrum (upper) of the 

original series, after standardization for dealing with seasonality; (lower) of the generated series.  

Additional parameters, quantifying the state and time asymmetry, are the skewness 

coefficients of the original and differenced process. The analysis in Koutsoyiannis (2019b) 

suggested prominent time irreversibility at time scales from 1 h to about 4 d. This is quantified 
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by a skewness coefficient of the differenced process, which is much higher than the skewness of 

the original process 𝑥𝜏 (10.99 for �̃�𝜏 and 2.98 for 𝑥𝜏 at the hourly scale, a ratio �̃�S 𝐶S⁄ = 3.69).  

For the application we use the proposed method with constant 𝜃0 and with J = 1024. We note 

that the SMA case results in zero skewness of the differenced process (time symmetry) while in 

the ANTAMA case the skewness tends to infinity, which indicates that the method does not have 

any upper limit of time irreversibility that it can handle. Choosing 𝜃0 = 0.0638, we make the 

ratio of the skewness of �̃�𝜏 and 𝑥𝜏 equal to 3.69, as required. The coefficients 𝑎𝜂 determined by 

direct application of the method are shown in Figure 4, along with the climacogram and the 

autocorrelation function of the original process.  

 

Figure 4 Climacogram, autocorrelation and coefficients aη determined by the proposed method.  

 

Figure 5 (Upper) Discharge time series generated (time references are arbitrary) and (lower) close up for 

a six-month period containing the highest generated discharges; plots refer to the “naturalized” (back-

transformed) series.  
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Figure 6 Climacograms and skewness coefficients of the original and differenced time series for: (upper) 

the real-world data and (lower) the generated data; plots refer to the standardized series.  

For the generation of 𝑣𝑖 we use lognormal white noise with skewness determined so that the 

skewness of the original process be 2.98 as required. A time series with length equal to that of 

the real world data was derived for the process 𝑥𝜏 using equation (24), and was then 

“naturalized” by applying the inverse seasonal transformation. Plots for the generated time 

series are shown in Figure 5, where in the close up (lower panel) the irreversibility is evident, 

with steeper rising branches and milder falling ones. Comparisons of the generated time series 

with the model, as well as with the real-world data, in terms of climacogram and 

climacospectrum, are shown in Figure 3. Comparisons of the characteristics related to state and 

time asymmetry are shown in Figure 6. It is observed that the generated time series is consistent 

with the model and the original data in terms of all important statistics, marginal and joint, as 

well as related to time irreversibility. One slight discrepancy is that the curve related to time 

asymmetry in Figure 6, while it captures the skewness of the real-world differenced data for the 
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hourly scale, has a steeper slope for intermediate time scales; however, controlling this slope 

was not in the scope of this study. All in all, the method seems successful in simulation of 

streamflow time series even at fine time scales.  

8 Conclusions 

The main contribution of this article is the introduction of an equation that determines 

analytically the weights 𝑎𝜂 of an asymmetric moving average (AMA) scheme, which can be used 

in any problem of stochastic simulation of time irreversible processes. This equation is rewritten 

here as: 

𝑎𝜂 = ∫ √2e2πi(𝜃(𝜔)−𝜂𝜔)√𝑠d(𝜔)

1/2

−1/2

d𝜔 (45) 

where 𝑠d(𝜔) is the power spectrum of the discrete-time representation of the process of interest 

and 𝜃(𝜔) is any arbitrary odd real function. The same equation can also be used for time 

reversible processes, even though in this case it suffices to use the simpler symmetric (SMA) 

scheme, which can be obtained as a special case of the AMA for 𝜃(𝜔) = 0. In this case the 

equation simplifies to:  

 𝑎𝜂
S = ∫ √2 cos(2π𝜂𝜔)√𝑠d(𝜔)d𝜔

1/2

0

 (46) 

A simple expression can also be obtained for any case where 𝜃(𝜔) is a constant θ0 multiplied by 

the sign of ω. Assuming that an adequately large number of weights is used (so that the quantity 

𝛿0 be negligible) this expression becomes:  

𝑎𝜂 = 𝑎𝜂
S cos(2π𝜃0) + 𝑎𝜂

Α sin(2π𝜃0) (47) 

where 

𝑎𝜂
A =

1

2
∫ √2sin(2π𝜂𝜔)√𝑠d(𝜔)d𝜔

1/2

0

 (48) 

is the antisymmetric solution (ANTAMA) of the equation.  

 The numerical evaluation of these weights is very easy and fast, as it only needs application of 

FFT, while the generation of the processes of interest is even easier; both are illustrated in a 

spreadsheet provided as supplementary information. The applicability of the method has no 

restrictions and no iterations are needed. Once the process dependence is known through any 

second-order tool (climacogram, autocovariance, power spectrum, etc.) and the properties 

related to time reversibility or irreversibility are specified, the method can be readily applied for 

stochastic generation.  

