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ABSTRACT 

 Integrated modeling of hybrid water-energy systems, comprising multiple energy 

sources, conventional and renewable, pumped-storage facilities and other hydraulic 

infrastructures, which aim to serve combined water and energy uses, is a highly 

challenging problem. On the one hand, such systems are subject to significant 

uncertainties that span over all associated inputs, physical and anthropogenic, i.e., 

hydrometeorological processes and water-energy demands, respectively. On the 

other hand, their everyday operation is subject to multiple complexities, due to the 

conflicting uses, constraints and economic interests. Taking as example a future 

configuration of the electric system of Ikaria Island, Greece, we demonstrate a 

stochastic simulation framework, comprising: (a) a synthetic time series generator 

that reproduces the statistical and stochastic properties of key input processes (i.e., 

reservoir inflows and wind speed) at multiple temporal scales; and (b) a simulation 

module employing the hourly operation of the system, to estimate the associated 

water, energy and financial fluxes. In this context, several problems are examined, 

under alternative policies and assumptions. Generally, these can be classified into 

two categories, i.e. the optimal design of key system components, and the real-time 

operation of a hypothetical energy market, involving three energy providers and 

associated electricity sources, i.e. hydroelectric, wind power, and thermoelectric. 
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Εκτενής  Περίληψη  / [Extended Abstract in Greek]  

Αντικείμενο τθσ παροφςασ εργαςίασ αποτελεί θ μοντελοποίθςθ και βελτιςτοποίθςθ 

του Υβριδικοφ Συςτιματοσ Ενζργειασ (ΥΒΕ) τθσ μθ διαςυνδεδεμζνθσ με το 

θπειρωτικό δίκτυο Ικαρίασ και θ προςομοίωςθ ενόσ υποκετικοφ χρθματιςτθρίου 

ενζργειασ για τθν κάλυψθ των ενεργειακϊν απαιτιςεων του νθςιοφ. 

Οι εργαςίεσ καταςκευισ του ζργου ξεκίνθςαν το 2010 και ολοκλθρϊκθκαν τον 

Ιοφνιο του 2019. Το παρόν ζργο αποτελεί μζροσ τθσ προςπάκειασ για επίτευξθ των 

ςτόχων που ζχουν τεκεί από το Πρωτόκολλο του Κιότο για τθν παραγωγι ενζργειασ. 

Πιο ςυγκεκριμζνα, το 1997 εγκρίκθκε το Πρωτόκολλο του Κιότο, το οποίο ειςιγαγε 

νομικά δεςμευτικοφσ ςτόχουσ μείωςθσ των εκπομπϊν για τισ ανεπτυγμζνεσ χϊρεσ. 

Θ δεφτερθ περίοδοσ δεςμεφςεων του Πρωτοκόλλου του Κιότο άρχιςε τθν 1θ 

Ιανουαρίου 2013 και λιγει το 2020. Σε αυτιν ςυμμετζχουν 38 ανεπτυγμζνεσ χϊρεσ, 

μεταξφ των οποίων θ Ε.Ε. και τα 28 κράτθ μζλθ τθσ. 

Το Ευρωπαϊκό Συμβοφλιο ενζκρινε μια ολοκλθρωμζνθ προςζγγιςθ για τθν κλιματικι 

και ενεργειακι πολιτικι με ςτόχο τθν καταπολζμθςθ τθσ αλλαγισ του κλίματοσ και 

τθν αφξθςθ τθσ ενεργειακισ αςφάλειασ τθσ Ε.Ε., ενιςχφοντασ παράλλθλα τθν 

ανταγωνιςτικότθτα τθσ και τθν μετατροπι τθσ ςε μια ιδιαίτερα αποδοτικι από 

ενεργειακι άποψθ οικονομία χαμθλϊν εκπομπϊν άνκρακα. 

Οι απαιτιςεισ που υιοκετικθκαν από τουσ αρχθγοφσ κρατϊν και κυβερνιςεων 

αφοροφςαν ςτο ακόλουκο τρίπτυχο: 

 Μείωςθ των εκπομπϊν των αερίων κερμοκθπίου κατά τουλάχιςτον 20% 

κάτω από τα επίπεδα του 1990; 

 20% τθσ κατανάλωςθσ ενζργειασ τθσ ΕΕ να προζρχεται από ανανεϊςιμεσ 

πθγζσ; 

 Μείωςθ κατά 20% ςτθ χριςθ πρωτογενοφσ ενζργειασ ςε ςφγκριςθ με τα 

προβλεπόμενα επίπεδα μζςω τθ βελτίωςθσ τθσ ενεργειακισ απόδοςθσ. 

Οι παραπάνω απαιτιςεισ είναι γνωςτζσ ωσ ςτόχοσ «20-20-20». 

Ιδιαίτερα ςτον νθςιωτικό χϊρο και, κυρίωσ, ςτα μθ διαςυνδεδεμζνα νθςιά, τα 

οποία ζχουν αυτόνομουσ ςτακμοφσ παραγωγισ θλεκτρικισ ενζργειασ, θ διείςδυςθ 

εγκαταςτάςεων διαφόρων μορφϊν Ανανεϊςιμων Πθγϊν Ενζργειασ (ΑΠΕ), όπωσ τα 

αιολικά πάρκα, οι φωτοβολταϊκοί ςτακμοί και οι υδροθλεκτρικοί ςτακμοί, μπορεί 

να καλφψει ςθμαντικό μζροσ των αναγκϊν τροφοδότθςθσ των καταναλωτϊν, 

μειϊνοντασ τισ περιβαλλοντικζσ επιπτϊςεισ. Δεδομζνου του υψθλοφ λειτουργικοφ 

κόςτουσ των ςυμβατικϊν μονάδων παραγωγισ ςτα απομακρυςμζνα νθςιά, λόγω 

του διογκωμζνου κόςτουσ μεταφοράσ του καυςίμου και των περιβαλλοντικϊν 

φόρων, θ διείςδυςθ των ΑΠΕ κακίςταται ακόμθ πιο αναγκαία. 
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Παρόλα αυτά, τα επίπεδα αιολικισ διείςδυςθσ ςτα ελλθνικά νθςιά παραμζνουν 

ακόμθ χαμθλά, παρά το υψθλό αιολικό τουσ δυναμικό, εξαιτίασ των διάφορων 

προβλθμάτων που εμφανίηουν τζτοιου είδουσ ςυςτιματα παραγωγισ θλεκτρικισ 

ενζργειασ. Θ ςτοχαςτικι φφςθ τθσ παραγόμενθσ ιςχφοσ των εγκαταςτάςεων 

φωτοβολταϊκϊν και ανεμογεννθτριϊν και θ περιοριςμζνθ δυνατότθτά τουσ να 

ελζγχουν τθν ιςχφ τουσ κακιςτοφν αμφίβολο το βακμό αξιοπιςτίασ τθσ λειτουργίασ 

και απόδοςθσ τζτοιων εγκαταςτάςεων ςτισ απομακρυςμζνεσ περιοχζσ. Θ εξάρτθςθ 

των ΑΠΕ από τα φυςικά φαινόμενα ζχουν ωσ αποτζλεςμα τθ χρονικι μεταβολι του 

ενεργειακοφ δυναμικοφ τουσ. Με τον κατάλλθλο όμωσ τρόπο και τθ ςχεδίαςθ τθσ 

λειτουργίασ αυτϊν, κακϊσ και με τον ςυνδυαςμό τουσ με άλλεσ μορφζσ ενζργειασ, 

προκειμζνου να αποκθκεφεται θ περίςςεια τθσ παραγωγισ, είναι δυνατι θ επίτευξθ 

υψθλοφ βακμοφ κάλυψθσ τθσ ηιτθςθσ ςε θλεκτρικι ενζργεια ςε περιοχζσ μθ 

διαςυνδεδεμζνεσ με το δίκτυο διανομισ τθσ θπειρωτικισ χϊρασ. 

Στο πλαίςιο, λοιπόν, αυτισ τθσ προςπάκειασ, ξεκίνθςε θ υλοποίθςθ Υβριδικϊν 

Ενεργειακϊν Ζργων (ΥΒΕ), όπωσ είναι αυτό τθσ Ικαρίασ, από τθν ΔΕΘ ΑΕ. Στόχοσ του 

ζργου αυτοφ είναι θ παραγωγι ενζργειασ που κα βαςίηεται ςτο ςυνδυαςμό δφο 

διαφορετικϊν μορφϊν ΑΠΕ, ιτοι αιολικισ και υδροθλεκτρικισ, με αποκικευςθ τθσ 

πλεονάηουςασ αιολικισ ενζργειασ μζςω αντλθςιοταμίευςθσ. Πζραν των δφο 

παραπάνω μορφϊν ΑΠΕ, το Σφςτθμα Διαχείριςθσ Φορτίων του ζργου κα ελζγχει τθν 

ιςχφ των ντθηελογεννθτριϊν του Στακμοφ Αγίου Κθρφκου, τα φορτία κατανάλωςθσ, 

τθν ςτάκμθ νεροφ ςτισ δεξαμενζσ, και τθν ευςτάκεια του θλεκτρικοφ δικτφου του 

νθςιοφ, εξαςφαλίηοντασ τθ μζγιςτθ δυνατι κάλυψθ των φορτίων κατανάλωςθσ του 

νθςιοφ από ΑΠΕ.  

Το ςυγκεκριμζνο ζργο είναι ζνα από τα πρϊτα του είδουσ ςτθν Ευρϊπθ (πρϊτο το 

ιςπανικό νθςί Ελ Ιζρρο), ςυνεπϊσ αποτελεί μία πρϊτθσ τάξθσ ευκαιρία ελζγχου των 

πρακτικϊν αποκικευςθσ και ελεγχόμενθσ διανομισ τθσ παραγόμενθσ ενζργειασ. 

Επιπλζον, από τθν προςομοίωςθ του χρθματιςτθρίου ενζργειασ αναμζνεται να 

προκφψουν ςθμαντικά πορίςματα ςχετικά με τθν πολιτικι τθσ ενζργειασ ςτο μθ 

διαςυνδεδεμζνο δίκτυο. 

Θ προςομοίωςθ του υβριδικοφ ενεργειακοφ ςυςτιματοσ τθσ Ικαρίασ περιλαμβάνει 

τζςςερισ ανεμογεννιτριεσ και τρεισ ταμιευτιρεσ με υδροςτρόβιλουσ. Στο ςφςτθμα 

ορίηονται κανόνεσ και περιοριςμοί που ζχουν τεκεί κατά τθν μελζτθ με ςκοπό τθ 

διαςφάλιςθ τθσ αρδευτικισ χριςθσ νεροφ από τον ταμιευτιρα. Ηθτοφμενο τθσ 

αναπαράςταςθσ είναι θ κατανόθςθ του τρόπου λειτουργίασ του ςυςτιματοσ αυτοφ 

και θ ςυνεργαςία των διάφορων μορφϊν ενζργειασ που ςυμμετζχουν ςτθν 

παραγωγι τθσ επικυμθτισ θλεκτρικισ ενζργειασ, διατθρϊντασ ςε υψθλότερθ 

ιεραρχία τθν αρδευτικι ηιτθςθ. Από τθν άλλθ, ςκοπόσ τθσ προςομοίωςθσ είναι θ 

εκτίμθςθ τθσ αξιοπιςτίασ και τθσ αποδοτικότθτασ αυτοφ του ςυςτιματοσ ωσ προσ 

τθν κάλυψθ τθσ ηιτθςθσ θλεκτρικισ ενζργειασ του νθςιοφ ςε βάκοσ χρόνου. 
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Ζμφαςθ δίνεται αφενόσ ςτθ διερεφνθςθ τθσ λειτουργικότθτασ ενόσ τζτοιου 

ςυςτιματοσ και τον προςδιοριςμό τθσ ςυμμετοχισ των διαφόρων ςυνιςτωςϊν του 

(ανεμογεννιτριεσ, υδροθλεκτρικοί ςτακμοί, ςφςτθμα αντλθςιοταμίευςθσ) ςτθν 

κάλυψθ τθσ ηιτθςθσ και ςτθν προςομοίωςθ του χρθματιςτθρίου ενζργειασ ςε μθ 

διαςυνδεδεμζνα νθςιά.  

Ωσ πρωτογενι δεδομζνα ειςόδου ελιφκθςαν ωριαία ανεμολογικά δεδομζνα του 

νθςιοφ μικουσ επτά ετϊν και δεδομζνα βροχοπτϊςεων, τα οποία μετατράπθκαν ςε 

ειςροζσ ςτον ταμιευτιρα, μζςω εννοιολογικοφ υδρολογικοφ μοντζλου. Ωςτόςο, ςτισ 

προςομοιϊςεισ χρθςιμοποιικθκαν ςυνκετικά δεδομζνα ωριαίασ ταχφτθτασ ανζμου 

και θμεριςιασ βροχόπτωςθσ μικουσ 1.000 ετϊν, τα οποία διατθροφν τα ςτατιςτικά 

χαρακτθριςτικά των παρατθρθμζνων χρονοςειρϊν. 

Στόχοσ τθσ προςομοίωςθσ του χρθματιςτθρίου ενζργειασ ιταν θ εξαγωγι 

ποριςμάτων που αφοροφν τθ βζλτιςτθ πολιτικι διαχείριςθσ τθσ ενζργειασ ςτο μθ 

διαςυνδεδεμζνο δίκτυο, μζςω τθσ ςφγκριςθσ του υπάρχοντοσ νομοκετικοφ 

πλαιςίου με ζνα πιο φιλελεφκερο διαχειριςτικό μοντζλο. 

Για να επιτευχκεί αυτό, αναπτφχκθκε μοντζλο πρόβλεψθσ τθσ ταχφτθτασ του 

ανζμου ςε χρονικό εφροσ από 12 ζωσ 36 ϊρεσ ζπειτα από δεδομζνθ χρονικι ςτιγμι 

(ϊρα). Το προαναφερκζν μοντζλο είναι απαραίτθτο, κακϊσ  θ δθμοπράτθςθ του 

ςυνόλου τθσ παραγωγισ ενζργειασ κάκε θμζρασ διεξάγεται ςτισ 12 το μεςθμζρι τθσ 

προθγοφμενθσ. Συνεπϊσ, εφκολα καταλαβαίνει κανείσ ότι για τθν ορκολογικι 

κατάκεςθ προςφορϊν είναι απαραίτθτθ θ -ζςτω προςεγγιςτικι- πρόβλεψθ τθσ 

ταχφτθτασ του ανζμου για τισ επόμενεσ 36 ϊρεσ. 

Στο χρθματιςτιριο κατακζτουν προςφορζσ οι τρεισ ενεργειακοί παίκτεσ του νθςιοφ: 

 Ο ιδιοκτιτθσ του αιολικοφ πάρκου, ωσ ο πλζον ανταγωνιςτικόσ όλων, λόγω 

των μθδαμινϊν εξόδων λειτουργίασ ςε ςυνδυαςμό με το πλοφςιο αιολικό 

δυναμικό του νθςιοφ; 

 Ο ιδιοκτιτθσ του υδροθλεκτρικοφ ζργου, ο οποίοσ ζχει τθ δυνατότθτα 

ταυτόχρονθσ παραγωγισ και αποκικευςθσ ενζργειασ; 

 Ο ιδιοκτιτθσ του ςτακμοφ πετρελαίου, ο οποίοσ, εξαιτίασ των αυξθμζνων 

εξόδων μεταφοράσ και περιβαλλοντικϊν φόρων, κατακζτει τισ υψθλότερεσ 

προςφορζσ και καλφπτει τθ ηιτθςθ όταν οι τεχνικοί περιοριςμοί 

απαγορεφουν τθν είςοδο των άλλων δφο παικτϊν. 

Τζλοσ, ςθμαντικό αντικείμενο μελζτθσ τθσ εργαςίασ αποτελεί ο κακοριςμόσ και θ 

βελτιςτοποίθςθ των κριτθρίων με τα οποία εν τζλει διαμορφϊνεται θ προςφορά 

των τριϊν ενεργειακϊν παικτϊν ςε κάκε χρονικι ςτιγμι. 

Αναλυτικότερα, οι ερευνθτικοί ςτόχοι που τζκθκαν ςτθν υπόψθ μελζτθ, και 

μποροφν να γενικευτοφν για μικρζσ μθ διαςυνδεδεμζνεσ κοινότθτεσ, είναι: 
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 Μελζτθ του τρόπου αντιμετϊπιςθσ τθσ ςτοχαςτικισ ςυμπεριφοράσ των ΑΠΕ; 

 Κακοριςμόσ του επιπζδου εκμετάλλευςθσ των ΑΠΕ, με και χωρίσ δυνατότθτα 

αποκικευςθσ των ενεργειακϊν πλεοναςμάτων; 

 Βελτιςτοποίθςθ τθσ χωρθτικότθτασ των ταμιευτιρων και λιμνοδεξαμενϊν 

και τθσ παροχετευτικότθτασ των αγωγϊν; 

 Ελαχιςτοποίθςθ του ρίςκου ενεργειακϊν ελλειμμάτων, χωρίσ να αναιρείται 

θ προτεραιότθτα των αρδευτικϊν αναγκϊν του νθςιοφ; 

 Κακοριςμόσ και βελτιςτοποίθςθ των κανόνων λειτουργίασ του ςυςτιματοσ 

με ςκοπό τθν επίτευξθ υψθλισ αξιοπιςτίασ τόςο ςτθν άρδευςθ όςο και ςτθν 

παραγωγι ενζργειασ; 

 Μείωςθ τθσ τιμισ τθσ προςφερόμενθσ ενζργειασ; 

 Αντιμετϊπιςθ του μονοπωλιακοφ χαρακτιρα τθσ παραγωγισ ενζργειασ από 

τον υπάρχον πετρελαϊκό ςτακμό; 

 Προςομοίωςθ ενόσ χρθματιςτθρίου ενζργειασ τριϊν παικτϊν, με βάςθ 

εναλλακτικοφσ κανόνεσ λειτουργίασ του; 

 Κακοριςμόσ και βελτιςτοποίθςθ των κριτθρίων με τα οποία  διαμορφϊνεται 

θ προςφορά των τριϊν ενεργειακϊν παικτϊν ςε κάκε χρονικι ςτιγμι; 

 Παραγωγι ςυνκετικϊν χρονοςειρϊν ωριαίασ ταχφτθτασ ανζμου; 

 Διαμόρφωςθ κατάλλθλου μοντζλου πρόβλεψθσ τθσ ταχφτθτασ του ανζμου 

ζωσ και 36 ωρϊν μπροςτά; 

 Βελτιςτοποίθςθ του χρθματιςτθρίου ενζργειασ με ςτόχο τθν επίτευξθ 

κζρδουσ από τουσ τρεισ αντιςυμβαλλόμενουσ με ταυτόχρονθ μείωςθ τθσ 

Οριακισ Τιμισ Συςτιματοσ; 

 Εξαγωγι γενικότερων ςυμπεραςμάτων ςχετικά με τθ λειτουργία των ΥΒΕ, 

τθν προςφορά ενζργειασ αυτϊν και τθν κατάρτιςθ χρθματιςτθρίου 

ενζργειασ ςε μθ διαςυνδεδεμζνα νθςιά; 

 Σφγκριςθ του υπάρχοντοσ μοντζλου «εγγυθμζνθσ τιμισ» των ΑΠΕ με ζνα πιο 

φιλελεφκερο διαχειριςτικό μοντζλο. 

Πρϊτα απ’ όλα, ςτθν παροφςα εργαςία ερευνιςαμε τθ λειτουργικότθτα ενόσ 

τζτοιου ζργου για να προςδιορίςουμε τα χαρακτθριςτικά του υβριδικοφ 

ενεργειακοφ ςυςτιματοσ για να ικανοποιιςουμε τισ ςυνδυαςμζνεσ απαιτιςεισ 

άρδευςθσ και παραγωγισ ενζργειασ. Επιπλζον, εξετάςτθκε θ ευαιςκθςία του 

υβριδικοφ ενεργειακοφ ςυςτιματοσ ςτισ ςυνιςτϊςεσ του ςε μια προςπάκεια 

προςδιοριςμοφ τθσ βζλτιςτθσ λειτουργίασ του. 

Δεφτερον, μζςω τθσ προςομοίωςθσ του χρθματιςτθρίου ενζργειασ, εξαγάγαμε 

ςθμαντικά ςυμπεράςματα ςχετικά με τθ δυνατότθτα δθμιουργίασ τθσ βζλτιςτθσ 

πολιτικισ διαχείριςθσ ενζργειασ ςε ζνα μθ διαςυνδεδεμζνο δίκτυο, ςυγκρίνοντασ το 

υφιςτάμενο νομοκετικό πλαίςιο με ζνα πιο φιλελεφκερο μοντζλο διαχείριςθσ. 

Συγκεκριμζνα, το υφιςτάμενο μοντζλο τιμολόγθςθσ «εγγυθμζνθσ τιμισ» ςυγκρίκθκε 
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με μια μελζτθ περιπτϊςεων λειτουργίασ χρθματιςτθρίου ενζργειασ ςτο νθςί. Με 

αυτόν τον τρόπο, αξιολογιςαμε τα κίνθτρα για επενδφςεισ ςε μονάδεσ ΑΠΕ και τθ 

δυνατότθτα μείωςθσ τθσ τιμισ τθσ παρεχόμενθσ θλεκτρικισ ενζργειασ. 

Με τθν προςομοίωςθ του υβριδικοφ ενεργειακοφ ςυςτιματοσ και του 

χρθματιςτθρίου ενζργειασ, εν τζλει επιτεφχκθκαν οι ακόλουκοι ερευνθτικοί ςτόχοι: 

 Υψθλι εκμετάλλευςθ τθσ παραγωγισ ανανεϊςιμθσ ενζργειασ λόγω τθσ 

ευελιξίασ που προςφζρει το υβριδικό ςφςτθμα (αποκικευςθ πλεονάηουςασ 

ενζργειασ), που επιτρζπει τθ ρφκμιςθ τθσ ςτοχαςτικισ ςυμπεριφοράσ των 

μετεωρολογικϊν διεργαςιϊν; 

 Παραγωγι ςυνκετικϊν χρονοςειρϊν ανζμου; 

 Διαμόρφωςθ κατάλλθλου μοντζλου πρόβλεψθσ ανζμου ζωσ και 36 ϊρεσ 

μπροςτά; 

 Σφγκριςθ διαφορετικϊν προςομοιϊςεων και προςδιοριςμόσ των βζλτιςτων 

κανόνων που διζπουν το υβριδικό ενεργειακό ςφςτθμα ςε μια προςπάκεια 

μεγιςτοποίθςθσ τθσ αξιοπιςτίασ τθσ παραγωγισ ενζργειασ και άρδευςθσ και 

ελαχιςτοποίθςθ του μζςου κόςτουσ θλεκτρικισ ενζργειασ; 

 Σφγκριςθ διαφορετικϊν προςομοιϊςεων τθσ αγοράσ ενζργειασ και 

κακοριςμόσ των βζλτιςτων κανόνων και ςτακερϊν τιμϊν ςε μια προςπάκεια 

ελαχιςτοποίθςθσ του κόςτουσ θλεκτρικισ ενζργειασ ςτο μθ διαςυνδεδεμζνο 

νθςί, αλλά και ςτθν παροχι κινιτρων για επενδφςεισ; 

 Σφγκριςθ του υφιςτάμενου μοντζλου "εγγυθμζνθσ τιμισ" ΑΠΕ με τθ 

λειτουργία χρθματιςτθρίου ενζργειασ. 

Ακόμθ, καταλιξαμε ςτα παρακάτω πορίςματα ςχετικά με τθ δομι ενόσ υβριδικοφ 

ςυςτιματοσ ενζργειασ ςε μθ διαςυνδεδεμζνο νθςί και τθ λειτουργία 

χρθματιςτθρίου ενζργειασ ςε αυτό: 

 Κακοριςμόσ του επιπζδου εκμετάλλευςθσ των ΑΠΕ ςε μικρζσ μθ 

διαςυνδεδεμζνεσ κοινότθτεσ και εξεφρεςθ λφςεων για μεγαλφτερθ 

διείςδυςθ των ΑΠΕ ςτο νθςιωτικό ενεργειακό ςφςτθμα; 

 Εξάλειψθ των κινδφνων ενεργειακϊν ελλειμμάτων, εξαςφαλίηοντασ 

ταυτόχρονα τθν παραγωγι ενζργειασ ςε χαμθλότερεσ τιμζσ από ςιμερα 

(μονοπϊλιο ςτακμϊν ντίηελ); 

 Δυνατότθτα ικανοποίθςθσ τθσ ηιτθςθσ άρδευςθσ με υψθλι αξιοπιςτία; 

 Περιγραφι τθσ λειτουργίασ του υβριδικοφ ενεργειακοφ ςυςτιματοσ; 

 Περιγραφι τθσ λειτουργίασ τθσ αγοράσ ενζργειασ; 

 Προςδιοριςμόσ τθσ διάρκρωςθσ τθσ αγοράσ ενζργειασ ςε μθ 

διαςυνδεδεμζνο νθςί; 

 Προςδιοριςμόσ του βζλτιςτου μοντζλου διαχείριςθσ πλεοναςμάτων μζςω 

τθσ λειτουργίασ τθσ αγοράσ ενζργειασ ςε μθ διαςυνδεδεμζνο δίκτυο; 
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 Αντιμετϊπιςθ τθσ δυνατότθτασ των παραγωγϊν ενζργειασ να ςχθματίςουν 

καρτζλ. 

Παράλλθλα, όςον αφορά τθ λειτουργία του υβριδικοφ ενεργειακοφ ςυςτιματοσ τθσ 

Ικαρίασ και τθσ ενεργειακισ τθσ αγοράσ, τα ςυμπεράςματα είναι τα εξισ: 

 Μείωςθ των εκπεμπόμενων ρφπων κατά 13.800 τόνουσ ετθςίωσ; 

 Κατανόθςθ ότι οι εποχιακοί περιοριςμοί του υβριδικοφ ενεργειακοφ 

ςυςτιματοσ βελτιϊνουν όχι μόνο τθν κάλυψθ τθσ άρδευςθσ αλλά και τθν 

αξιοπιςτία τθσ παραγωγισ ενζργειασ; 

 Κακοριςμόσ τθσ μζςθσ τιμισ ενζργειασ τθσ Ικαρίασ με βάςθ το υπάρχον 

μοντζλο τιμολόγθςθσ; 

 Παρουςίαςθ τθσ δυνατότθτασ βελτιςτοποίθςθσ του υβριδικοφ ενεργειακοφ 

ςυςτιματοσ και τθσ ευαιςκθςίασ του ςτα βαςικά του χαρακτθριςτικά, 

δθλαδι τθ μζγιςτθ αποκθκευτικι ικανότθτα ταμιευτιρα και δεξαμενϊν, τθν 

ονομαςτικι ιςχφ του ςτακμοφ άντλθςθσ και τθν ελάχιςτθ παροχι 

υδροςτροβίλου; 

 Διερεφνθςθ τθσ δυνατότθτασ μείωςθσ τθσ τιμισ τθσ ενζργειασ που 

προςφζρεται ςτο μθ διαςυνδεδεμζνο νθςί; 

 Αντιμετϊπιςθ του μονοπωλιακοφ κακεςτϊτοσ παραγωγισ ενζργειασ από τον 

υπάρχοντα ςτακμό πετρελαίου; 

 Προςομοίωςθ ενόσ ενεργειακοφ χρθματιςτθρίου τριϊν παικτϊν, 

διατθρϊντασ τουσ ςχετικοφσ κανόνεσ λειτουργίασ και προςδιορίηοντασ τα 

κριτιρια τθσ διαμόρφωςθσ τθσ προςφοράσ κάκε παίκτθ; 

 Βελτιςτοποίθςθ των ςτακερϊν τιμϊν τθσ αγοράσ ενζργειασ ςε μια 

προςπάκεια επίτευξθσ λογικϊν κερδϊν για όλουσ τουσ 

αντιςυμβαλλομζνουσ, μειϊνοντασ παράλλθλα τθ μζςθ τιμι τθσ θλεκτρικισ 

ενζργειασ; 

 Σφγκριςθ του υφιςτάμενου μοντζλου τιμολόγθςθσ «εγγυθμζνθσ τιμισ» για 

το υβριδικό ενεργειακό ςφςτθμα τθσ Ικαρίασ όπωσ κακορίηεται από τθ ΔΕΘ 

ΑΕ, το υφιςτάμενο ςφςτθμα οριακϊν τιμϊν για τθ λειτουργία τθσ αγοράσ 

ενζργειασ και ζνα μοντζλο τιμολόγθςθσ βαςιςμζνο ςτθ διακριτοποίθςθ; 

 Προςδιοριςμόσ τθσ βζλτιςτθσ λειτουργίασ τθσ αγοράσ ενζργειασ, θ οποία 

ζχει ωσ αποτζλεςμα χαμθλότερθ τιμι ενζργειασ κατά 36,6% ςε ςχζςθ με το 

υπάρχον μοντζλο και ταυτόχρονα δίνει τθ δυνατότθτα απόςβεςθσ των 

επενδφςεων των ενεργειακϊν παικτϊν. 

Πρόδρομα αποτελζςματα τθσ ζρευνασ παρουςιάςτθκαν ςτο διεκνζσ ςυνζδριο τθσ 

Ευρωπαϊκισ Ζνωςθσ Γεωεπιςτθμϊν (Mavritsakis et al., 2019). 
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CHAPTER 1: INTRODUCTION 

GENERAL CONTEXT 

The aim of this thesis is to simulate and optimize the operation of the Hybrid Energy 

System (HES) of the non-interconnected island of Ikaria, and then to represent a 

hypothetical energy market to meet the electric energy demand of the island. A 

conceptual layout of this system is presented in Figure 1. 

The construction of the project has begun since 2008 and has been just completed 

(June 2019). This project is part of the effort to meet the targets set by the so-called 

Kyoto Protocol for the production of energy. In particular, in 1997 a Protocol was 

adopted, which introduced legally binding emission reduction targets for the 

developed countries. The second commitment period of the Protocol started on 1 

January 2013 and ends in 2020. It involves 38 developed countries, including the EU 

and its 28 Member States. 

 

FIGURE 1: SCHEMATIC LAYOUT OF THE SIMULATION MODEL OF IKARIA'S HES 

The European Council adopted an integrated approach in terms of climate and 

energy policy, aimed at combating climate change and increasing the EU’s energy 

security, while enhancing its competitiveness and transforming it into a highly 

energy-efficient economy with low carbon emissions. The requirements adopted by 

Heads of State and Government concerned: 
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 Reduction of greenhouse gas emissions by at least 20% below 1990 levels; 

 20% of EU energy consumption from renewable sources; 

 20% reduction in primary energy use compared to projected levels through 

improved energy efficiency. 

The above requirements are known as 20-20-20 targets. 

Particularly in island areas, and especially in the non-interconnected ones, which are 

served by autonomous power stations, the penetration of installations of various 

forms of Renewable Energy Sources (RES), such as wind, photovoltaic, biomass, and 

hydroelectric plants, can cover a significant part of the supply needs of their 

electricity system, also reducing the environmental impacts of fossil fuel systems. 

Given the high operating costs of conventional production units in the remote 

islands, due to rising transport costs and environmental taxes, RES penetration is all 

the more necessary. 

Nevertheless, the levels of RES penetration in the Greek islands (particularly wind 

and solar) are still low, despite their high potential, due to the various shortcomings 

of such power generation facilities. The stochastic nature of the power produced by 

photovoltaic and wind turbine installations and their limited ability to control their 

power make it doubtful that the operation and performance of such facilities in 

remote areas is reliable. RES dependence on natural phenomena has the effect of 

varying their energy potential in time. However, through appropriate design, as well 

as by combining them with other forms of energy, in order to store the power 

excesses, it is possible to achieve a high degree of coverage of electricity demand in 

not interconnected areas. 

As part of this effort, the implementation of Hybrid Energy Projects, such as that of 

Ikaria, has been initiated by the Public Power Corporation (PPC SA). As shown in 

Figure 1, the hybrid energy system of Ikaria includes a diesel generator (Agios Kyrikos 

Station), four wind turbines, three hydro-turbines and a pumping station. Its aim is 

to produce energy through the combination of two different forms of RES, i.e. wind 

and hydroelectric, by storing the excess wind energy through pumping. The Load 

Management System of the project, in addition to the two above-mentioned forms 

of RES, will also control the power of Agios Kyrikos Station, the island's consumption 

load, the water fluxes across the pumped-storage system (comprising an existing 

reservoirs at Pezi and two interconnected tanks), and the stability of the island's 

electricity network, in order to eventually keep the maximum possible coverage of 

the island's consumption by RES. 

This project is one of the first in Europe, whose evolution of operation will provide a 

credible response to the very important issue of storage and controlled distribution 

of clean energy. 
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Key objective of this thesis is the development of a stochastic simulation model for 

the representation of this complex system, which allows understanding its operation 

and the collaboration of the various forms of energy involved in the production of 

the desired electricity, by setting the irrigation use in higher priority. Emphasis is, on 

the one hand, to investigate the functionality of such a project and to determine the 

sharing of the various power components of the system (conventional station, wind 

turbines, hydroelectric stations, pumps) to meet combined water and electricity 

demands across the non-interconnected island. The management of the hybrid 

system is expressed in terms of rules and limitations that have been set during the 

study to ensure the fulfillment of both irrigation and electric energy demands. 

In the context of simulations, we used synthetic reservoir inflows and synthetic 

hourly wind data of 1.000 years length that retain the statistical characteristics of the 

observed time series. The overall purpose is to estimate the reliability and efficiency 

of this system to meet the island's demand for electricity over time. As raw input 

data for the generation of synthetic time series of hourly resolution, we used 10-min 

wind data for seven years and daily rainfall data for a 40-year period. The rainfall was 

used as input to a conceptual hydrological model, which has been calibrated against 

a short (2.5 years) sample of observed inflows. 

Next, a (near real-time) energy stock simulation was developed to draw conclusions 

on the optimal energy management policy on the non-interconnected network, by 

comparing the existing legislative framework with a more liberal management 

model. More specifically, our aims is to compare the existing "guaranteed price" 

model of RES, in which the RES energy players do not bid on the energy market, with 

a free market case study in a non-interconnected island. In this way, conclusions are 

drawn regarding the incentives to invest in RES units and optimal management to 

reduce the price of the supplied electricity. 

The following three energy players are bidding on the stock market:  

 The owner of the wind park, being the most competitive of the three because 

of the low running costs and relatively high winds. 

 The owner of the hydroelectric power plant, capable of producing and storing 

energy simultaneously. 

 The owner of the oil station, who, due to increased transportation costs and 

environmental taxes, deposits the highest bids and meets demand when 

technical restrictions prohibit the entry of the other two players. 

An important requirement of this work is to define and optimize the criteria by 

which the three energy players are bidding at all times. The wind park and the oil 

station owner will have almost constant prices, while the owner of the hydroelectric 

power plant can modify his offer depending in plethora of factors. 
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Key element of the energy stock simulation framework is the wind forecasting 

procedure, providing wind speed scenarios over 12 to 36 hours lead time after each 

certain time step. Such an approach is necessary as the auctioning of all overnight 

energy production takes place at 12 noon of the previous day. Therefore, it is easy to 

understand that for the rational submission of tenders it is necessary to predict the 

intensity of the wind for the next 36 hours, as more accurately as possible. In our 

analyses we developed two alternatives, i.e. an advanced approach based on a novel 

combination of stochastic models with analogues, and a simpler procedure, which 

retains the quite high accuracy of deterministic meteorological forecasts.  

 

RESEARCH OBJECTIVES 

This project is one of the first of its kind in Europe (pioneering case is the Spanish 

island of El Hierro), making it a first-class opportunity to control the issue of storage 

and controlled distribution of the produced energy. In addition, the energy stock 

market simulation is expected to generate significant energy policy outcomes in the 

non-interconnected network. 

More specifically, the main research objectives that have been set are: 

 Study of the degree of response to the stochastic behavior of RES in the non-

interconnected network; 

 Determination of the level of exploitation of RES in small non-interconnected 

communities, with or without the possibility of storing energy surpluses; 

 Optimization of design quantities, i.e. reservoir, tank and pipeline capacities; 

 Minimizing the risk of energy shortages, by keeping in higher priority the 

fulfilment of irrigation needs of the island; 

 Definition and optimization of the system operating rules, in order to achieve 

the maximum irrigation and power generation reliability; 

 Reduction of the price of energy offered; 

 Addressing the monopoly status of energy production from the existing oil 

station; 

 Finding solutions for greater RES penetration in the island energy system; 

 Simulation of a three-player energy stock, by preserving the associated 

governing rules; 

 Definition and optimization of the criteria for the three energy players’ 

offerings at each time point; 

 Production of synthetic wind time series both in long-term simulation and 

short-term forecasting mode; 

 Configuring a suitable wind forecast prediction model up to 36 hours ahead; 
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 Optimization of the energy stock exchange with the aim of achieving profit by 

the three counterparties while reducing the Limit System Price; 

 Deliver general conclusions on the operation of the HES, the energy supply 

and the development of an energy exchange on non-interconnected islands; 

 Comparison of the existing "guaranteed price" model of RES with a more 

liberal management model. 

Preliminary outcomes of this research have been presented in the General Assembly 

of the European Geosciences Union (Mavritsakis et al., 2019). 

WORK STRUCTURE 

The thesis is divided into eight chapters. This first chapter introduces a preamble to 

the subject and the research objectives of the work. 

The second chapter provides a brief bibliographic overview on the meaning and 

usefulness of hybrid plants and pumping and, at the same time, the presentation of 

the characteristics of the different types of energy that cooperate in such projects. 

Also, a review of hybrid energy projects built around the world is being done. 

In chapter three an overview of the non-interconnected island network is made. 

Some general features of the island of Ikaria and the region of interest are given. In 

addition, data on the island's local production plant, Pezi dam, the two wind farms 

and the possibilities of system expansion are reported. 

The fourth chapter introduces the system input data and their processing. More 

specifically, an explanation of the hydrological model for the transformation of 

catchment rainfall to reservoir inflow data is made. Next, the island's energy demand 

pattern and its synthetic wind turbine data are presented. 

The fifth chapter explains the simulation model of the hybrid energy system and 

presents all associated rules and assumptions. Initially, all technical characteristics 

that govern the system are specified, qualitatively and quantitatively. The results of 

the model are then known regarding the island's irrigation and power reliability, and 

the operation of RES with and without the ability to store surpluses is compared. 

In the sixth chapter we study the possibility of optimizing the system components 

(reservoir capacity, pipeline capacity, etc.) and their effect in terms of reliability and 

cost. In addition, we attempt to optimize its operating rules against financial as well 

as other criteria. Furthermore, conclusions are drawn regarding the possibility of 

improving the operation of the system, by means of economic criteria. 

The seventh chapter presents the simulation of the energy stock exchange. To 

achieve this, we first analyze the stochastic wind forecasting model for the next day 



Chapter 1: Introduction 
 

- 6 - 

 

and then analyze the stock market procedure. Next we describe the real-time 

operation of the energy stock market, with the three players participating by 

bidding. An important task is to define the criteria by which the three energy players 

make their offers across the 24-hour lead time. At the end, different perspectives on 

the organization and operation of the stock exchange are compared, and then their 

results are presented. 

The eighth chapter summarizes the conclusions and suggestions on the design and 

operation of hybrid energy systems on non-interconnected islands. These concern 

the optimization of the energy stock exchange with the aim of achieving profit from 

the three counterparties, while reducing the Limit System Price and assessing the 

existing "guaranteed price" model of RES. 
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CHAPTER 2: BIBLIOGRAPHIC OVERVIEW OF HYBRID ENERGY 

SYSTEMS 

ABOUT HYBRID ENERGY SYSTEMS 

Energy dependence on fossil fuels for electricity production, such as oil, coal and gas, 

raises technical issues, such as their expected exhaustion, and policy issues, related 

to their extraction and exploitation. In addition, combustion of fossil fuels is the main 

cause behind the disruption of ecological balance. These are the key factors that in 

recent decades RES has garnered interest within research and development studies. 

The main technology used for large-scale production and distribution of renewable 

electricity is hydropower (Graph 1). 