 The extended historical review presented in this article reveals that the proposed method is 

against the current of simulation approaches that were developed since the 1950s. Specifically 
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the approach proposed (a) uses a purely moving average scheme, without any autoregressive 

term, (b) involves innovation terms and weights that extend to both directions of time, and (c) 

does not link the generation scheme with the observations—rather, the observations are used in 

the model fitting phase, which is independent of the simulation. Because of the moving average 

scheme we are able to easily handle and preserve moments higher than second. Because of the 

involvement of terms in both directions of time in an asymmetric mode, we can easily reproduce 

time irreversibility in a controlled manner. And because of the separation of model fitting from 

the calculation of the weights of the linear model, we are able to handle any type of dependence 

in time for whatever range (short or long) and fractality (smooth or rough). For the same reason, 

we are able to make the model as parsimonious as we wish (and as the data allow) without 

being trapped to involve many parameters in order to preserve, for example, autocovariances of 

large lags. 

The entire framework is so simple and powerful that one can hardly believe that it is 

presented for first time. Perhaps it is a reinvention of something already known. Whether it has 

been invented or not in the past, fact is that it is not well known (and certainly not known to the 

author), otherwise the ARMA models and their variants would not be so popular. Hopefully this 

article could contribute to give ARMA-type models a position in the history of stochastics. 

Appendix A: Proof of the basic properties of the AMA solution 

To show point (1) below equation (27), we observe that the sequence of 𝑎𝜂 is the finite Fourier 

transform of: 

𝐴(𝜔) ≔ e2πi𝜃(𝜔)𝐴R(𝜔) = (cos(2π𝜃(𝜔)) + i sin(2π𝜃(𝜔)))𝐴R(𝜔) (A1) 

We recall that the power spectrum 𝑠(𝜔) is an even function, and so are 𝑠d(𝜔) and 𝐴R(𝜔). 

Besides cos(2π𝜃(𝜔)) is also even, while sin(2π𝜃(𝜔)) is odd, given that 𝜃(𝜔) is odd. 

Consequently, 𝐴(𝜔) has even real part and odd imaginary part. Hence, its Fourier transform is 

real (Bracewell, 2000, p. 13), which proves that 𝑎𝜂 is real. It can also be written as a real 

expression: 

𝑎𝜂 = 2∫ cos(2π(𝜃(𝜔) − 𝜂𝜔))𝐴R(𝜔)

1/2

0

d𝜔 (A2) 

 To show point (2), we observe that 𝐴(𝜔) is the inverse finite Fourier transform of 𝑎𝜂 , i.e.,  

𝐴(𝜔) = 2 ∑ 𝑎𝑙e
2πi𝑙𝜔

∞

𝑙=−∞

 

Besides, the inverse finite Fourier transform of the quantity 𝑐𝜂
′ ≔ ∑ 𝑎𝑙𝑎𝜂+𝑙

∞
𝑙=−∞  is 
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𝐵(𝜔) = 2 ∑ 𝑐𝜂
′ e2πi𝜂𝜔

∞

𝜂=−∞

= 2 ∑ ∑ 𝑎𝑙𝑎𝜂+𝑙

∞

𝑙=−∞

e2πi𝜂𝜔
∞

𝜂=−∞

= 2 ∑ 𝑎𝑙 ∑ 𝑎𝜂+𝑙

∞

𝜂=−∞

e2πi𝜂𝜔
∞

𝑙=−∞

 

= 2 ∑ 𝑎𝑙 ∑ 𝑎𝑗

∞

𝑗=−∞

e2πi(𝑗−𝑙)𝜔
∞

𝑙=−∞

= 2 ∑ 𝑎𝑙e
−2πi𝑙𝜔 ∑ 𝑎𝑗

∞

𝑗=−∞

e2πi𝑗𝜔
∞

𝑙=−∞

=
𝐴(𝜔)∗𝐴(𝜔)

2
 

(A3) 

where 𝐴(𝜔)∗ is the conjugate of 𝐴(𝜔), equal to e−2πi𝜃(𝜔)𝐴R(𝜔). Consequently, 

𝐵(𝜔) =
𝐴(𝜔)∗𝐴(𝜔)

2
=
e−2πi𝜃(𝜔)𝐴R(𝜔)e2πi𝜃(𝜔)𝐴R(𝜔)

2
=
(𝐴R(𝜔))

2

2
= 𝑠d(𝜔) 

(A4) 

where we have utilized the definition of 𝐴R(𝜔) in (27). Hence the Fourier transform of 𝑐𝜂
′  equals 

the power spectrum, which means that 𝑐𝜂
′  is identical to the autocovariance function 𝑐𝜂 . 