 

GRAPH 1: CHANGES OVER TIME IN ELECTRICITY GENERATION (BP STATISTICAL REVIEW, 2018) 

The stochastic nature of most forms of RES raises some technical and economic 

constraints in their use to meet energy needs. For example, solar energy requires the 

use of storage media due to fluctuations in its availability. The same applies to wind 

power and small-scale hydroelectric power plants. Nonetheless, there are other 

forms of RES that are more stable and predictable, such as geothermic and biomass. 

These have led to the research and development of hybrid power generating 

systems, which are generally defined as mixed systems where multiple sources of 

electricity generation technologies are combined. According to existing legal 
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framework in Greece (Law N.3468 / 2006), hybrid is called any power system that 

uses at least one form of RES, the total energy absorbed by the Network does not 

exceed 30% of the total energy consumed to fill the storage system of this plant per 

year and the maximum power output of the RES station units may not exceed the 

installed capacity of the storage units of this plant plus 20%.  

An electrical system is characterized by its production (supply) and the associated 

energy consumption (demand). Electricity has the characteristic that it cannot be 

stored in the large scale, thus the energy production must be in constant balance 

with demand (supply-demand balance). On the other hand, most of renewable 

energy sources are unable to meet this requirement, as they rely on unpredictable 

meteorological processes. 

This problem appears more pronounced in small autonomous electrical systems, 

such as those of many Greek islands, where the power demand is strongly 

fluctuating both across seasons and within the 24-hour period. The lack of local 

industry that consumes significant energy at night as well as the steep increase in 

demand in the summer months due to tourism and the extensive use of air 

conditions, cause severe inequalities in the energy demand profile. 

The disparity of demand, from the in-daily to the over-annual scales, coupled with 

the significant fluctuations of the energy produced by wind turbines, make their 

installation in a non-interconnected island inefficient and therefore economically 

unprofitable. For this reason, it is necessary to develop hybrid systems that employ a 

combination of different technologies, also comprising energy storage facilities. The 

parallel use of wind systems with internal combustion engines is a widespread 

applied technology. 

Autonomous Hybrid Power Generation Systems are designed for the generation and 

management of electricity in remote areas. They are independent of the major 

national networks and integrate many different types of power sources, mainly 

consisting of RES. Their size in terms of power capacity can vary from many MW, for 

example, in isolated islands, up to a few kW, as in isolated holiday homes. Small 

hybrid systems of only a few kW of power capacity can be used in isolated areas for 

low power applications, such as telecoms transponders. Hybrid parks are the first 

step for a widespread use of renewable energy sources, as they combine wind, solar 

and hydro power with existing conventional power plants (gas or petroleum). In this 

way, renewable sources and traditional ones can complement each other, to provide 

economically effective and environment-friendly solutions. 

Today, hybrid power systems in remote areas employ well-established technologies 

that make it possible to supply AC power at a defined frequency. The production of 

electrical power at our level of consumption relieves us of the cost of manufacturing 
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the electricity transmission network and minimizes the power losses occurring on 

this network, which is particularly important for long-distance networks. 

Power plants producing electricity from renewable energy sources operate not only 

when their energy can be directly absorbed by the grid but also outside of that time, 

for example to pump water. This aims to raise the water level to a reservoir from 

which electricity can be generated at peak load times to absorb it from the grid. In 

order to improve the effectiveness of these projects, they may also use additional 

electricity during base load hours either from the grid or from conventional sources, 

to store even more energy, thus further contributing during peak load times, when 

the energy price is higher. 

The most suitable and economical way to store electricity (which is also strongly 

favorable for Greek islands) is via pumping, by means of reversible hydroelectric 

projects (Koutsoyiannis et al., 2009). A typical scheme consists of a wind park, a 

hydro-turbine, a pumping station, and two tanks for water recycling. The two tanks 

must be in relatively close distance and have a large elevation difference. The wind 

farm produces electricity, which, as long as it cannot be directly absorbed by the 

non-interconnected electricity grid, is used to pump water from the bottom to the 

upper tank. Thus, electricity is transformed into hydrodynamic energy since water is 

stored in the upper tank. At peak demand time or when wind is not blowing and 

there is demand for electricity, the top tank water is used to operate the hydro 

turbine. The combined use of wind energy with pumped storage is a solution that 

can lead to a substantial increase in the coverage of RES needs in medium- or large-

scale, islands, thus ensuring autonomy. 

Other ways of exploiting energy excesses include batteries, compressed air energy 

storage and desalination: 

 On its most elementary level, a battery is a device consisting of one or 

more electrochemical cells that convert stored chemical energy into 

electrical energy. Each cell contains a positive terminal, or cathode, and a 

negative terminal, or anode. Electrolytes allow ions to move between the 

electrodes and terminals, which allows current to flow out of the battery to 

perform work. Advances in technology and materials have greatly 

increased the reliability and output of modern battery systems, and 

economies of scale have dramatically reduced the associated cost. 

Continued innovation has created new technologies like electrochemical 

capacitors that can be charged and discharged simultaneously and 

instantly, and provide an almost unlimited operational lifespan. 

 Compressed air energy storage (CAES) is a way to store energy generated 

at one time for use at another time. At utility scale, energy generated 

during periods of low energy demand (off-peak) can be released to meet 
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higher demand (peak load) periods. Since the 1870's, CAES systems have 

been deployed to provide effective, on-demand energy for cities and 

industries. While many smaller applications exist, the first utility-scale CAES 

system was put in place in the 1970's with over 290 MW nameplate 

capacity. CAES offers the potential for small-scale, on-site energy storage 

solutions as well as larger installations that can provide immense energy 

reserves for the grid (source: Energy Storage Association). 

 In several islands, lack of accessible and safe water resources has resulted 

in the adoption of desalination technologies to produce potable water, 

which in the past was usually transported with tank vessels from the 

mainland. Often, these technologies are able to meet the entire water 

demand, yet by consuming large amounts of electricity. With an electrical 

consumption that ranges between 7-14 and 2-6 kWh/m3 for thermal and 

membrane-based technologies, respectively, the entire desalination 

process might account for up to 30% of the total electrical load of a small 

island. Moreover, high electrical consumption, combined with a costly and 

inefficient electricity system, increase water production cost, which varies 

from 7 to 10 AC/m3, about ten times that on the mainland. 

Most Greek islands suffer from water scarcity. The above pumped energy storage 

system can be combined with desalination units that will use part of the wind power 

to produce potable water. This ensures the availability of water, not only for energy 

use, but also for producing drinking water. Thus, hybrid projects enable wider use of 

RES in networks with limited capacity to absorb energy from RES, such as non-

interconnected islands. 

Many Greek islands use in parallel wind and diesel to meet power demands. In such 

systems, wind turbines operate as a reserve and their use can deliver great fuel 

economy. The use of an energy storage system (e.g. battery, pump station, etc.) 

allows, as we will see in more detail below, the rapid coverage of possible loss of 

wind power before the system is unable to cover the loads (black out). There are 

different types of hybrid systems combining renewable energy technologies. 

Examples of such applications are the combination of wind turbines with 

photovoltaic systems, or wind turbines and photovoltaic panels with desalination, 

while the parallel use of small hydropower works can increase the reliability of the 

system, due to their predictable operation and rapid response.  

In case of hybrid systems, optimization is made in the context of planning and sizing 

of the units, as well as the long-term operation and real-time control of the system. 

Given the stochastic nature of renewable energy production, the importance of 

storing surplus energy in non-interconnected parts of the electricity grid becomes 



A stochastic simulation framework for representing water, energy and financial 
fluxes across a non-connected island 

- 11 - 

 

encumbering. The variation in energy production outweighs that of demand, 

resulting in a drastic reduction in system reliability. The irregular fluctuations of 

power also cause major problem to the electricity grid, thus making essential to 

apply a means to destroy the surplus power. 

HYBRID WIND AND HYDRAULIC ENERGY SYSTEMS 

WIND POWER 

The first use of wind energy was in navigation, while the first windmills were used for 

cereal grinding and water pumping. With the development of technology and the 

search for alternative energy sources for electricity production, the interest turned 

into the use of wind energy. The first windmill for power generation was built in 

1888 in Cleveland, Ohio (USA), with a power of 12 kW, and today the global record is 

9.5 MW (MHI Vestas V164-9.5MW). An overview of wind potential and its sharing at 

the global scale is given in Figure 3. 

 

FIGURE 2: WIND POTENTIAL AND ITS EXPLOITATION AT A GLOBAL LEVEL 

Wind energy is created indirectly by solar radiation, because uneven heating of the 

Earth's surface causes the movement of large masses of air from one region to 

another, thereby creating the winds. It is a mild form of energy, environmentally 

friendly, practically inexhaustible. If current technology was able to exploit the total 

wind potential of the Earth, it is estimated that the electricity produced at a certain 

period would be more than twice as high as humanity's needs in the same period 

(CRES, 1998). It is estimated that 25% of the surface of the Earth prevails winds at an 

average annual speed of more than 5.1 m/s at a height of 10 m above the ground. 
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Nowadays, the exploitation of wind energy is done almost exclusively with machines 

that convert wind energy into electricity and are called wind turbines. They are 

classified into two types: 

 wind turbines with a horizontal axis, where the rotor is a propeller type and 

the shaft can rotate continuously parallel to the wind (Figure 2); 

 wind turbines with a vertical axis that remains stationary. 

In the global market, the horizontal axis wind turbines prevail at a rate of 90%. Their 

power exceeds 1 MW and can be connected directly to the country's power grid. So, 

a grid of many wind turbines, called a wind farm, can function as a power plant. 

Wind energy provided 14% of electricity in the European Union in 2018, from 12% in 

2017, according to statistics released by the European Wind Energy Association. 

Wind power raised in Europe by 11.3 GW in 2018, 8.6 GW of land-based wind 

turbines and 2.65 GW of offshore wind farms. 

When the winds blow at a speed higher than a certain value, then the wind potential 

of the site is considered exploitable and the required facilities can be made 

economically viable. Besides, the cost of manufacturing wind turbines has dropped 

considerably and wind power can be considered to be in the "first maturity period” 

as it is more competitive than conventional energy.  

 

FIGURE 3: COMPOSITION OF TYPICAL WIND TURBINE (EL-SHIMY, 2010) 
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FIGURE 4: SPATIAL DISTRIBUTION OF WIND POTENTIAL OF GREECE, IN TERMS OF MEAN 

ANNUAL WIND SPEED (CRES) 

As indicated in Figure 4, our country has a rich wind potential, and wind power can 

become an important lever for its development. Αs indicated in Figure 3, the wind 

power installed capacity in Greece is comparable to the rest of the world. Since 

1982, when the first wind farm in Kythnos was installed by PPC, up to today, wind 

power plants with a total wind power of 203 MW have been built in Andros, Evvoia, 

Limnos, Lesvos, Chios, Samos and Crete. Particularly interesting is the private sector 

for the exploitation of wind energy, especially in Crete, where the Ministry of 

Development has issued rights for developing new wind farms of a total capacity of 

dozens of MW. 

The systematic exploitation of the large wind potential of our country can offer many 

advantages: 

 increasing electricity production, while saving significant quantities of 

conventional fuels, which entails exchange benefits; 

 significant reduction of environmental pollution, since it has been calculated 

that the generation of electricity of a single 550 kW wind turbine at one year 

replaces the energy generated by the burning of 2,700 barrels of oil, in other 
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words preventing the emission of approximately 735 tons of CO2 per year 

and 2 tons of other pollutants; 

 the creation of many new jobs, since it is estimated that for each new MW of 

wind energy 14 new jobs are created. 

Potential problems of wind power are noise from the operation of wind turbines, 

rare electromagnetic interference in radio, television and telecommunications 

(which are yet addressed by technological means) and possible aesthetic problems. 

 

HYDROPOWER 

Since ancient Egyptian times, people have used energy in running water to operate 

machinery and grind grain and corn. However, hydropower has the greatest 

influence on people's lives during the 20th century than at any other time in history. 

Hydroelectric power has played an important role in the realization of the wonders 

of electricity and has helped to boost industrial development. Hydroelectric power 

continues to produce 24% of global electricity. 

The first hydroelectric station was built in 1882 in Appleton, Wisconsin, and 

produced 12,5 kW, thus providing light to two papermakers and a house. 

Hydroelectric plants vary in size from several hundred kWs to several hundred MWs, 

but some hydropower plants have capacities of up to 10 GW and provide electricity 

to millions of people. At a global level, they have a capacity of 675 GW and produce 

more than 2,3 trillion kWh of electricity, equivalent to 3,6 billion barrels of oil. 

Stored water in a high elevation has a dynamic energy that turns into kinetic energy 

when water flows to lower areas. With hydroelectric works it is possible to exploit 

the energy of water for the production of electricity that is supplied to the electricity 

grid. The conversion of water energy using hydraulic turbines produces hydropower. 

This energy is classified into large and small-scale hydroelectric power. Typically, 

small-scale hydropower plants differ in terms of power capacity, yet the key 

technical difference is the lack of storage capacity, which allows regulation of flows. 

Large-scale hydropower plants require the construction of dams creating large 

reservoirs, with significant impacts on the riverine ecosystem and the surrounding 

environment. In contrast, small-scale systems are located next to rivers and canals, 

resulting in less environmental impacts. The fast-moving water is driven through a 

tunnel in order to operate the turbines, thus producing mechanical energy. A 

generator converts this energy into electricity. Contrary to what happens with fossil 

fuels, water is not disposed of in the production of electricity and can be used for 

other purposes. 
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Of course, large hydroelectric works can only be developed in areas with significant 

waterfalls, rich water resources and suitable geological configuration (Figure 5). 

Typically, the energy ultimately produced in this way is only used in conjunction with 

other conventional sources of energy at peak times. In Greece, hydropower covers 

about 10% of our energy needs. 

 

FIGURE 5: INSTALLED HYDROPOWER CAPACITY BY COUNTRY 

The advantages of using hydraulic power are: 

 The hydroelectric plants can be switched on as soon as extra electricity is 

requested, as opposed to the thermal stations (coal, oil), which require 

preparation time; 

 It is a clean and renewable energy source, with obvious advantages (saving 

money, natural resources, environmental protection); 

 Other water uses, such as water supply, irrigation, navigation, recreation, 

sports, ext., together with flood protection, are also available through the 

water reservoirs; 

 It is practically an inexhaustible energy source and helps reduce dependence 

on conventional energy resources; 

 It is a domestic source of energy and contributes to strengthening energy 

independence and security of energy supply at national level; 

 It is geographically scattered and leads to the decentralization of the energy 

system, but also enables the rational use of local energy resources; 

 It can be the core of revitalizing areas that are economically and socially 

degraded, as well as contributing to local development by promoting relevant 

investments; 
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 It does not produce atmospheric pollutants and noise (except for low 

intensity and time in the construction phase); 

 The reservoir can lead to the creation of a wetland. 

Negative impacts of the use of hydraulic power include the high cost of building 

dams and installing equipment, as well as the usually long time required to complete 

the project, the intense environmental alteration of the project area (including 

geomorphology, fauna and flora), as well as possible population movements, area 

degradation, land use changes required. In addition, changes in the microclimate, as 

well as an increase in their seismic risk, have been observed in large project sites. 

 

FIGURE 6: OPERATION OF TYPICAL HYDRO TURBINE 

The operation of the hydroelectric units is based on the transformation of 

hydrodynamic energy (water stored at an upper elevation) to kinetic and pressure 

energy of moving water to a lower elevation, as shown in Figure 6. For this purpose, 

a barrier is formed that holds the required amount of water in the created reservoir. 

During its passage through the drop line it moves a turbine which turns the 

generator on. 

The amount of electricity produced is mainly determined by the volume of flowing 

water and the elevation difference between the free surface of the reservoir and the 

turbine (referred to as head). The amount of electricity produced is proportional to 

these two sizes. Consequently, the electricity generated depends on the reservoir 

size, given that the larger is the capacity of the reservoir, the larger portion of 

inflows can be exploited. For this reason, only in areas with rich water resources, 

suitable geological characteristics and suitable geomorphological configuration can 
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hydroelectric projects be productive. Typically, the energy ultimately produced is 

only used in addition to other conventional energy sources, covering peak loads. 

A hydro turbine converts the dynamic energy of water into mechanical energy 

through continuous flow of fluid and constant rotary motion. Transforming the 

energy of the passing fluid under a constant supply to mechanical energy is done in 

the rotating part of the machine, which is called a rotor, by means of thrust. The 

drive torque is transferred to the rotor shaft, which is coupled to the electric 

generator shaft, which converts the mechanical power to electricity (Figure 7).  

 

FIGURE 7: TYPICAL COMPONENTS OF WATER TURBINES 

Modern hydro-turbines are divided into two categories:  

 Action or partial infringement 

 Reaction or total infringement 

Their distinction is based on the fact that in part-stroke hydro turbines, only a part of 

the rotor contributes to the conversion of energy, while the total invasion is the 

opposite. Moreover, in the partial infringement turbines the runner operates in a 

space of uniform static pressure (zero degree of reaction), while in the total 

infringement turbines the flow through the rotor is made by a parallel change of the 

static pressure of the liquid. 

Typical types of action turbines are Pelton type (Figure 8, left), which are used for 

medium and large dropping heads (H > 50 m), while the hydro switches include the 

Kaplan (axial flow) and Francis (radial and mixed flow) for small and medium heads, 

respectively. 
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FIGURE 8: TYPICAL LAYOUT OF PELTON (left) AND FRANCIS (right) HYDRO-TURBINES 

In the Pelton hydro turbine, at each time, only 2-3 runners of the rotor accept the 

beam of water and alternate in succession. The rotor is positioned over the free level 

of the lead duct to ensure smooth operation. 

Unlike Pelton, the Francis cursor (Figure 8, right) consists of roller rotors that 

"absorb" the energy of water and turn the rotor shaft. The water falling from the 

rotor due to gravity is driven from the outlet section into the lead canal and then 

into the watercourse bed or in a tank, depending on the application. 

 

HYDRO PUMPED STORAGE 

The operation philosophy of the hydro pumped storage system is simple. Redundant 

energy supplies the pumps through which the working medium (water) rises through 

the pipes from the bottom reservoir to the upper, thus enabling us to store energy 

excess in the form of dynamic energy. When at another time we need energy, the 

water from the top tank is allowed to travel through the downhill pipelines to the 

bottom reservoir, passing through the hydro turbines generating the desired energy. 

The dimensions of the two tanks are enough as to ensure that only a small 

percentage of the volume of the stored water is used and will be capable of 

converting the available energy into dynamic and vice versa, excluding the possibility 

of one of the two tanks being completely emptied. 

It is concluded that pumped storage systems have double benefit (Figure 9): 
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 They absorb energy excess during low demand hours by converting it to 

dynamic energy stored in the upper reservoir; 

 They provide to the network at peak hours the energy they have saved, and 

in most cases also generate primary energy from the use of natural inputs in 

the upper reservoir. 

 

 

FIGURE 9: OPERATION OF HYDRO PUMPED STORAGE STATION (US DEPARTMENT OF ENERGY) 

Switching their operation between pumping and power generation can happen 

several times a day or once a week. Of course, the last two switching operations 

require a storage tank of very large capacity. 

It is obvious that this process of converting electricity to hydraulic (pumping) energy 

and then re-turning it into electricity (hydro turbine operation) is accompanied by 

energy losses. Total energy losses in a pumped-power cycle in a medium-sized 

hydroelectric project reach about 23% (Sagani, 2009). 

As already mentioned, the amount of power generated by RES varies considerably 

on a daily, hourly and seasonal basis due to the change in the availability of sun, 

wind and other renewable sources. This variation means that power is sometimes 

unavailable, while in other cases there is surplus power. Therefore, the need to store 

energy for small to long periods is created. 

The main economic service of pumping is that it improves the efficiency of the 

energy system by reducing the embedded uncertainty in the form of hedging the 

power supply deviation forecasts. In Greece, the total potential savings are 21 GWh, 

which accounts for approximately 2% of the total potential savings that could be 

enabled (JRC, 2013). 

Today, the only reliable solution for large scale energy storage is provided by 

pumped storage systems and mainly by reversible hydroelectric systems whose 
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energy conversion units are reversible, which means they can operate either as 

turbines (production phase) or as pumps (storage phase). 

A typical repulsion system consists of the following parts: 

 An individual pump or a pump system; 

 An individual hydro-turbine or a hydro-turbine system; 

 Two or more tanks, in a significant elevation difference; 

 A pipe for pumping water from the bottom tank to the top; 

 The same pipe or two parallel ones (see herein), for delivering water from the 

top tank down through the water turbine to generate electricity; 

 An electric motor operating either as a motor or as a generator on a common 

shaft with the pump and the hydro turbine. 

In a retrofit system we can distinguish two basic design versions: single pipeline and 

double pipeline, where there is independent piping for the turbine and the operation 

of the pumps. 

From a first glance, a dual piping may be considered unnecessary, since if there is a 

need to generate power from the turbine and at the same time there is waste power 

from the thermal units or from the hydroelectric base units, then more energy could 

be directly absorbed by these units. However, this reasoning is incorrect due to 

network constraints. Actually the direct absorption of electricity can not happen 

beyond the energy grid. 

At the same time, the time distribution of the rejected power indicates that the cut 

is first determined by the available energy output and secondly by the demand 

fluctuations. During peak demand time and at the same time excess power of the 

base units, on the one hand there is a power cut and a pump operation is required to 

exploit the excess power, on the other hand the turbine has to work (e.g. due to high 

demand). If the pump is running, it will take time for the turbine to stop and start, so 

the main advantage of the turbine's direct response is lost. 

 

WIND ENERGY SYSTEM WITH PUMPED STORAGE 

The application of wind turbines, along with a pumping system is of high interest. 

Particularly for the remote, unconnected Greek islands, characterized by high cost of 

electricity generation, heavy dependence on oil, and rich wind potential, wind power 

systems with pumped storage are a technically sound and economically acceptable 

solution. 



A stochastic simulation framework for representing water, energy and financial 
fluxes across a non-connected island 

- 21 - 

 

 

FIGURE 10: HYBRID ENERGY SYSTEM WITH PUMPED STORAGE (TAO MA, 2014) 

The wind turbine system operates as follows: the wind farm produces electricity, 

which, as long as it cannot be directly absorbed by the grid, is utilized to pump the 

water from the bottom to the upper tank. Thus, electricity is transformed into a 

dynamic energy of water and stored in the upper tank. When it is necessary to 

convert this electricity to meet power needs (for example at peak demand or when 

wind is not blowing and there is electricity demand) then the reverse route is 

followed. The water will be transported from top to bottom, where a hydro-turbine 

will turn the water movement into electricity and re-route it back to the grid. The 

process is presented in Figure 10. 

According to the Greek Regulatory Authority for Energy (RAE), the use of wind 

turbines along with a pumping system has many advantages. Indicatively: 

 Such an application contributes to the utilization of wind potential and to the 

reduction of the operation of conventional oil plants. The intense fluctuations 

of wind energy are dealt with by the existence of the storage system and 

therefore better wind management and penetration of wind energy is 

achieved in the energy system. At the same time, the reliability of the 

electrical system increases with the incorporation of the hydro turbine, which 

is a fully controllable power generation system with a rapid response; 

 As the price of fossil fuels is rising, the operation of such systems becomes 

competitive; 
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 Increasing the energy produced by wind farms has the effect of reducing CO2 

emissions. This means reducing the cost to PPC and private producers, which 

is obviously beneficial for consumers; 

 Domestic production is greatly increasing and dependence on imported fuels 

(such as gas, oil, coal, etc.); 

 There are significant social benefits as the project contributes to regional 

development and job creation; 

 Hybrid hydroelectric systems can be combined with desalination a unit that 

uses wind power to produce potable water. This ensures the availability of 

water, not only for energy use, but also for water supply and irrigation. 

The key disadvantage of a hybrid hydroelectric system is the cost of manufacturing 

it. The cost per MW of a hydroelectric plant varies between 2-3 million euros, 

compared with 1.3 million euros for a coal plant and 700.000 euros for a combined 

cycle (natural gas) unit. Although expensive in its construction, it is much cheaper to 

operate compared to conventional units, given the continuing increase in fuel prices. 

In Figure 11, the operation of double piping pumped storage system is presented. 

 

FIGURE 11: OPERATION OF DOUBLE PIPING PUMPED STORAGE SYSTEM (IBRAHIM AND ILINCA, 

2012) 

Generally, with regard to the interconnection of the wind energy system with 

pumping, we can distinguish two alternatives: 
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 "Direct connection" where the pumping system is connected to wind farms 

that will contribute to pumping with a network-independent transmission 

line. This connection is found on small or very medium-sized islands. 

 The "indirect connection" where the pumping system is connected to the 

wind farms via the mains. 

 

EXAMPLES OF HYBRID ENERGY SYSTEMS AROUND THE WORLD 

SMALL-SCALE HYBRID ENERGY SYSTEMS  

EL HIERRO ISLAND 

El Hierro – the smallest island in the Canary Islands (278 km2), which belongs to 

Spain and is located off the North African coasts – is powered by a wind energy 

system with pumped storage. The island has a volcanic origin, as it is the top of great 

alpine scenery, and is triangular in shape. The original volcano, El Golfo, collapsed 

because of gravity 130,000 years ago, resulting in the El Golfo Bay, which is 12 km in 

diameter. 

 

FIGURE 12: EL HIERRO ISLAND 

Five wind turbines with a total capacity of 11.5MW, located at the northeastern end 

of the island, undertake the task of meeting the energy needs of 11,000 inhabitants 

with wind power. 

The wind power surplus is used to pump water up to a large reservoir, 700 m above 

sea level, into a volcano crater in order to meet the energy needs in a period of 
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apnea. The same water will follow the reverse pathway leading to a second tank at a 

lower altitude, after having crossed a series of generators to produce electricity. 

The wind energy hybrid system with pumped storage costs €80 million and is 

estimated to help reduce carbon dioxide emissions by 18,700 tons per year, while 

reducing annual oil consumption on the island by 40,000 barrels. 

The system covers 100% of the energy needs of the island's inhabitants. The pre-

existing oil generator has remained in place to join the power supply system, in case 

of emergency. 

Figure 13 shows the upper reservoir of the pumped storage system. 

 

FIGURE 13: UPPER RESERVOIR OF THE PUMPED STORAGE SYSTEM 

 

SAMSO ISLAND 

Samso Island is located in Kattegat Bay in the North Sea, 15 km from the Jutland 

peninsula and belongs to Denmark. The population is about 4.300 inhabitants (2009 

census), its area is 114 km2, while annual energy consumption in 1997 amounted to 

29.000 MWh. 

In 1997 Samso won the Danish Ministry of Energy competition to create an energy-

independent and "green" island. The aim of the program was to meet 100% of the 

island's energy needs from RES. within a decade, a fact that is a global innovation as 

it has not preceded similar work in the past. In order to achieve this ambitious goal, 

the actions that were to be taken were not only about the electricity sector, but 

more generally the energy profile of the island. 
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Saving energy and increasing efficiency in the electrical, heating and transport 

sectors, expanding the district heating network in combination with the use of local 

biomass reserves, expanding autonomous heating systems using heat pumps, solar 

panels, biomass facilities and the construction of onshore and offshore wind farms 

were some of the actions that had to be done. 

 

FIGURE 14: SAMSO ISLAND 

Samso is interconnected with the Jutland peninsula via a submarine cable, and the 

company NRGi is responsible for the distribution of electricity on the island. To 

ensure energy autonomy of the island, an installed capacity of 11 MW was needed. 

The 11 wind turbines of 1 MW each are placed in three groups and their hub height 

is 77 m. 

The only manufacturer that produced wind turbines of this power and with such hub 

height was the company Bonus. The first wind turbine was installed in 2000, with a 

total investment cost of 8,8 million euros. In addition, ten offshore wind turbines of 

2,3 MW were installed to compensate for CO2 emissions in the southern part of the 

island, with a total investment cost of 33,3 million euros. 

Overall, Samso's conversion program to a green island has to be seen as almost 

entirely successful, since it met most of the targets set. The primary goal of 100% 

energy autonomy through the use of RES was achieved in eight years, i.e. two years 

earlier than planned. 
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KYTHNOS ISLAND 

It is worth noting that Europe's first hybrid energy system took place in Kythnos in 

July 1982. In 1982 the first wind park in Europe started its operation in Kythnos, 

consisting of five wind turbines of 20 kW power each. One year later, a PV station of 

100 kW power was installed with battery storage of 400 kW. In 1989, the 

aforementioned wind turbines were replaced by five turbines of 33 kW power each, 

following the installation of a 500 kW Vestas wind turbine in 1998.  

 

FIGURE 15: KYTHNOS ISLAND 

Until June 2000, Kythnos comprised an oil power station of 2.120 kW and a 100 kW 

PV power station. In addition to the new hybrid system, the following equipment has 

been incorporated: 500 kW AC power, 600 kVA rotating capacitor, 400 kWh 

batteries, AC/500 kW load rejection resistors (initially 150 kW and increased to 500 

kW in mid-June), and a supervisory and power management system (Figure 16). 

Thus, with the old system, the network of Kythnos could not often absorb the energy 

that was generated from the 5 wind turbines and the 265 kW PV plant, now 

depending on the wind conditions, it will be able to absorb energy from RES up to 

765 kW. With the new system, oil units are now out of service. 

The penetration of RES is on average more than 25%, and if the capacity of the wind 

turbines increases to 1.500 kW, it is expected to exceed 50%, compared with about 

10% so far, while demand needs are covered by the RES is 100% after the shutdown 

of all oil plants. It is noted that the penetration of RES in the Kythnos system reached 

its first months of operation up to 33%. 
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FIGURE 16: OPERATION OF KYTHNOS HYBRID ENERGY SYSTEM 

With its inception, the intelligent hybrid production system of Kythnos has shown 

that it can fully meet its expectations. In a nutshell, the main goal of making wind 

energy a key source of energy and oil reserves, has greatly improved network 

stability and hence the quality of power supply and has generally significantly 

upgraded the entire energy system of the island. Its main advantages are: 

 The change of roles between wind turbines and oil plants is now possible and 

occurs every time when the demand of the island is equal to or less than the 

supply of RES. There were cases where the shutdown of oil units lasted up to 

12 hours; 

 The reliability of the system is extremely high; 

 The new system achieves more economical operation of the oil units as they 

are now loaded with a more stable load and close to the lower specific fuel 

consumption. 

 

LARGE-SCALE HYBRID ENERGY SYSTEMS 

NORWAY 

A well-known country for its high mountain plateaus, abundant natural lakes and 

steep valleys and fjords, Norway’s topography lends itself perfectly to hydropower 

development. Indeed, hydro provided the basis for the nation’s industrialization in 

the late 19th century, and remains the backbone of its power system. 
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FIGURE 17: NORWAY 

Hydropower regularly accounts for more than 95% of total Norwegian power 

production, with the small remainder made up by thermal and, only recently, wind. 

At the end of 2016, Norway’s inland waters powered over 31 GW installed capacity, 

producing 144 TWh of clean power. It marks the highest annual hydropower 

generation ever recorded in Norway, which has been attributed to the very high 

rainfall throughout this year. 

The Norwegian power system benefits from an integrated, open electricity market 

(Nord Pool), shared with neighboring countries (Sweden, Denmark, Finland, Estonia, 

Lithuania, Latvia). This extent of interconnections provides ample export 

opportunities for Norwegian hydropower. In 2016, taking advantage of the record-

breaking production, Norway’s net power exports reached 16,5 TWh, i.e., roughly 

10% of total domestic demand (International Hydropower Association, 2016). 

An essential prerequisite for the installation of new PHS capacity is the existence of 

sufficient cross-border transmission capacities, such that congestion plays a minor 

role in the decisions of export/import. As per today, the southern part of Norway has 

an exchange capacity amounting to 2.050 MW with Sweden, 950 MW with Denmark 

and 700 MW with The Netherlands.  

In addition, the company which is in charge of the project, Statnett, implemented a 

project for a 700 MW cable between Norway and Denmark in 2014 (Statnett, 2013). 
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Moving even further in time, Statnett completed a project for a 1.400 MW cable 

between Tonstad, Norway and Germany by the end of 2018, and a 1.400 MW cable 

between Kvilldal, Norway and England that should be ready for operation by the end 

of 2020. In May 2013, Statnett applied for the concession for these two 1.400 MW 

cables (Lie 2013f). Moreover, Statnett is open for the possibility for another 1.400 

MW cable between Norway and Germany (NorGer), and might be realized within a 

ten-year period after the launch of NORD.LINK (Lie 2013e). Statnett’s two 1.400 MW 

cables to Germany and England gained support in the EU, as they were included in 

the EU Commission’s list of 250 prioritized energy infrastructure projects in October 

2013. In order to qualify for the list, the projects need to give significant advantages 

for at least two member countries, contribute to market integration, competition, 

and security of supply, and also reduce the CO2 emissions (EnergiNorge, 2013). 

In Figure 18, the transmission lines in south Norway are shown. 

 

FIGURE 18: CROSS-BORDER TRANSMISSION LINES IN SOUTH NORWAY (STATNETT, 2011) 

 

EXISTING LEGAL FRAMEWORK OF HYBRID POWER STATIONS 

DEFINITION OF HYBRID POWER STATIONS 

The legal framework that governs the installation and operation of hybrid power 

generation systems and, in particular that in non-Interconnected Islands is defined 

by law N.3468 / 2006, Government Gazette A'129. According to it, hybrid is called 

any power station that: 

 Uses at least one form of RES; 

 The total energy absorbed by the network on an annual basis does not 

exceed 30% of the total energy consumed to fill the storage of this plant; 
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 The maximum power output of the RES station units may not exceed the 

installed capacity of the storage units of this plant plus 20%. 

For the production of electricity and high performance heat from RES, Combined 

Heat and Power (CHP) units are required. This permit is granted by the Minister of 

Development, following the opinion of the Regulatory Authority for Energy (RAE), 

based on the following criteria: 

 National security; 

 Protection of public health and safety; 

 The overall security of the installations and related equipment; 

 The energy efficiency of the project for which the application is 

submitted, as this results from the measurements of the RES potential 

(for RES projects), and from energy balances (for CHP plants); 

 The maturity of the project implementation process, as it results from the 

studies that have been prepared, the opinions of the competent services, 

as well as other relevant data; 

 Securing or securing the right to use the location of the project; 

 The ability of the applicant to implement the project on the basis of its 

financial, scientific and technical competence. If the applicant is a newly 

created legal person, this possibility shall be assessed on the people who 

are part of it as partners or shareholders; 

 Securing the provision of services of general interest and protection of 

customers; 

 Environmental protection, in accordance with the legislation in force and 

the Special Framework for Spatial Planning and Sustainable Development 

for RES. 

 

 

HYBRID ENERGY SYSTEMS IN NON-INTERCONNECTED ISLANDS 

The existing legal framework provides detailed guidance on the operation of hybrid 

energy systems in non-interconnected islands. More specifically, it is stated that: 

 The responsible operator is obliged to absorb, by priority, the electricity 

generated by the RES station of a Producer or an Autoproducer, as well as by 

the RES units of the hybrid station and, subsequently, the surplus of 

electricity produced by an autoproducer from a CHP station; 

 The Transmission System Operator network shall prioritize, according to the 

previous paragraph, the electricity generation unit from RES hybrid plant to 

the other RES units if it participates in the provision of the guaranteed power 
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of the hybrid plant as provided for in the relevant production license or when 

the electricity is stored in the production plant of the hybrid station; 

The Network Operator, when allocating the load, gives priority to the controlled 

production units for the utilization of the stored energy of the hybrid station, 

compared to the associated conventional units. 

 

ELECTRICAL ENERGY PRICING OF HYBRID SYSTEMS 

Electricity produced by Producers or Auto-producers through a power plant from 

RES or CHP or through a Hybrid Station and absorbed by the System or the Network 

is priced on the basis of the price in Euros per MWh of the electricity absorbed by 

the System or the Network, including the Non-Interconnected Islands Network. 

The pricing of electricity in the previous case is based on the data in the Table 1. The 

prices for electricity generators apply only to RES and CHP stations with an installed 

capacity of up to 35 MW and the surplus of electricity available to the system or the 

network, which may account for up to 20% of the total electricity produced by these 

plants on an annual basis. 

 

TABLE 1: ENERGY PRICING OF HYBRID SYSTEMS (SOURCE: RAE) 
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NON-INTERCONNECTED ISLANDS 

ABOUT NON-INTERCONNECTED ISLANDS 

Most islands currently in Greece (mainly in the Aegean) are powered by stand-alone 

electrical systems, mainly comprising local thermal power stations, which run on oil, 

heavy or light, and RES stations (wind and photovoltaic). These islands have not been 

connected to the mainland electrical system so far, mainly due to technical 

difficulties that have existed so far, but also because of financial difficulties, as 

interconnections are capital intensive projects. 

The non-interconnected Islands electricity market consists of 32 autonomous 

systems. Some of them consist of more islands (complexes of islands), and the 

operation and management of the Market of the Non-Interconnected Islands is 

made by HEDNO SA (Island Management Division). 

The magnitude (peak demand) in kW of these systems varies: 

 19 "small" stand-alone systems have peak demand of up to 10 MW.  

 11 "medium-sized" stand-alone systems have a peak demand of 10 MW to 

100 MW.  

 2 "large" autonomous systems have a peak demand of more than 100 MW, 

i.e. Crete and Rhodes. 

Similarly, the electricity demand in the Non-Interconnected Islands also varies from a 

few hundred MWh to the smaller islands (e.g. Antikythira, Agathonisi, etc.) up to 

some TWh in the largest one (Crete). 

 

NON-INTERCONNECTED ISLANDS CODE 

The particular geographical situation of the Greek island network with many isolated 

and small electrical systems creates a number of problems that have to do mainly 

with the production of electricity, as well as the adequate and safe electrification of 

the Non-Interconnected Islands. For this reason, it is necessary to have a Code that 

ensures the smooth, uninterrupted, safe and efficient operation of the Non-

Interconnected Islands Network. 

The drafting of such a Code is a prototype project as there is no equivalent or similar 

in the world due to the geographic specificity of the Greek island network and 

because it had to formulate and incorporate rules for the following: 

 The need to fully implement the rules of the European Directives for the 

purchase of electricity in many, small and different size island systems; 
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 The significant penetration of RES in these island systems by RES technologies 

and controlled production technologies expected to develop in the islands 

(solar, thermal, etc.); 

 The need to integrate the legal framework for hybrid and solar thermal 

plants; 

 The inability to apply the established rules of operation of a developed 

electricity market due to the extremely limited number of producers 

participating in price formation; 

 The operation of this market through the provision of services of general 

interest (SGI) and the need to contain the total cost of production, which now 

costs the consumers of the territory with an amount of approximately 600 

million € per year (SGI for non-interconnected islands). Also, the necessity 

and obligation to provide sufficient documentation of this annual cost; 

 The need to design, on a non-existent basis, an integrated system for the 

management, supervision and control of local Systems and the Market, as 

well as the difficulty of implementing the relevant regulations due to the 

main infrastructure and human resources deficiencies; 

 The need to simplify procedures where necessary without reducing the 

benefit to end-users and / or market participants of the market. 

The Non-Interconnected Islands Code is being implemented gradually, after a five-

year transition period. This period is considered necessary for the progressive 

development and installation of the necessary infrastructure (Centers for Energy 

Control, Information System, etc.) as well as for the management of the Systems and 

Market, which will be implemented on a zero basis by HEDNO SA. 

From the definitions contained in this Code, the main ones are distinguished: 

 Non-Interconnected Islands Market: The set of processes, activities and 

transactions that take place in each Non-Interconnected Island System and 

relate to the planning of its development and operation, the monitoring and 

control of its actual operation, the settlement of payments in order to secure, 

uninterrupted and in the most economical way of electrifying its consumers. 