 Now, coming to point (3), the calculation of the sequence of coefficients 𝑎𝜂 , and hence the 

generation of the required time series, we first note that, unlike in the above theoretical 

derivations, summation is in practice made for a finite number of terms, i.e., for 𝜂 = −𝐽,… ,0, … , 𝐽, 

where J if finite. The coefficients 𝑎𝜂 will decrease with increasing η and will be negligible beyond 

an appropriately chosen, adequately large, J. Possible truncation errors can be handled as 

described by Koutsoyiannis (2016—even though that solution was for the SMA scheme). For the 

numerical part, since we know the frequency functions 𝐴R(𝜔) (from the power spectrum) and 

𝜃(𝜔) (appropriately or even arbitrarily or randomly chosen), for an array of frequencies 𝜔𝑗, we 

are able to write equations (30)-(31) and complete the algorithm described in steps (a)-(d) in 

section 5. 

Appendix B: The OBAMA scheme and other cases requiring 
optimisation 

If the process exhibits LRD and for some reason an OBAMA scheme is desired, one option would 

be to generalize equation (38) to the form: 

𝜃(𝜔) = 𝜃0 +
1

2π
cos−1((

1

𝐶1√𝑠d(𝜔)
+
√𝑠d(𝜔)

𝐶2
)

𝐶0

 ) , 𝜔 > 0 (B1) 

where 𝜃0, 𝐶0, 𝐶1, 𝐶2, are coefficients to be optimized numerically, so that the deviation from zero 

of all 𝜂 < 0 (quantified e.g. by the mean square error) be minimal. Continuity at 0 of 𝜃(𝜔) is not 

necessary, but if required it can be achieved setting 𝜃(0) = 0 .  

A second option which was found quite satisfactory in numerical explorations, is to define 

𝜃(𝜔) as the smooth minimum of two rational functions of frequency, 𝜃𝑖(𝜔), 𝑖 = 1,2, with first 

degree polynomials, i.e.: 

𝜃(𝜔) =
1

𝜁
ln(𝑒𝜁 𝜃1(𝜔) + 𝑒𝜁 𝜃2(1/2−𝜔)) , 𝜃𝑖(𝜔) ≔

𝐶1,𝑖𝜔

𝐶2,𝑖 +𝜔
+ 𝐶0,𝑖 (B2) 

where 𝐶𝑗𝑖; 𝑖 = 1,2;  𝑗 = 0,1,2 are coefficients with values to be optimized and 𝜁 a big negative 

number, say, 𝜁 = −10. Optimizing each 𝜃(𝜔𝑗), without using parametric relationships, is 
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another option but in the LRD case the frequencies of interest 𝜔𝑗 will be numerous and, 

therefore, an expression such as (B1) or (B2), whose coefficients are optimized, may be an 

advantage. 

 We can use the same expressions for other tasks. For example, if for some reason we need an 

ordinary-backward scheme of ARMA type, again the framework provided can directly convert 

itself into an ARMA scheme. Thus, to convert AMA to an ARMA(1, 𝑞) model, for which 𝑎𝜂 = 0 for 

𝜂 < 0 and 𝑎𝜂 = 𝛽𝑎𝜂−1 = 𝛽
𝜂−𝑞𝑎𝑞  for 𝜂 > 𝑞 and for some appropriate β, we can form the 

objective function (representing the cumulative departure of the achieved sequence of 

coefficients from those of an ARMA(1, 𝑞) model): 

𝑒(𝑎0, … , 𝑎𝑞;  𝛽) ≔ ∑ 𝑎𝜂
2

0

𝜂=−𝐽

+∑(𝑎𝜂 − 𝛽
𝜂−𝑞𝑎𝑞)

2

𝐽

𝜂=𝑞

 (B3) 

minimize it finding the vector of coefficients (𝑎0, … , 𝑎𝑞;  𝛽), and reformulate the generating 

equation (24) as: 

𝑥𝜏 = 𝛽𝑥𝜏−1 +∑𝑎𝜂𝑣𝜏−𝜂

𝑞

𝜂=0

 (B4) 

so that a limited number of previous noise variables 𝑣𝜏−𝜂 and the latest process variable 𝑥𝜏−1 are 

only needed. This case is also implemented in the spreadsheet provided as supplementary 

information. The same spreadsheet file contains also other cases, such as the conversion into an 

AR(q) model or to the sum of three AR(1) models, where the algorithms used are hopefully self-

explanatory. 
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