 PCC (Power Control Centers) of Non-Interconnected Islands: The PCCs 

manage the electrical systems as well as their basic programming functions, 

such as the preparation and execution of the Dispatch programs, the 

communication with the Non-Interconnected Islands Network users, the 

monitoring and the control of the Non-Interconnected Islands systems, the 

recording and storage of the operational elements. They are distinguished in 

Local PCCs and in the Central PCCs. The Central PCC is installed in the Non-

Interconnected Island Operator while the local PCC is installed on each electric 

system (on each island or island complex). 
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 Rolling Daily Energy Planning (RDEP): Production planning of all Production 

Units to cover the load for the 24 hours of the next day (Dispatch Day), which 

is compiled and executed in two 12-hour subperiods of the Dispatch Day (1st 

and 2nd RDEP Period). RDEP is necessary to securely meet the demand for 

each electrical system, by observing the operational rules and security 

restrictions provided by the Code. 

 Network Users: a) Producers, whose power plants are connected to the 

Network, b) Load Representatives and c) "Consumers" whose facilities are 

connected to the Network to absorb electricity. 

Graphs 2 and 3 illustrate the distribution of RES energy generation in the non-

interconnected grid. 

 

GRAPH 2: DISTRIBUTION OF GENERATION OF 98W/P ON NON-INTERCONNECTED ISLANDS 

 

GRAPH 3: DISTRIBUTION OF GENERATION FROM 1.758 PV STATIONS ON NON-INTERCONNECTED 

ISLANDS 

The Manager is required to ensure reliable and cost-effective energy, development 

and technical excellence of production, protection of the island's environment, 

ensuring the necessary space for new production potential. At the same time, he 
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must abstain from any discrimination between producers of Non-Interconnected 

Islands and draw up and submit for approval the Development Plans as foreseen.  

The Manager shall ensure that all necessary measures are taken to design, develop, 

support, maintain and operate the facilities and equipment necessary for the sound 

and efficient management and operation of the Market and Non-Interconnected 

Islands systems, in accordance with the provisions of the Code. The Manager shall 

ensure that all necessary measures are taken and that all necessary resources are 

available to maintain high-quality services to System Participants and Users and to 

the Network, and at least to the level described in the Code. 

For its part, each participant is required to keep the necessary accounts and to pay in 

due time his debts to the Manager, to ensure the smooth operation of his facilities, 

to assist in the more efficient and proper functioning of the Market, as well as to 

ensure rehabilitation damages of the necessary equipment. 

In addition, the Code provides rules for the integration and operation of the RES/CHP 

stations in order to maximize the penetration of the generated electricity from these 

units in safe conditions for the system. Table 2 summarizes the information derived 

from the Information Sheet published by HEDNO SA for September 2016. 

 

TABLE 2: RES ENERGY GENERATION ON NON-INTERCONNECTED ISLANDS (SEPTEMBER 2016) 
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CHAPTER 3: STUDY AREA 

GENERAL CONTEXT ABOUT IKARIA 

Ikaria (or Nikaria) is one of the largest islands in the eastern Aegean (Figure 19), with 

255 km2 in extent and 160km long coastline. Its population is 8,423 inhabitants, 

according to the 2011 census. Administratively with Fourni is the homonymous 

regional unit of the Region of the North Aegean. The capital of the island is Agios 

Kyrikos with 3,243 inhabitants on the southeastern side, with Evdilos on the north 

side being the second largest pole on the island. 

Ikaria had been inhabited since the Neolithic era, before 7,000 BC, by residents 

whom the ancient Greeks called the Pelasgians later. Around 750 BC, Greeks from 

Miletus colonized Ikaria by establishing facilities in the region now called Kambos, 

which they then called Oenoi for its wine. In the 6th century BC Ikaria merged 

administratively with Samos and was part of Polycrates' sea empire. 

 

FIGURE 19: LOCATION OF IKARIA ISLAND 

Ikaria was named after Ikarus, son of Daedalus. Ikarus fell on the rocks of Ikaria when 

the sun melted the wax on his wings. Ikaria belongs to the Prefecture of Samos and 

is inhabited since the 9th B.C. century. It was, indeed, a member of the Athenian 

alliance. 

Ikaria has been inhabited since prehistoric times, but interest begins to show from 

15th century, a century marked by pirate attacks on the Aegean coast. Then the 

Genoese despots leave the island and are fortified in Chios, with the Ikarians to 

escape to the mountains. So begins the era flourishing Lagada, a craggy village at the 
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western end of the island above the promontory of Cape Pope built in a hidden 

mountain valley. Here was the "Ark of the Ikarian survival" for inhabitants. 

Ikaria has been overwhelmed in the past by pirate raids. For this reason, they built 

anti-pirate villages, such as Lagada. 

In 1912 the people of Ikaria themselves rebelled and won their independence from 

the Turkish administration, establishing the Ikarian State with its own coin and stamp 

and later on, with the arrival of the Greek fleet, it joined with Greece. 

At the time of the Civil War, the island was a place of exile for dissidents, embraced 

by incompetent residents. 

 

FIGURE 20: IKARIA ISLAND 

The island is mostly mountainous, as shown in Figure 20. Athera of Ikaria, also 

known as Pramnos, is the small mountain range that forms the backbone of the 

island, crossing it lengthwise. The highest peak of the Athera is Fardi, which has an 

altitude of 1,041 m. At a similar height, there are two other peaks, Melissa (1,031 m) 

and Erifi (1,026 m). Below the thousand meters we find the peaks of Ammoudia (913 

m), Ypsonas (697 m) and others. The landscape has contrasts, with steep rocky 

locations and, on the contrary, places with dense woods and other vegetation. 

According to geological data of Institute of Geological Studies of Greece, Ikaria 

consists of metamorphic rocks (e.g. gneisses), which are crossed by granites. 

Specifically, the area of implementation (Raches municipality) of Ikaria’s HES, located 

in the western part of the island, consists exclusively of granite and granite covering 

about half the area of the island (Patsidis, 2012). 
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The climate of Ikaria falls under the climatic type of the Mediterranean Coast (Csb by 

Köppen), a dry and relatively hot summer with wet and mild winters. Ikaria is 

considered one of the islands with the largest wind potential (Figure 21), with an 

average annual wind speed of 7.5 m/s at an average altitude (National 

Meteorological Service’s climate report). This is mainly due to the strong summer 

northern winds, also known as ‘’meltemia’’. 

 

FIGURE 21: WIND POTENTIAL OF IKARIA 

Ikaria's irrigation water needs are estimated to be up to 570,000 m3/year. About 

448,000m3/year are offered in the northwestern part of the island by the Pezi dam, 

while the needs for water supply amount to 700,000 m3/year. The losses of the 

island's water supply network are of the order of 30%. An important role in the 

water supply of the island is played by natural sources and existing drilling in the 

eastern, central and western Ikaria (Kritikou, 2005). We note that the natural sources 

and drilling in the area of construction of the hybrid project were not taken into 

account when simulating hydrological processes, due to lack of detailed data. 

 

ABOUT THE HYBRID ENERGY SYSTEM 

The idea of implementing the hybrid energy project in Ikaria, named NAERAS, 

belongs to the Public Power Corporation (PPC) and the Development Company of 

the former municipality of Raches, which in 1999, in cooperation with European 

companies, applied a financial proposal to the European Commission. The proposal 

was accepted, but the whole venture has not been successful. 

Later, appreciating the value of the project, PPC proceeded with the planning and 

tender studies, with the assistance of the National Technical University of Athens 

(NTUA) in the design of the electrical network. In 2006, the Declaration of the 
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Convention was approved and the competition took place. In 2008, the construction 

contract was signed with the Contractor Company ENET SA. 

In November 2009, the Regulatory Authority for Energy (RAE) submitted an 

application for transfer of the Production License of the project, adapting its 

operation in the existing institutional framework for hybrid plants, based on a study 

prepared by the NTUA. The sale price of hybrid energy was set by RAE equal to 295 

€/MWh (PPC RENEWABLE SA, 2012). 

The original plan of the hybrid energy system of Ikaria includes: 

 Pezi dam; 

 two water tanks; 

 two wind parks; 

 a pumping station; 

 an autonomous power station. 

The total cost of the hybrid energy project is approximately €40,000,000, which 

includes construction and supervision costs for all aforementioned works, expenses 

for the construction of new roads and the improvement of the existing area, as well 

as for the upgrading and reconstruction of the island's electricity network. 

PEZI DAM AND WATER TANKS 

The reservoir Pezi is located about 3.7 km southwest of Christos. It was created by 

the construction of a dam at the river Halaris. It is an artificial indoor wetland area of 

110.1 acres. 

The wetland is located within an area assigned as a Special Protection Area, an 

Important Area for Birds and a Landscape of Special Nature (Government Gazette 

591/Β/15-5-2002). Wetland activities are limited, with intense grazing prevailing. 

Activities in the catchment area are also mild with grazing and forestry dominants. It 

presents rich vegetation around the lake, mainly with trees, with rough pine trees 

and plane trees, dominating all over the area, as well as alder and wheat. 

Pezi dam was constructed in the municipality of Raches, Ikaria, in the Pezi area, 

where it was named after since 1995. The dam is an earth dam with clay core. The 

initial useful volume was 1,000,000 m3, which due to adhesions and sludge was 

reduced to 910,000 m3. For the sealing of the reservoir no additional dikes and 

special constructions were required, since the granite, the rock on which the dam 

was built, contributes itself in the physical tightness of the reservoir. The height of 

the embankment is 29 m, the length of the crown is 235 m and the width of the crest 

is 10 m. The volume of dyke used was estimated up to 163,100 m3 and the total 

construction cost of the project is estimated at €4,223,000. 
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Figures 22 and 23 show characteristic photos from the dam of Pezi. 

 

FIGURE 22: GENERAL VIEW OF PEZI DAM 

 

FIGURE 23: PEZI DAM (SOURCE: PPC SA) 

The hybrid scheme includes two man-made tanks, up (Ano Proespera, Figure 24) and 

down (Kato Proespera, Figure 25), each with a capacity of 80,000 m3, which will be 

filled by the spill of the already existing irrigation reservoir in Pezi. The upper 

hydroelectric plant, with a capacity of 1 MW, will be located upstream of the upper 

tank, to receive the spill from the reservoir, while the second station of 3.1 MW will 

be located upstream of the lower tank. The latter station is reversible, thus allowing 

water to be lifted from the lower to the upper tank, through a pumping station 

comprising 12 pumps of 250 KW each. 
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FIGURE 24: ANO PROESPERA TANK  

 

FIGURE 25: KATO PROESPERA TANK 

The maximum elevation of the reservoir (crest level) is 721 m, while the two 

reservoirs are set at 543 m for the top and 50 m for the bottom. The length of the 

pipes from the dam to the upper tank is 3.500 m, while the length from the top to 

bottom tank is 3.060 m. In case of pumping from the bottom to the top tank, the 

length is estimated at 3.100 m. 

AGIOS KIRIKOS POWER STATION  

It is a thermal power station owned by PPC, with oil-operated rotary internal 

combustion engines. The station is 1 km west of Agios Kirikos, on the south side of 

the island. Its facilities include production machines, tank systems, a seaside 
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pumping station, medium voltage equipment, warehouses and machining. Each 

machine is called a unit or a Power Generator, because it combines a diesel engine 

and an electric generator. Petroleum units have a yield of up to 40% or 50% and start 

fast in relation to other types of thermal machines but with a disadvantage of 

expensive fuel. 

Nominal power is the point of operation with maximum efficiency and lower fuel 

consumption. It is very close to the maximum theoretical power a unit can reach. 

The power output is the actual electrical power that is attributed at this time, with 

the unit's own power consumption. The total rated power of all installed units is 

around 15 MW (Table 3). 

 

TABLE 3: INSTALLED UNITS IN THE AUTONOMOUS POWER STATION OF IKARIA 

 

WIND PARKS 

The installed wind power of Ikaria includes a wind farm in the hill area of 

Stravokoundoura (Figure 26), at an altitude of 800 m, consisting of three Enercon E-

44/900 of 900 kW each one, and a hub height of 55 m, and a horizontal axis Enercon 

E-40/600 wind turbine, of a nominal power of 600 kW, at Kefalas Hill in the village of 

Perdiki at an altitude of 596 m. In addition, the Stravokoundoura wind park includes 

an underground building, hosting a SCADA system, a 30kVA backup power generator 

and voltage substation equipment. 

In the past, PPC also planned to construct a pilot wind farm in the neighboring 

Firinaspa location. This included 7 asynchronous wind turbines, of 55 kW each, thus 

a total capacity of 385 kW. It has been phased out and is out of service since 2006. 

In Figure 27, the power curve of the wind turbine of the Stravokoundoura wind park 

is presented. 
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FIGURE 26: STRAVOKOUNDOURA WIND PARK 

 

FIGURE 27: ENERCON E-44/900 POWER CURVE 

 

KATO PROESPERA PUMPING STATION 

Close to the bottom tank, there is the pumping station that returns the water back 

to the upper one, through an individual pipe. It includes a 30,50×12,00 m building, 

where eight assemblies consisting of multistage centrifugal horizontal axis pumps, 

delivering 85 m3/h at a maximum net head of 521,0 m will be installed. Pumps are of 

variable speed and fit according to the desired pumping power. 

In Figure 28 the top view and the section of the pumping station is shown, and in 

while its pumps are show in Figure 29. 
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FIGURE 28: TOP VIEW AND SECTION OF THE PUMP STATION 

 

 

FIGURE 29: PUMPING STATION'S INTERIOR 
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CHAPTER 4: INPUT DATA 

The simulation model of the Hybrid Energy System of Ikaria runs in hourly time step 

and uses as input data:  

 Runoff data (inflows to Pezi reservoir) 

 Wind data  

 Energy Demand Data  

 Irrigation Demand Data 

 

RESERVOIR INFLOW DATA 

The available information about the inflows to the Pezi reservoir, i.e. the runoff 

produced by the upstream catchment, is very limited. Specifically, the existing data 

only includes daily observed inflows for 30 months, from 01/05/1997 to 31/12/1999. 

Therefore, it was necessary to develop a hydrological model to represent the key 

processes of the water balance across the catchment. This model receives rainfall 

and potential evapotranspiration data, and converts them to runoff at the 

catchment outlet, i.e. upstream of the dam. Its operation is shown in Figure 30. The 

predictive capacity of the hydrological model is evaluated by means of convergence 

of the observed and modeled runoff. 

Key assumption of the water balance model is the treatment of maximum potential 

retention as varying quantity during the simulation period. This quantity, symbolized 

St, denotes the empty space of a conceptual tank of capacity K, employing the soil 

moisture accounting. This tank represents the unsaturated zone, which transforms 

the infiltrated rainfall into actual through the soil, interflow and percolation to 

deeper zones. The runoff is considered the sum of three components, i.e. the flow 

through the unsaturated zone (interflow), the underground flow (baseflow) and the 

surface flow (surface runoff). 

Model inputs at each time step are the daily precipitation over the basin, P, and the 

daily potential evapotranspiration, PET. The latter can be estimated with high 

accuracy using as inputs the air temperature, the solar radiation, the relative 

humidity and wind velocity However, due to lack of such measurements in Ikaria, we 

employed the following simplified radiation-based expression (Tegos et al., 2013): 

E = a Ra / (1 – c T) Eq. (1) 

where E is the evaporation (or potential evapotranspiration) in mm, Ra (kJ × m-2) is 

the extraterrestrial radiation, T (oC) is the mean air temperature, and a (kg × kJ–1) 

and c (oC–1) are model parameters that are inferred through calibration. 
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In order to run the model, it is essential determining the soil moisture storage at the 

beginning of each step. By adding this quantity to the maximum potential retention 

we get the storage capacity of the soil moisture accounting tank, K. The maximum 

potential retention is estimated on the basis of the dimensionless runoff curve 

number, CN, here considered is a model parameter, using the well-known empirical 

formula by SCS. 

At the beginning of each time step, we estimate the direct evapotranspiration as the 

minimum between the available rainfall and potential evapotranspiration, i.e.:  

ETdirect = min (PET, P) Eq. (3) 

Then we estimate the surface (overland) runoff as: 

Qsur = (P – ETdirect)
2 / (P – ETdirect + K – S) Eq. (2) 

where K – S represents the so-called maximum potential soil retention. The surface 

runoff is propagated to the basin outlet via a liner reservoir routing approach, using 

a recession parameter, θ. 

The remaining quantity (rainfall excess) enters the soil moisture tank, thus increasing 

its current storage to: 

S = S0 + P – Qoverland – ETdirect Eq. (4) 

If the direct evapotranspiration is less than the potential value, PET, additional water 

is abstracted from the available soil moisture, by means of soil evapotranspiration. 

The estimation of the latter is based on the well-known Thornthwaite formula, i.e.:  

ETsoil = S {1  - exp[- (PET –  ETdirect) / K} Eq. (5) 

Thus, the actual evapotranspiration is the sum of the direct evapotranspiration and 

the soil evapotranspiration through the unsaturated zone. 

Next, the interflow across the unsaturated zone is calculated as the product of the 

recession rate, λ, and the soil moisture storage above a threshold, H0, i.e.:  

Qinterflow = max [0, λ (S – H0)] Eq. (6) 

The soil storage is calculated depending on the soil moisture storage at the 

beginning of the time interval, the daily precipitation, the surface flow and the direct 

evapotranspiration. In case that the interflow threshold is greater than the storage, 

the flow of the unsaturated zone equals zero. 

Finally, another portion, μ, of soil moisture storage, moves vertically, to feed the 

groundwater tank, thus representing the percolation process. 



A stochastic simulation framework for representing water, energy and financial 
fluxes across a non-connected island 

- 47 - 

 

For the representation of groundwater processes we consider a lower tank of infinite 

capacity, which gets as input the percolation from the upper zone and has two 

outputs, i.e. the baseflow and the underground losses, which are controlled by two 

recession parameters, i.e. φ and ξ, respectively. 

The above model uses seven parameters, i.e. the runoff curve number, CN, the 

interflow threshold H0, and the five recession coefficients (θ, λ, μ, φ, ξ). 

 

FIGURE 30: OPERATION OF THE HYDROLOGICAL MODEL 

Every model requires a quantitative measure of performance, while in a hydrological 

model it is essential to predict the hydrograph peaks correctly. In order to achieve 

the calibration of the hydrological model in an attempt to improve its predictive 

capacity, during every time step of the simulation the square error of the observed 

and simulated runoffs is being calculated. Therefore, the definition of the optimal 

values of the model parameters comes out of the minimization of the square errors’ 

sum. The outcomes of this procedure are shown in Graph 4. 



Chapter 4: Input Data 
 

- 48 - 

 

  

GRAPH 4: COMPARISON OF SIMULATED VS. OBSERVED RUNOFF 

 

WIND DATA 

HISTORICAL DATA 

Ikaria is one of the Aegean islands with the largest wind potential, which is mainly 

due to the strong summer winds, also known as ‘’meltemia’’. The raw (10-min) wind 

data from Raches station has duration of seven years, and was provided by the 

National Observatory of Athens (Dr. Vassiliki Kotroni and Dr. Kostas Lagouvardos, 

personal communication). The mean value of the wind speed at the measured 

altitude is calculated at 5,4 m/s, with standard deviation 6,6 m/s. In Graph 5 a wind 

speed representation is illustrated for a time interval of 10.000 hours, exhibiting an 

apparently large variability. 

The following formula is used to convert the wind speed from the altitude to that of 

wind farm operation: 

 

Eq. (7) 

The altitude of the wind turbine in Stravokoundoura (800 m) is considered as z2 in 

the equation above, z1 the wind speed measurement altitude (5 m) and z0 

empirically set equal to 0,1 m. By applying this formula, an adjustment coefficient of 

velocity equal to 1,61 was obtained, to convert the wind speed (u1), measured at 5 m 

above the ground, to the height hub (i.e., 55 m). 
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GRAPH 5: WIND SPEED SIMULATION FOR 10.000 HOURS 

 

ENERGY GENERATION 

Due to high variability of the wind, the wind park will either operate for long periods 

at maximum intensity, thus exceeding the energy demand, or even produce any 

energy at all (for low or extremely high wind velocities). It is therefore concluded 

that in parts of the non-interconnected high-wind network, in order to make wind 

energy sustainable, it is necessary to have the energy storage capacity.  

In the case of Ikaria, the Wind Energy's Capacity Factor (CF) is estimated at 27.60%. 

The estimation of the Capacity Factor is made through running an hourly simulation 

for the seven years of the historical data and calculating the total energy generated 

throughout these years. Then, the Capacity Factor equals to the ratio of the 

aforementioned sum of produced energy and the installed power of the wind park 

multiplied by the total hours of simulation. 

However, it is clear from the simulation of the operation of the wind farm (Graph 6) 

that only 62% of this energy would be exploitable without the parallel operation of 

the pumping system, while 2.685 MWh of surplus energy per year would be lost. 
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GRAPH 6: SIMULATION OF WIND PARK OPERATION 

 

SYNTHETIC DATA 

Hydrometeorological time series can be considered the cornerstone of any water-

related engineering study, although, such data are in scarcity and often the available 

records don’t have sufficient length for the task at hand (e.g., reliability and risk-

related studies). Historical records of such observations will rarely if ever repeat in 

the future, which is the simplest manifestation of the high variability and uncertainty 

that is naturally inherited therein. In this vein, it can be argued that embracing 

stochasticity in hydrometeorological processes is a first step towards the 

development of uncertainty-aware methodologies for water systems. Stochastic 

simulation, and the synthesis of long hydrometeorological time series, which are 

used in place of historical ones, can provide a potential remedy to this situation. 

Synthetic time series are not predictions of future states, but rather constitute 

plausible realizations of the simulated process, that are, loosely speaking, statistically 

equivalent with the parent information (i.e., historical data). Driving the typically 

deterministic water-system simulation models with such realizations provides the 

means to assess their response in a probabilistic manner, under multiple, plausible 

scenarios (Tsoukalas et al., 2018b).  
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MARKOV MODEL 

Due to the intrinsically uncertain nature of meteorological phenomena and the 

limited lengths of the historical data, it is essential to employ stochastic approaches 

to represent the above non-deterministic inputs. Firstly, a first class Markov model 

was developed in order to provide sufficiently large samples, in order to evaluate the 

system responses in statistical terms (e.g., by means of reliability), with satisfactory 

accuracy. 

The Markov model is described by the following equation: 

 i     i 1   i 

 
Eq. (8) 

The autocorrelation of the historical wind speed data is considered as r, while wi 

represents white noise of mean value equal to the mean value of the historical data 

multiplied by (1 – r) and variance equal to the one of the historical data, multiplied 

by (1 – r2). Therefore, the value of wind speed in each step is defined to some extent 

by the value of the previous step and by the varying white noise. 

 

SPARTA MODEL 

The wind speed process at fine time scales (e.g. hourly) is characterized by major 

peculiarities, since its statistical behavior changes both across seasons and the daily 

cycle (an attribute referred to as double periodicity; cf. Dimitriadis & Koutsoyiannis, 

2015). Statistical analysis of hourly wind data from Ikaria (2012-2018) also revealed 

the existence of intermittency, large asymmetry and strong auto-dependence across 

short time scales. 

In Graph 7, plots of intra-daily (hourly) statistical characteristics of wind speed at 

Ikaria, for two characteristics months (December, August) are presented. 

The historical data are used as input to a novel stochastic modelling approach, 

named Stochastic Periodic Auto-Regressive to Anything (SPARTA), for generating 

1.000 years of hourly synthetic data, to be used within water-energy simulations 

(Tsoukalas et al., 2018a, b; Tsoukalas, 2018).  
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GRAPH 7: STATISTICAL CHARACTERISTICS OF THE SAMPLE OF WIND SPEED FOR DECEMBER 

AND AUGUST 

Main advantages of SPARTA are the preservation of double periodicity 

(cyclostationarity), by allowing fitting to any distribution model to represent the 

individual statistical regime of each hour of each month, and the generation of 

realistic dependency patterns. To describe the intermittent nature of the wind, 

mixed-type distributions with Generalized Gamma and Burr type-XII were used for 

representing non-zero wind speed.  

Using the synthetic time series, the Wind Energy's Capacity Factor (CF) is estimated 

at 26.30%. Firstly, an hourly simulation for the 1.000 years of the synthetic data is 

being processed and the total energy generation is calculated. Then, the Capacity 

Factor equals to the ratio of the sum of produced energy and the installed power of 

the wind park multiplied by the 8.760.000 hours of simulation. About 63,8% of the 

energy production enters the grid as soon as it generated, while the energy excess is 

approximately 2.523 MWh/year. 

The mean value of the wind speed of the hourly synthetic data at the measured 

altitude is calculated at 5,32 m/s and its standard deviation 7,63 m/s. As shown in 

Graph 8, generally the wind speed in December is way higher than in August. This is 

confirmed by the statistical characteristics of the synthetic data, as the mean value 

of wind speed in August is 2,9 m/s and in December 5,8 m/s. The fact that the 

synthetic data reproduces the monthly fluctuations of wind speed shows that the 

stochastic model itself has the ability to represent cyclostationarity. 
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ENERGY DEMAND DATA  

The energy demand data across the Island of Ikaria could not be found for the 

purposes of this thesis. Thus, data from the neighboring island of Astypalaia was 

used (Chalakatevaki et al., 2017), to which we employed a proportional adjustment 

based on the ratio of the populations of the two islands (8400/2000). The island's 

average power demand is 1.60 MW. 

Ikaria, as being an island receiving tourist flows, shows a significant increase in 

average demand for energy during the summer period. An additional parameter that 

hinders the hybrid system's effort to achieve high reliability is that during the 

summer period, the operating rules do not allow the use of the Proesperas’ 

hydroelectric power plant to meet energy deficits, due to increased irrigation 

demand. Because of these two constraints, it is concluded that the majority of the 

energy deficits will occur during the summer period. 

Another pattern observed in the energy demand profile of the island is its decrease 

during the weekend. It is a pattern that is also observed in parts of the continental 

network and is related to the carrying out of a different type of activity by the 

human factor. 

Graph 8 illustrates a simulation of energy demand in Ikaria Island for 10.000 hours. 

 

GRAPH 8: ENERGY DEMAND SIMULATION FOR 10.000 HOURS 

 



Chapter 4: Input Data 
 

- 54 - 

 

IRRIGATION DEMAND DATA 

Pezi Dam offers about 448.000 m3/year to meet the irrigation needs, which accounts 

for 80% of the total demand of the island. The remaining 20% is fulfilled by local 

drilling. 

The irrigation demand profile shows a drastic difference between summer and 

winter. More specifically, from October to March, demand is just over 3 m3/day. The 

months of April and September could be described as transient for the passage from 

winter to summer and vice versa. On the other hand, from May to August the daiy 

demand exceeds 3.000 m3, thus justifying the priority of the irrigation use during the 

summer season. 

Graph 9 shows a simulation of irrigation demand on Ikaria for 8.760 hours. 

 

GRAPH 9: IRRIGATION DEMAND SIMULATION FOR ONE YEAR 
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CHAPTER 5: SIMULATION MODEL 

FIXED DESIGN CHARACTERISTICS  

The hybrid energy system project is being built in the former municipality of Raches. 

Its current design includes the wind farm in the Stravokoundoura hill area, consisting 

of three Enercon E-44/900 wind turbines, a 600 kW wind turbine in Perdiki, the Kato 

Proespera pumping station, consisting of 12 pumps (4 of them spare) of total 

nominal power 3 MW, two tanks, and the Pezi reservoir. Their locations across the 

island are shown in Figure 31. As described in Chapter 3, the reservoir has of a useful 

storage capacity of 910.000 m3 and is connected with the two tanks in Proespera and 

Kato Proespera, respectively, with a storage capacity of about 80.000 m3, to serve 

the needs of pumping for the absorption of wind energy. The hybrid scheme also 

includes the Proespera Small Hydroelectric Plant with a 1,05 MW Pelton-type hydro-

turbine, which will only utilize the excess water of Pezi reservoir, and the Kato 

Proespera Plant, with two hydro turbines of Pelton type, with a power capacity of 

2×1,55 MW, which will exploit both the excess water of the reservoir and the water 

obtained through pumping. 

 

FIGURE 31: LOCATION OF HPS AND OTHER POWER STATIONS' (PAPAEFTHYMIOU, 2012) 

The first step in simulating the hybrid energy system is to represent the hydraulic 

quantities that govern the system, in order to capture the parallel operation of wind 

farm and pumping station. 
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As already mentioned, the useful capacity of the reservoir in Pezi amounts to 

910.000 m3, with maximum operating elevation at +721 m and minimum operating 

elevation at +695 m. Knowing the match of level, z, and storage, S, easily results in 

the equation that characterizes the morphology of the reservoir: 

S = 147.7 z2.68 Eq. (9) 

Given this equation, it is concluded that the reservoir at low altitudes is much 

"narrower" than at the highest. This is confirmed by the fact that at the upper one 

meter of the reservoir level, 9% of the reservoir’s storage is enclosed. 

The two tanks in Proespera and Kato Proespera have exploitable volume of water of 

about 80,000 m3 and are expected to be used mainly for pumped storage. The 

maximum operating altitude of the upper tank is +554m, while the lowest is at +543 

m (tank height 11 m). Correspondingly, the lower tank has height of 12 m, with a 

maximum operating level of +50 m and a minimum of +38 m. Both tanks are 

considered, approximately, rectangular. 

The sum of the reservoir and upper tank storage basically expresses the stored 

energy of the hydro pumped storage system. Summing up their maximum energy 

stocks multiplied by an average altitude from the lower tank and using the following 

equation: 

 
Eq. (10) 

By applying eq. (10) for the maximum storage of the upper tank and the reservoir 

and an average altitude difference, we get that the pumped storage system can 

ensure a maximum energy production of 1592 MWh. Obviously, the amount of 

energy that can be produced at any time is determined by the completeness of the 

upper tank and the reservoir, and also by the maximum capacity of the grid, hence 

the nominal power of the hydro turbines. 

The maximum flow capacity of the two cycles (reservoir-upper tank, upper tank-

lower tank) is calculated on the basis of the nominal power of the two hydro 

turbines, the average altitude difference between the reservoirs’ water levels and 

the turbine efficiency, which equals 0,90. For the first route the maximum capacity is 

estimated at 2.564 m3/h, while between the two tanks is 2.508 m3/h. Nevertheless, 

the most critical binding factor of the system is the minimum discharge with which 

the Pelton hydro turbine can produce hydro power, which is equal to 0,13 QD = 340 

m3/h. This quantity drastically affects the overall performance of the system, 

because in its simulation, there are not only a few cases in which the system 

operator is forced to release that quantity to operate the hydroelectric turbine to 

encounter lower energy deficits. As a result, water releases that could be used to 
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cover future energy and irrigation deficits are reduced to lower altitudes, resulting in 

a reduction in overall system performance. 

Two factors that also significantly influence the results of the simulation model are 

linear (friction) and local hydraulic losses. 

Determining the magnitude of linear hydraulic losses (hf) generally depends on the 

following pipe dimensions: 

 Length (L);  

 Diameter (D);  

 Equivalent roughness;  

 Discharge (Q); 

 Energy gradient (J). 

The length of the pipes between the reservoirs are the following: from Pezi Dam to 

the Ano Proespera tank the pipeline length is 3.500 m, from there to Kato Proespera 

tank is 3.060 m, while at the reverse direction the associated length is 3.100 m. 

The diameter is varying across the different routes. Note that because in the middle 

of route reservoir-upper tank (1-2), the diameter of the inlet duct changes from 0,80 

m, at 0,70 m, the paths 1-1.5 and 1.5-2 were also considered to indicate this change. 

The diameter along the 2-3 route is 0,60 m, while along the lower tank-upper tank 

route is 0,50 m. 

The estimation of the equivalent roughness, ε, is subject to several uncertain factors, 

related with the pipe material and age, the water quality characteristics, etc. 

According to typical design practices, we used a value of 1 mm. 

Koutsoyiannis (2008) introduced the so-called generalized Manning equation, to 

approximate the complex friction factor of the Colebrook-White equation through 

an analytical (closed) equation. The proposed procedure uses three parameters (β, γ, 

Ν), which are estimated as follows:  

 
Eq. (11) 

where ε*:= ε/ε0 is a dimensionless roughness and ε0 = 0.05 mm. The above 

parameters are considered constant, provided that the flow velocity ranges between 

0,3 and 10,0 m/s. For given β, γ, and Ν, the energy gradient, J, is determined by: 

 

Eq. (12) 

Τhe value of linear losses is calculated as the product of energy gradient and the 

length. Therefore, the linear losses value is expected to vary in every hourly step. 
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The mean value of the 1-2 route is approximately 7 m and the one of the 2-3 route is 

about 12 m. Nevertheless, the exact value is explicitly calculated in every step of the 

simulation procedure. 

The local hydraulic losses are determined at each step on the basis of flow velocity. 

The fixed factor of local hydraulic losses is considered at a very conservative value. 

Therefore, the mean value of local losses in each step is calculated at 0,90 m, which 

is a value significantly lower than the one of the linear hydraulic losses. 

Regarding the wind energy generation, at each hourly step the wind speed at the 

measured height is adjusted to the height of the turbines (i.e. the height of the hub), 

using the adjusting coefficient. Next, using the power curve of the wind turbines, the 

generated power of the wind farm is calculated at every simulated hour. 

 

HYBRID ENERGY SYSTEM’S  OPERATION 

The simulation of the operation of the hybrid energy system, without the 

contribution of the autonomous power system, was developed in Matlab®. The code 

runs a simulation of 45 years using an hourly time step. For the operation of the 

system two possible scenarios were examined: one featuring unlimited pumped 

storage between the reservoir and the tanks, and one with seasonal restrictions due 

to the prioritization of the irrigation demand. 

The simulation consists of many phases which resemble the different operation 

options of the hybrid system. 

First of all, at each time step the capacity of each route is calculated on the basis of 

the nominal power of the two hydro turbines, the distance between the reservoirs 

and the turbine efficiency. This value defines the maximum possible transport of 

water between the tanks and the differentiation of the results of the system will be 

examined during the optimization of the system. 

Following, the reservoir spill takes place. In each step, the estimated runoff is added 

to the existing reservoir storage. If the resulting storage is greater than the 

maximum capacity of the reservoir, water is driven down to the upper tank in order 

to generate energy. First, the energy gradient, J, is calculated as a result of the flow 

and roughness, to define the linear hydraulic losses. In addition, the speed of the 

water flow determines the value of the local hydraulic losses. Consequently, the 

value of the outflow, which always is less than the maximum capacity of the 

reservoir-upper tank route, is transferred to the upper tank through the Ano 

Proespera hydroelectric plant. If the transferred water is less than the minimum flow 

with which the Pelton hydro turbine can produce hydropower, no power is 
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generated. At the end, the storage of the reservoir equals its net volume and the 

transferred amount of water is added in the existing storage of the upper reservoir. 

The altitude of the water level of both the reservoir is calculated using eq. (9). The 

mean generated power due to spill of the reservoir equals to 0,52 MWh and spill 

occurs approximately 35% of the simulation hours, mostly in the winter season. The 

produced power is used to cover deficits of the energy demand. As shown in Graph 

10, the energy generation due to spill takes place mostly in winter season. 

 

GRAPH 10: ENERGY SIMULATION FROM RESERVOIR SPILL SIMULATED FOR 50.000 HOURS 

Next, abstractions for irrigation take place. The irrigation demand profile shows a 

significant difference between summer and winter season: from a mean value of 

3.000 mᶾ/day to 3 mᶾ/day. Hence, the transfer of water to meet the requirements of 

irrigation will mainly occur in the summer months. 

First, it is examined whether it is possible to cover the irrigation needs using the 

existing reservoir resources. If so, then any failure occurs and any energy is required 

to cover the irrigation demand. If not, and in case that water can be pumped into the 

reservoir (will be examined later), then water from the upper and, if needed, also the 

lower tank, is transferred to the reservoir, provided that it does not exceed the 

maximum capacity of the pumping station. Therefore, we calculate the linear and 

local hydraulic losses and the required power to pump the water into the reservoir. 

This amount is added to the existing energy demand of the island. The mean value of 

this additional power target is minor, as this case occurs less than 0,5% of time. 

If the irrigation demand exceeds the cumulative storage of the reservoir and the two 

tanks, failure occurs regarding the irrigation needs of the island. A counter is used in 

order to account for the time steps in which the system is not able to cover the 

irrigation demand and by dividing it with the total hourly steps in which there was 

need for irrigation, the percentage of system failure accrues. Simultaneously, an 

adder concentrates the total amount of water that the system was short of. By 

dividing it with the failure counter, the vulnerability of the irrigation system is 

calculated. Last but not least, the resilience resembles the maximum consecutive 

times during which failure occurred out of the total times of failure. 

Following, the wind farm energy generation is simulated. The hourly wind speed 

data is used as input to the power curve (Figure 26), in order to define the amount of 
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energy production. The generation of energy from the Stravokoundoura wind farm is 

the result of the individual wind turbine, multiplied by the number of the wind 

turbines (three). On the other hand, for the standalone Perdiki wind turbine of 600 

kW, the former result is multiplied by (600/900), which is the ratio of nominal 

capacities of the two turbines.  

Based on the above assumptions, we run the hourly simulation model and estimated 

the energy produced by the system. Its mean value is 0,82 MWh and its standard 

deviation is 1,15 MWh. In Graph 11, 10.000 hours of simulated energy generation 

are shown. We remark that the total installed power of 3,3 MW imposes an upper 

limit to the energy generation. Furthermore, almost 25% of the total simulation 

hours no energy was produced. 

 

GRAPH 11: ENERGY GENERATION SIMULATION FOR 10.000 HOURS 

As a result, whenever the sum of the energy generated from the wind parks and the 

spill of the reservoir is greater than the energy demand of the island, surplus occurs 

and there is a chance for pumped storage. Otherwise, the deficit is encountered by 

the generation of energy using either the Ano Proespera or Proespera hydroelectric 

plant. By the simulation of the hybrid system is shown that deficits occur 

approximately 74,30% of the simulation hours with a mean value of 1,23 MWh, 

while the average surplus is 1,41 MWh. In Graph 12, a simulation of 100.000 hours of 

the hybrid system presents the hourly deficits and surpluses of energy. 

Next, the water level of the reservoir is calculated using eq. (9). Moreover, the water 

level of the two tanks is defined. In addition to this, the completeness of the 

reservoir and the tanks is defined as a ratio between its storage and its capacity. 

Afterwards, if deficit occurs we enable the operation of the turbines. The selection of 

either the reservoir-upper tank route or the upper tank-lower tank one is based on 

multiple factors. The key one is the completeness of the reservoir and the tank, also 

accounting for the seasonal restrictions. In particular, during the summer months, 

due to the increased irrigation needs, the completeness of the reservoir is relatively 

low. As a result, regardless of the implementation or not of seasonal restrictions 

setting irrigation as a priority, the energy generation through the upper tank-lower 

tank route is mostly selected. Nevertheless, the overall goal is to preserve the 

reservoir storage, in order to be used both for irrigation and energy production. 
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GRAPH 12: SIMULATION OF SURPLUSES AND DEFICITS FOR 100.000 HOURS 

If the reservoir-upper tank route is selected for energy generation, firstly the 

discharge is calculated using the following equation: 

                                   )) Eq. (13) 

where the energy deficit is expressed in kWh and the turbine efficiency is set equal 

to 0,90.  

The discharge should not exceed the maximum reservoir-upper tank’s capacity and 

the existing storage of the reservoir. Concurrently, the discharge should be high 

enough so that the turbine has the ability to operate. In case of small-scale deficits 

and due to the existence of the minimum discharge with which the Pelton turbine 

can produce hydropower, larger amounts of water have to be released, and as a 

result more water is transported to lower levels. Therefore, during the optimization 

of the system, the influence of this quantity in the reliability of the system will be 

examined. 

Next, by applying eq. (12) and after calculating the flow velocity, linear and local 

hydraulic losses are defined. Given that, using eq. (13) we calculate the total amount 

of water to be released in order to generate energy equal to the deficit. This amount 

cannot exceed the existing storage and the maximum capacity of the turbines. 

A counter is used in order to account for the time steps during which the system is 

not able to cover the energy demand, and by dividing it with the total number of 
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hourly steps we get the failure probability of the system. Moreover, an adder is used 

to concentrate the total amount of energy that the system was short of and by 

dividing it with the failure counter, the vulnerability of energy is calculated. Finally, 

the resilience resembles the maximum consecutive times in which failure occurred 

out of the total times of failure. 

When the amount of released water is less than the minimum necessary amount for 

turbine operation, then failure occurs and no energy is generated. As a result, the 

failure counter is increased by one and the whole amount of deficit is added to the 

energy failure sum. If the available storage or capacity of the turbines limit the 

energy generation in quantities less than the existing deficit, then the generated 

energy is injected to the energy grid, but still failure occurs. Hence, the failure 

counter is increased by one and the deficit minus the amount of energy generation is 

added to the energy failure sum. 

Next, the total amount of energy generation is calculated using eq. (10). A simulation 

of energy generated from the wind park and the turbines for 100.000 hours is 

presented in Graph 13. 

 

GRAPH 13: SIMULATION OF ENERGY GENERATION OF WIND PARK AND HYDRO POWER PLANTS 

FOR 100.000 HOURS 

Following, the transported amount of water is removed from the previous reservoir 

storage and, concurrently, is added to the storage of the upper tank. 

If the upper tank-lower tank route is selected, the procedure is almost the same. 
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Initially, the discharge is calculated using eq. (13), based on the elevation difference 

between the upper and lower tank. As before, the discharge cannot exceed the 

maximum capacity of the selected route and the existing storage of the upper tank, 

while it should be higher than the minimum discharge of the Pelton turbine.  

Next, since the value of the hydraulic losses is defined, the total amount of water 

that should be released into the turbine in order to generate energy equal to the 

deficit is calculated, which does not exceed the existing storage of the upper tank 

and the maximum capacity. 

Next, if the amount of transported water is less than the minimum necessary 

amount for the turbine to operate, then the failure counter is increased by one and 

the whole amount of deficit is added to the energy failure sum. In case that the 

generated energy is less that the deficit, the failure counter is increased by one and 

the deficit minus the amount of energy generation is added to the energy failure. 

Then, the total amount of energy generation is calculated by eq. (10), the released 

amount of water is removed from the upper tank and is added to the lower one. 

Nevertheless, in case that surplus occurs the procedure continues by pumping water 

into higher levels. The results of the system are examined using two different 

models: one with the ability only to pump water from the lower to the upper tank, 

and one with the ability to pump water through both of the routes, i.e., lower tank-

upper tank and upper tank-reservoir. The decisive factor for selecting the route of 

the pumping water is, firstly, the completeness of the reservoir and, secondly, the 

completeness of the two tanks, because the main goal is that the storage of the 

reservoir should remain high. Specifically, the scenario of pumping water into the 

reservoir is selected in case that the completeness of the upper tank is higher than a 

standard value or the completeness of the reservoir is lower than a critical value 

(which may change during different seasons) and the upper tank has water to give. If 

none of these criteria is satisfied, then the water is pumped from the lower to the 

upper tank. 

In case that the upper tank-reservoir route is selected, the discharge is calculated 

using the following equation: 

                                 )) Eq. (14) 

where the energy surplus is represented in kWh and pump efficiency equals to 0,69. 

The discharge should not exceed the maximum upper tank-reservoir’s capacity and 

the existing storage of the upper tank.  

By applying eq. (12), linear and local hydraulic losses are defined and by using eq. 

(14) the total amount of water that can be pumped into higher levels is calculated. 



Chapter 5: Simulation Model 
 

- 64 - 

 

This amount does not exceed the existing storage of the upper tank and the 

maximum capacity of the pumping station.  

Next, the total amount of saved energy is calculated and the transported amount of 

water is removed from the upper tank storage and added to the storage of the 

reservoir. A simulation of energy generated from the hydro turbines and saved due 

to pumping for 30.000 hours is presented in the following graph: 

 

GRAPH 14: SIMULATION OF GENERATED AND SAVED ENERGY OF THE HYDRO PUMPED STORAGE 

SYSTEM FOR 30.000 HOURS 

If the lower tank-upper tank route is selected, the discharge is calculated using eq. 

(14) and it should not exceed the maximum capacity of the pumping station and the 

existing storage of the lower tank. 

After calculating the energy gradient and the flow velocity, linear and local hydraulic 

losses are estimated by using eq. (10) the total amount of water that can be pumped 

into the upper tank is computed. This amount should not exceed the existing storage 

of the lower tank and the maximum capacity of the pumping station. Following, the 

total amount of stored energy is calculated and the transported amount of water is 

removed from the lower tank storage and added to the storage of the upper one. In 

Figure 32, a highlight during pumping to the upper tank is shown. 
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FIGURE 32: HIGHLIGHT DURING WATER PUMPING INTO THE ANO PROESPERA TANK 

At the end of each step, three counters estimate the time steps in which the 

reservoir and the two tanks are empty. After that, the counters are divided by the 

total number of simulation hours in order to express the percentage of times that 

either the reservoir or the tanks have no storage during the simulation. 

In addition, at the end of the simulation the following quantities are computed: 

 irrigation failure, as the ratio of the counter of irrigation failure to the total 

hours of simulation; 

 irrigation resilience, as the ratio of the maximum times of consecutive 

irrigation failure to the counter of irrigation failure; 

 irrigation vulnerability, as the ratio of the sum of the total amount of water 

that the irrigation system was short of to the number of irrigation failures; 

 energy failure, as the ration of the counter of energy demand failure to the 

total hours of simulation; 

 energy resilience, as the ratio of the maximum times of consecutive energy 

demand failure to the counter of energy failure; 

 energy vulnerability, as the ratio of the sum of the total amount of energy 

that the energy grid was short of to the counter of energy demand failure; 

 the percentage of time that the reservoir and the tanks are empty; 

 the earnings of the wind park operator, using the existing “guaranteed price” 

pricing system, as described in Chapter 2; 
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 the earnings of the hydroelectric power plant and reservoir operator, using a 

guaranteed price for the generated energy and constant values regarding the 

earnings and penalties of irrigation. 

The time series of completeness of the reservoir, the upper tank and the lower tank 

are presented in Graph 15 for the simulation of the hybrid system, using seasonal 

restrictions and enabling pumped storage from the upper tank to the reservoir. 

To sum up, this process is about the internal function of the hybrid system excluding 

the use of the autonomous power station and the daily operation of the energy 

market. Nonetheless, the operation of the system takes into account that the two 

operators are in cooperation with each other. Certainly, this fact does not hold 

during the operation of the system with the function of energy auctions where the 

different energy players are in competition. 

 

GRAPH 15: TIME SERIES OF STORAGE COMPLETENESS FOR A SIMULATION OF 300.000 HOURS 

However, the management models of the hybrid system are differentiated on 

factors relating to the options, capabilities and seasonal restrictions of the system. 

These management models are presented and compared in the next chapter in an 

attempt to define the optimal one. 
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SIMULATION OF DIFFERENT OPERATION MODELS 

So far, we described the hybrid system without the exploitation of the autonomous 

power station. By changing the operation rules, we get significantly dissimilar 

outcomes. Since the hydraulic design sizes are fixed, the most critical factors that 

define the alternative management policies at each step refer to the selection of the 

optimal routes either for power generation or for pumping. 

First, the operation of the two hydroelectric stations is governed by obligations rising 

from the environmental terms of the project and aim ensuring the irrigation 

adequacy of the reservoir. Specifically, the Proespera Hydroelectric Plant is not 

allowed to operate during the summer season (May-September), while the rest of 

the minimum water level requirements are set in the reservoir, according to PPC SA. 

In addition to this, in order to allow the reservoir responding to its complex 

requirements, a scenario of minimum allowable volume was drawn up by the PPC for 

the duration of its energy operation that is in the period from October to April. 

Based on this, in the beginning of the winter period, the energy exploitation is 

allowed to commence once the reservoir has gathered at least 500.000 m3 of 

inflows, i.e. almost 55% of its maximum storage. The operation policy does not allow 

leaving the reservoir with less water until December 31. Then, the minimum 

threshold develops linearly with the day until the end of March, when environmental 

terms impose a minimum level of +720,0 m, corresponding to a storage of 819.259 

m3. During April the level should be at least +720,5 m, corresponding to a storage of 

862.730 m3. Then, until April 14th, the level is maintained above +720,5 m, thus the 

minimum desirable storage remains constant. From April 15th this limit is linearly 

increasing, so that until the end of April the reservoir becomes is full, thus reaching 

its capacity (910.000 m3) and the maximum operation level (+721,0 m). From this 

day and until the end of the irrigation period, the energy operation of the reservoir 

as well as the function of the Proespera Hydroelectric Plant, are interrupted. 

The seasonal restrictions regarding the completeness of the reservoir play a major 

role on defining the route for energy generation. For example, setting irrigation in 

highest priority means that during the summer months the upper tank-lower tank 

route will be the only way to generate energy. Given that, for almost five months the 

maximum capacity of energy storage of the system drops from 1592 to only 97 

MWh, almost 6,1% of total. This drastic change is due to the fact that the maximum 

capacity and the elevation of the tank are remarkably lower than the ones of the 

reservoir. This means that during the summer season the irrigation needs cause very 

often energy demand failures. Even between October and April, the need for 

maintaining a minimum storage sometimes leads to energy demand failures. On the 

other hand, letting the hybrid system operate without setting seasonal restrictions 

may improve the energy generation reliability, but it surely leads to higher irrigation 
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failures. Given that the penalty for irrigation failure is much higher than the price for 

successful provision of water, disabling seasonal restrictions will have notable cost. 

In addition, the effect on local society, although cannot be measured, is remarkable. 

Second, the impact of water pumping potential from the upper tank to the reservoir 

definitely plays a key role in the system performance. In case that there is no such 

potential, due to the application of seasonal restrictions the sole way for the 

reservoir to reach the allowable volume levels is through natural inflows. As a result, 

the reservoir storage has to be conserved and the only way to cover energy deficits 

is through the use of water from the upper tank, leading to lower energy storage and 

higher energy demand failure. On the contrary, pumping water to the reservoir helps 

the system operating better, by increasing the maximum energy storage capacity. 

Third, the decisive values of reservoir and tank completeness, according which the 

decision for selecting the proper route for energy generation or water pumping is 

made, are crucial regarding the system results. Emphasis is given in keeping the 

reservoir storage as high as possible, but simultaneously exploiting the energy 

storage potential of the tanks. 

The impacts of these factors on the system behavior and especially on its reliability 

will be examined and compared by employing simulations for four different 

management policies. 

 

SIMULATION NO.1 

Simulation No.1 does not impose seasonal restrictions for the reservoir abstractions, 

and also allows pumping water to the reservoir. 

The criteria for deciding the most suitable route for energy generation are the 

following: if the completeness of the reservoir is higher than 40%, while the storage 

of the upper tank is lower than the one of the lower tank, or the completeness of the 

upper tank is below 5%, then the reservoir-upper tank route is selected, otherwise 

the upper tank-lower tank one is used. As a result, circa 39% of simulation time in 

which deficit occurs the reservoir-upper tank route is chosen, while 61% of the time 

energy is generated by releasing water from the upper tank. 

Regarding pumping, if the completeness of the reservoir is below 30%, while the 

storage of the upper tank is greater than the lower one, or the completeness of the 

upper tank is above 40%, then the upper tank-reservoir route is selected for energy 

storage, otherwise the lower tank-upper tank route is used. Thereafter, out of the 

total simulation hours in which surplus of energy was produced, 58% of time water is 

pumped to the reservoir, while 42% to the upper tank. 
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The final results of the simulation were: 

 Irrigation Reliability = 88,6% 

 Irrigation Resilience = 0,003% 

 Irrigation Vulnerability = 80,3 m3 

 Energy Generation Reliability = 59,0% 

 Energy Generation Resilience = 0,001% 

 Energy Generation Vulnerability = 1,12 MWh 

In Graph 16, the time series of the storage completeness of the reservoir, the upper 

tank and the lower tank is presented. The reservoir is empty 25,4% of simulated 

hours, the upper tank 17,4% and the lower tank 13,3%. 

Regarding energy generation, the mean value of wind energy generation is 0,72 

MWh with standard deviation 1,1 MWh. Concurrently, in 25,3% of the time steps 

energy was generated due to spill of the reservoir with mean value circa 0,78 ΜWh. 

Almost half of simulation period deficits are encountered through the operation of 

the turbines. The mean hourly energy generation is 1,0 MWh. 

Graph 17 presents the distribution of simulated energy by different sources. As 

shown, half of generated energy arrives from the wind park, producing 

approximately 6,23 GWh/year, and half from the hydroelectric stations. 28% of this 

amount is produced from reservoir spill (1,73 GWh/year). 

Using the “guaranteed price” model for wind energy pricing, which does not impose 

penalty for energy deficits, the simulation results to an approximate benefit of 

527.000 €/year for the wind park operator. Simultaneously, according to RAE, the 

price set for the hydroelectric power plant is 295 €/MWh. So, the annual benefits of 

the operator are up to €1.475.000. Setting the irrigation price at 0,13 €/m3 and its 

penalty at 1,04 €/m3, the losses during the simulation are 1.612 €/year. 
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GRAPH 16: TIME SERIES OF STORAGE COMPLETENESS FOR SIMULATION NO.1 

 

GRAPH 17: ENERGY GENERATION MIXTURE FOR SIMULATION NO.1 
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SIMULATION NO.2 

Simulation No.2 accounts for seasonal restrictions, as defined by PPC SA, and also 

allows pumping water to the reservoir. 

The criteria for deciding the proper route for energy generation are the following: 

between October and April, if the completeness of the reservoir is higher than the 

limit set by the seasonal restrictions, while the storage of the upper tank is lower 

than the one of the lower tank, or the completeness of the upper tank is below 5%, 

then the reservoir-upper tank route is selected for energy generation; otherwise the 

upper tank-lower tank route is used. Therefore, the reservoir-upper tank route is 

chosen about 34% of hours during which deficits occurred, while the rest of time 

energy was generated by releasing water from the upper tank. 

Regarding energy storage, if the completeness of the reservoir is below 20%, while 

the storage of the upper tank is greater than the one of the lower tank, or the 

completeness of the upper tank is above 40%, then the upper tank-reservoir route is 

selected for energy storage, otherwise the lower tank-upper tank one is used. 

Thereafter, 67% of the time water is pumped to the reservoir, while 33% of time it is 

pumped to the upper tank. 

The final results of the simulation were: 

 Irrigation Reliability = 95,6% 

 Irrigation Resilience = 0,008% 

 Irrigation Vulnerability = 111,9 m3 

 Energy Generation Reliability = 61,0% 

 Energy Generation Resilience = 0,001% 

 Energy Generation Vulnerability = 0,88 MWh 

Graph 18 presents the time series of storage completeness of the reservoir, the 

upper tank and the lower tank for 100.000 simulated hours. The reservoir is empty 

15,0% of time, the upper tank 27,7% and the lower tank 11,1%. 

Concurrently, the mean value of wind energy generation is 0,72 MWh, with standard 

deviation 1.1 MWh. In almost 22% of the simulated hours energy was generated due 

to spill of the reservoir, with mean value of 0,81 ΜWh. Approximately 57% of the 

hours of the simulation deficits are encountered through the turbine operation, 

which results to a mean hourly value of 1,12 MWh. 
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GRAPH 18: COURSE OF STORAGE COMPLETENESS FOR SIMULATION NO.2 

 

GRAPH 19: ENERGY GENERATION MIXTURE FOR SIMULATION NO.2 
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Graph 19 presents the distribution of simulated energy by different sources. In 

particular, 46,8% of total annual energy generation (6,23 GWh) arrives from wind 

farms, 41,4% is directly produced from the hydroelectric stations (5,55 GWh) and the 

rest one is produced from reservoir spill (1,58 GWh). Thus, the wind park operator 

earns 527.000 €/year and the hydroelectric plant operator 1.637.545 €/year, using 

the same pricing policy as in simulation No.1. Setting the irrigation price at 0,13 €/m3 

and its penalty at 1,04 €/m3, the associated benefits are 35.000 €/year. 

 

SIMULATION NO.3 

In Simulation No.3 no seasonal restrictions are set for the reservoir, while it is also 

not allowed pumping water to the reservoir. 

The criteria set for deciding the proper route for energy generation are the 

following: if the completeness of the reservoir is higher than 60%, while the storage 

of the upper tank is lower than the lower one, or the completeness of the upper tank 

is below 5%, then the reservoir-upper tank route is selected for energy generation, 

otherwise the upper tank-lower tank one is used. As a result, circa 34% of simulated 

hours in which deficit occurred the reservoir-upper tank route is chosen, while the 

rest of time energy is generated by releasing water from the upper tank. 

Regarding energy storage, given that water cannot be pumped to the reservoir, the 

only way to store energy surpluses is the lower tank-upper tank route. Given the 

small capacity of the two tanks, the energy storage of the system is quite low. 

The final results of the simulation were: 

 Irrigation Reliability = 88,6% 

 Irrigation Resilience = 0,003% 

 Irrigation Vulnerability = 80,4 m3 

 Energy Generation Reliability = 58,4% 

 Energy Generation Resilience = 0,001% 

 Energy Generation Vulnerability = 1,15 MWh 

In Graph 20, the time series of storage completeness of the reservoir, the upper tank 

and the lower tank are presented. The reservoir remains empty 27,5% of time, the 

upper tank 16,6% and the lower tank 24,0%. 

The mean wind energy generation is 0,72 MWh, with standard deviation 1,1 MWh, 

while in 26,1% of the time steps energy was generated due to spill of the reservoir 

with mean value of 0,76 ΜWh per operating time step. Almost 47,7% of the hours of 
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the simulation deficits should be encountered through the operation of the turbines. 

The mean value of their energy generation was 1,04 MWh per operating hour. 

 

GRAPH 20: COURSE OF STORAGE COMPLETENESS FOR SIMULATION NO.3 

 

GRAPH 21: ENERGY GENERATION MIXTURE FOR SIMULATION NO.3 
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Graph 21 presents the distribution of simulated energy by different sources. In 

particular, 50,7% of annual energy is generated from the wind park (6,23 GWh) and 

the rest from the hydroelectric stations, where 28,6% is produced due to reservoir 

spill (1,74 GWh) and 4,35 GWh are generated by the hydroelectric power plants. 

Using the “guaranteed price” model for wind energy pricing which features no 

penalty, the wind park operator earns 527.000 €/year, while the annual earnings of 

the hydroelectric power plant operator are €1.283.250 (by setting the price of 295 

€/MWh). Finally, the economic losses due to irrigation deficits are 1.612 €/year. 

 

SIMULATION NO.4 

Simulation No.4 is the most realistic, since it accounts for the seasonal restrictions 

set by PPC SA, but not the ability for pumping water to the reservoir. 

The criteria for deciding the proper route for energy generation are the following: 

between October and April, if the completeness of the reservoir is higher than the 

limit set by the seasonal restrictions, while the storage of the upper tank is lower 

than the one of the lower tank, or the completeness of the upper tank is below 5%, 

then the reservoir-upper tank route is selected for energy generation; otherwise the 

upper tank-lower tank one is used. As a result, the reservoir-upper tank route is 

chosen about 33% of time in which deficits occurred, while 67% of time energy is 

generated by releasing water from the upper tank. 

Regarding energy storage, given that water cannot be pumped into the reservoir, the 

only way to store energy surpluses is the lower tank-upper tank route. 

The final results of the simulation were: 

 Irrigation Reliability = 92,9% 

 Irrigation Resilience = 0,005% 

 Irrigation Vulnerability = 112,6 m3 

 Energy Generation Reliability = 57,7% 

 Energy Generation Resilience = 0,001% 

 Energy Generation Vulnerability = 0,98 MWh 

In Graph 22 the time series of the storage completeness of the reservoir, the upper 

tank and the lower tank for 100.000 hours are presented. The reservoir has no 

storage 24,4% of time, the upper tank 26,6% and the lower tank 41,3%. 
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GRAPH 22: COURSE OF STORAGE COMPLETENESS FOR SIMULATION NO.4 

 

GRAPH 23: ENERGY GENERATION MIXTURE FOR SIMULATION NO.4 
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The mean hourly wind energy generation is 0,72 MWh, with standard deviation 1.1 

MWh. In almost 21,6% of time, energy is generated due to spill of the reservoir, with 

mean hourly value of 0,81 ΜWh. Approximately 51% of time the turbines have 

deficits to encounter. Their mean hourly energy generation is 1,13 MWh. 

Graph 23 presents the distribution of energy generation by different sources. In 

particular, 46,8% of the total annual energy arrives from wind turbines (6,23 GWh), 

38,83% is produced directly from the hydroelectric stations (4,96 GWh) and the rest 

(1,53 GWh) is produced from reservoir spill. In this respect, the wind park operator 

earns 527.000 €/year and the operator of hydroelectric plants earns 1.463.200 

€/year. Setting the irrigation pricing at 0,13 €/m3 and its penalty at 1,04 €/m3, the 

earnings during the simulation are 21.300 €/year. 

 

COMPARISON AND CONCLUSIONS 

Table 4 summarizes the key outcomes of the four simulations, investigating the 

impacts of seasonal restrictions and the ability of pumping water to the reservoir. As 

shown, enabling both options undoubtedly improves the system performance. 

First, the operation of the hybrid system by applying the seasonal restrictions set by 

PPC SA not only increases the reliability of irrigation (as expected), but also improves 

the coverage of energy needs of the island. That is to say, the restrictions regarding 

the desirable reservoir level are used not only for setting irrigation as a priority of 

the system, but also ensure the rational operation of the hybrid system in total. 

 

TABLE 4: AGGREGATED RESULTS OF DIFFERENT SIMULATIONS 
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Specifically, the difference between the first and the second simulation is about 7% 

in terms of irrigation reliability and 2% in terms of energy generation reliability, while 

the average energy deficit drops from 1,12 to 0,88 MWh. The wind park operator 

still earns the same amount of money due to the “guaranteed price” policy, while 

the hydroelectric power station operator earns 11% more money per year in 

simulation No.2. Concurrently, due to the high price of the irrigation penalty, the 

earnings from irrigation skyrocket from 1.612 €/year to 35.000 €/year. Moreover, 

the energy generation due to spill of the reservoir rose from 14% of the total energy 

generation in simulation No.1 to 22% in simulation No. 2. 

Similarly, simulation No.3 differs from No.4 in terms of irrigation reliability. In detail, 

there is a small increase of about 3,6% from the third to the fourth simulation, while 

the reliability of energy generation remains practically constant. Simultaneously, the 

average energy deficit drops from 1,15 to 0,96 MWh. The wind park operator earns 

the same amount of money due to the “guaranteed price” model. The hydroelectric 

power station operator increases his earnings about 14% in simulation No.4. 

Concurrently, due to the high price of the irrigation penalty, the earnings from 

irrigation also show a rapid increase from 1.612 to 21.300 €/year. In both 

simulations, the energy generation due to spill of the reservoir is about 14% of the 

total energy generation, while the annual energy generation of the hydro turbines 

rose from 4,35 to 4,96 GWh/year. 

By enabling water pumping into the reservoir, the improvement of the hybrid 

system’s outcomes is noticeable, but not as drastic as the previous factor. 

Specifically, the difference of the first and the third simulation are negligible and will 

not be examined. However, the differences between the simulations which use the 

seasonal restrictions are conspicuous, as the irrigation reliability of the system 

increases about 2,6% and the one of energy generation 3% from simulation No.4 to 

simulation No.2. At the same time, the average energy deficit drops from 0,96 to 

0,88 MWh per failure, while the deficit of irrigation decreases about 0,70 m3. The 

wind park operator’s earnings are the same and the ones of the hydroelectric power 

station operator rise approximately 12%. Regarding irrigation, its benefits are slightly 

increased from 21.300 to 35.000 €/year. In addition, the energy due to reservoir spill 

rose from 14% of total energy generation in simulation No.4 to 22% in the second 

simulation, while the annual energy generation by the turbines is increased by 12%. 

Conclusively, both factors defining the alternative management models of the 

system influence remarkably the outcomes of the hybrid system and, most of all, its 

reliability. The simulation No. 2 which features the seasonal restrictions and the 

water pumping into the reservoir has, undoubtedly, the best results of all. Despite 

this fact, simulation No.4 approaches reality more than any other scenario, as it 

resembles the operation policy set by PPC SA. 



A stochastic simulation framework for representing water, energy and financial 
fluxes across a non-connected island 

- 79 - 

 

CHAPTER 6: OPTIMIZATION 

The results of the hybrid energy system’s operation were presented in the previous 

chapter. In this chapter, the possibility of optimizing the system components and 

their effect on the reliability are examined. Furthermore, conclusions are drawn 

regarding the possibility of improving the operation of the system, by means of 

economic criteria. 

The purpose of optimization is to achieve the most suitable design under a set of 

prioritized criteria and constraints, including maximization of reliability for irrigation 

and energy uses. Key components of the problem are the objective function, 

expressing the main aim of the model, which is either to be minimized or maximized, 

and a set of unknowns or variables which control the value of the objective function. 

The coefficients of the objective function indicate the contribution to the value of 

the objective function of one unit of the corresponding variable. 

In our case, the operation of the hybrid energy system determines the objective 

function of the optimization procedure. The results of the objective function are 

going to be examined through single-variable optimization using the storage capacity 

of the tanks, the pump station’s nominal power and the energy generation decision 

criteria of the reservoir and the upper tank. In addition to this, a genetic algorithm is 

going to provide results regarding the multicriteria optimization of the hybrid energy 

system, in an attempt to define the most effective operation of the system. 

 

SINGLE-VARIABLE OPTIMIZATION 

TANK STORAGE CAPACITY 

The storage capacity of the upper and the lower tank is 80.000 mᶾ. Increasing this 

size would result to larger potential of energy storage, leading to higher exploitation 

of wind energy. Moreover, the reservoir-upper tank route is going to be chosen less 

times if the completeness of the upper tank is higher, leading to larger amounts of 

water covering the irrigation needs of the island. 

Graph 24 presents the irrigation and energy generation reliability for tank storage 

capacities from 80.000 mᶾ to 250.000 mᶾ. 
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GRAPH 24: IRRIGATION AND ENERGY GENERATION RELIABILITY VS. TANK STORAGE CAPACITY 

 

GRAPH 25: MEAN POWER PRICE PER MWH FOR DIFFERENT TANK STORAGE CAPACITIES 

As shown, the effect of the storage capacity to the energy generation reliability is 

insignificant. On the contrary, a configuration of tank storage capacity to 250.000 mᶾ 

would increase the irrigation reliability of the system by 5,4%. This means that the 

earnings due to irrigation would increase about 130%, up to 48.281 €/year. 

The power price does not have significant differentiations when alternating the tank 

storage capacity. When the storage is 80.000 mᶾ, the mean power price is about 

275,4 €/MWh and with the storage being 250.000 mᶾ, this is about 275,6 €/MWh. 

Graph 25 presents the mean power price per MWh, provided from the “guaranteed 

price” model, for tank storage capacities from 80.000 mᶾ to 250.000 mᶾ. 
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PUMP STATION NOMINAL POWER  

The maximum energy surplus that the can be pumped to higher water levels is 2 

MWh per simulation hour. By increasing the nominal power of the pump station it is 

possible to exploit larger energy surpluses and encounter more effectively the 

stochasticity of wind energy generation. 

In Graph 26 the irrigation and energy generation reliability for pumping station 

installed power from 2 MW to 3 MW are presented. 

 

GRAPH 26: IRRIGATION AND ENERGY GENERATION RELIABILITY VS. PUMPING STATION POWER 

As shown above, the effect of the pumping station power to the irrigation reliability 

and the energy generation reliability is insignificant. 

Moreover, the power price does not have significant differentiations when changing 

the pumping station power. Specifically, for any value between 2 MW and 3 MW 

power the mean power price is about 275,4 €/MWh. 

 

RESERVOIR STORAGE CAPACITY 

The storage capacity of the reservoir is 910.000 mᶾ. Increasing this size would lead to 

larger potential of energy storage and larger amounts of water able to cover the 

irrigation demand of the island. 

Graph 27 presents the irrigation and energy generation reliability for reservoir 

storage capacities from 910.000 mᶾ to 2.000.000 mᶾ. 
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GRAPH 27: IRRIGATION AND ENERGY GENERATION RELIABILITY VS. RESERVOIR CAPACITY 

 

GRAPH 28: MEAN POWER PRICE VS. RESERVOIR CAPACITY 

The effect of the reservoir storage capacity to the energy generation reliability and 

the irrigation reliability is notable. In particular, doubling the capacity of the 

reservoir leads to a 5% increase of the energy generation reliability and a 3,5% 

increase of the irrigation reliability. Hence, the earnings due to irrigation would be 

about 39.900 €/year. 

The power price drops remarkably when alternating the reservoir storage capacity. 

When the storage is 910.000 mᶾ, the mean power price is about 275,4 €/MWh and 

with the storage being 2.000.000 mᶾ, the mean power price decrease about 1,3% to 

271,9 €/MWh. 

Graph 28 presents the mean power price per MWh, as calculated from the 

“guaranteed price” model, for reservoir capacities from 910.000 mᶾ to 2.000.000 mᶾ. 
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MINIMUM PELTON DISCHARGE 

The minimum operational discharge of the Pelton turbine is equal to 0,13 QD = 340 

m3/h. In about 7-10% of time, the reservoir or the upper tank are forced to release 

this amount of water in order to generate energy for insignificant deficits. As a 

result, more water is placed in lower levels and is not exploitable for energy 

generation and coverage of irrigation needs. 

Graph 29 presents the irrigation and energy generation reliability against minimum 

Pelton discharge, ranging from 340 m3/h down to zero. 

As shown, the effect of the minimum Pelton discharge to the irrigation reliability and 

the energy generation reliability is not notable.  

 

GRAPH 29: IRRIGATION AND ENERGY GENERATION RELIABILITY VS. MINIMUM TURBINE FLOW 

In addition, the power price does not have significant differentiations for different 

minimum discharge values. In particular, for any value between 340 m3/h and 0 m3/h 

the mean power price is about 275,40 €/MWh. 

 

AGGREGATED RESULTS 

The effects that the different variables have to the outcomes of the hybrid energy 

system are dissimilar. In order to process a multifactorial optimization it is needed to 

know the sensitivity of the system results to all the variables. Graph 30 presents the 
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sensitivity of the energy generation reliability to the reservoir and tank storage 

capacity and the pumping station power. 

Undoubtedly, the reservoir storage capacity is the variable affecting the energy 

generation reliability the most. Furthermore, increasing the tank storage capacity is 

slightly more important in terms of energy reliability than improving the pumping 

station’s nominal power.  

 

GRAPH 30: SENSITIVITY OF ENERGY GENERATION RELIABILITY 

 

GRAPH 31: SENSITIVITY OF IRRIGATION RELIABILITY 

In Graph 31 the sensitivity of the irrigation reliability to the reservoir and tank 

storage capacity, the pumping station power and the minimum discharge is shown. 

The tank storage capacity is the variable affecting the irrigation reliability the most, 

while the reservoir storage capacity is also of high importance. The pumping 
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station’s nominal power and the minimum discharge with which the Pelton hydro 

turbine can produce hydro power influence slightly the outcome of the hybrid 

energy system regarding irrigation. 

 

MULTICRITERIA OPTIMIZATION 

The performance of the hybrid energy system is affected by several factors. The 

most important is the capacity of the reservoir and the tanks, as they determine the 

potential water storage of the system. The power of the pumping station and the 

minimum discharge of the hydro-turbine also influence the outcomes. Hence, the 

optimization of the hybrid energy system has to be one of all the variables 

simultaneously. For this purpose, a genetic algorithm was developed in an attempt 

to define the optimal system operation, in which irrigation reliability reaches 98,5%. 

The genetic algorithm is a method for solving both constrained and unconstrained, 

optimization problems, based on natural selection, i.e. the process that drives 

biological evolution. The algorithm repeatedly modifies a population of individual 

solutions. It begins by creating a random initial population, and then creates a 

sequence of new populations, by using s parents the individuals in the current 

generation, relying on bio-inspired operators (mutation, crossover and selection). 

The results show that in order to achieve irrigation reliability equal to 98,52%, 

featuring an average failure of about 120,8 mᶾ, the storage capacity of the reservoir 

has to be at least 2.680.000 mᶾ, the one of the tanks 197.000 mᶾ, the nominal power 

of the pumping station at 2.200 kW, and the minimum discharge with which the 

Pelton hydro turbine can produce hydro power below 286 m3/h. Concurrently, for 

these values of the variables the energy generation reliability is equal to 65,81% and 

its vulnerability circa 0,77 MWh. The reservoir has no storage 12,4% of time, the 

upper tank 22,5% and the lower tank 31,7%. 

Using the “guaranteed price” pricing model, it is estimated that the wind park 

operator earns 527.000 €/year and the operator of hydroelectric plants earns 

1.741.200 €/year. Setting the irrigation pricing at 0,13 €/m3 and its penalty at 1,04 

€/m3, the earnings during the simulation are 50.430 €/year. If the autonomous 

power station covered all the deficits for a price of 350 €/MWh, its earnings would 

be approximately 811.200 €/year. As a result, the average power price of the island 

Ikaria would be about 251 €/MWh. 

Graph 32 presents the time series of storage completeness of the reservoir, the 

upper tank and the lower tank for the simulation of the hybrid energy system with 

the aforementioned optimal values. 
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GRAPH 32: TIME SERIES OF COMPLETENESS OF THE RESERVOIR AND THE TANKS FOR THE 

OPTIMAL HES SIMULATION 

  



A stochastic simulation framework for representing water, energy and financial 
fluxes across a non-connected island 

- 87 - 

 

CHAPTER 7: ENERGY MARKET 

ABOUT THE OPERATION OF THE ENERGY MARKET 

To achieve 100% reliability on the fulfilling of energy demand across the island it is 

necessary to use the power station of Agios Kirikos. In general, the operating costs of 

conventional production units in the remote islands are high due to rising transport 

costs and environmental taxes. Specifically, in Ikaria the pricing for the energy 

generated from the autonomous power station of Agios Kirikos is set at 350 €/MWh. 

Therefore, in this chapter it will be examined whether the “guaranteed price” pricing 

model for the three energy producers of the island or a more “liberal” energy market 

between those three energy players will improve the operation of the system. 

Moreover, we will examine which of the two suggested management models will 

offer the lower power price to the public and which one will achieve maximization of 

the power players’ earnings. In order to employ such complex simulations, an 

extended code on Matlab® was developed featuring the operation of the hybrid 

energy system and an energy market. Apart from comparing the different 

management models of the energy generation profile of Ikaria, this simulation aims 

at encountering the problematic of setting an energy market on a non-

interconnected island and optimizing its parameters. 

There are two major arguments opposing the operation of an energy market in a 

non-interconnected island: 

 Firstly, the stochastic nature of the power produced by RES units and their 

limited ability to control their power will make it doubtful that the operation 

and performance of such facilities in remote areas is profitable. Thus, it is 

argued that only by securing a “guaranteed price” for every proportion of 

energy generated by RES installations, even if it is not being exploited by the 

energy grid, investors will have motivations to invest in RES units in remote 

islands, leading to higher exploitation of their wind potential and contribution 

to the attainment of the 20-20-20 targets set by EU. Nevertheless, in Ikaria 

the aforementioned arguments are encountered by the characteristics of the 

island’s hybrid energy system. On the one hand, the significant wind potential 

of the island leads to higher proportions of energy production and, 

consequently, the chance of making more antagonistic offers during the 

energy auction. In addition to this, the ability of the system to store energy 

surpluses, which account for circa 38% of the wind energy generation, makes 

the investment even more profitable. 

 Secondly, the possibility of the three energy players forming a cartel, taking 

advantage of to their minor number. This is encountered by considering a 

hypothetical operator of the hybrid energy system who sets maximum values 
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on bidding. Moreover, the adaption of a pricing model based on 

discrimination of the prices will be examined instead of the existing Limit 

Price System, which undoubtedly favors the collusion of the energy players in 

order to maximize their profits. 

The main goals of the operation of the energy market are the minimization of the 

power price, its comparison with the fixed value of 295 €/MWh set by PPC, and the 

energy price in case that the autonomous power station was the only source of 

energy and securing earnings for the energy players that allow the depreciation of 

their investments and offer incentives for sufficient profits. 

Setting up the energy market needed the confrontation of major impediments and 

the development of empirical procedures that reflect the real-time operation of the 

system, which will be presented next. 

 

WIND SPEED FORECASTING 

As mentioned above, the energy auction takes place daily at t0 =12:00 am and 

defines the energy generation mixture of the day ahead. Hence, the forecasting of 

the hourly wind speed leading to the energy generation is necessary. 

For real-time energy market simulations, we developed an innovative forecasting 

procedure, to provide stochastic projections of the upcoming wind speeds up to 36 

hours lead time, by running each day at 12:00 am (t0) and estimating the upcoming 

wind speed from time step t0 + 12 up to t0 + 36 (hours). Initially, we employed 

SPARTA for generating 1.000 years of synthetic hourly wind speed data, which were 

next used as income for a K-Nearest Neighbors Algorithm (KNN). The latter simply 

stores a collection of examples. Each example consists of a vector of features 

(describing the example) and its associated class (for classification) or numeric value 

(for prediction). Given a new example, KNN finds its k most similar examples (called 

nearest neighbors), according to a distance metric, and predicts its class as the 

majority class of its nearest neighbors or, in the case of regression, as an aggregation 

of the target values associated with its nearest neighbors. 

In general, ten realizations of hourly wind speed for the entire simulation horizon 

were provided. An example for 36 hours lead time, by combining SPARTA with KNN, 

and their mean value are presented in Graph 33, 
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GRAPH 33: TEN FORECAST SETS OF WIND SPEED FOR 36 HOURS LEAD TIME 

Due to the upper and lower bound of the wind turbines’ power curve, converting the 

forecasted and observed wind speed to forecasted and observed energy generation 

results to smoother deviations. For example, Graph 34 shows the forecasted and 

observed energy generation of the simulation previously presented in Graph 33: 

 

GRAPH 34: AVERAGE FORECAST AND OBSERVED ENERGY GENERATION REFERING TO GRAPH 24 
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Undoubtedly, by reducing the number of realizations of the wind forecasting model, 

larger deviations appear between the observed and forecasted wind speed (Graph 

35). 

 

GRAPH 35: TWO FORECAST SETS OF WIND SPEED FOR 36 HOURS LEAD TIME 

Consequently, the energy generation forecast under a minor number of realizations 

differs notably from the actual energy generation (Graph 36). 

 

GRAPH 36: FORECASTED AND OBSERVED ENERGY GENERATION REFERING TO GRAPH 26 
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Hence, the aforementioned forecasting procedure can predict satisfactorily the wind 

speed at a lead time of three or four hours, but the lead time of 36 hours presents 

remarkable differentiations of the observed and forecasted wind speeds. Hence, the 

operation of the energy market simulation cannot be evaluated when using 

predictions so different from the actual values. Therefore, the results of the energy 

market simulation will be tested with the hypothesis of enabling a meteorological 

forecasting procedure, whose accuracy (in terms of wind power production) is 

empirically estimated at about 90-95%. 

 

PRICING MODEL 

The existing legislation in Greece imposes the implementation of a “guaranteed 

price” model for RES. According to PPC SA, the fixed value set for the hybrid energy 

generated from Ikaria’s hybrid energy system is 295 €/MWh. In addition to this, the 

operation costs of the autonomous power station in Agios Kirikos are about 350 

€/MWh, while as shown in Table 1, the “guaranteed price” for the wind parks in the 

non-interconnected network is 84,60 €/MWh, regardless of whether the generated 

energy enters the grid or not. Although it is argued that by implementing a 

“guaranteed price” pricing model there will be incentives for higher RES penetration, 

especially in remote islands, this is expected to lead to notable expenses. 

The existing pricing model for the operation of energy markets is the Limit Price 

System. This is defined as the price at which the electricity market is cleared and is 

the price received by all those who inject energy into the energy grid and are paid by 

all those who request energy from this. In particular, the Limit Price of the System is 

shaped by the combination of the price and quantity bids made each hour of the 

available power generation units and the hourly electricity that is demanded on an 

hourly basis by consumers. 

A simple description of how the System's Limit Price is calculated mentions that the 

production units are ranked according to their bids in ascending order, starting from 

the lowest price offered for a certain amount of energy and ending at the highest 

bid. At the point where the energy offers reach the requested load, the Limit Price of 

the System is also determined. In essence, the System Limit Value coincides with the 

bid of the last unit to operate to meet demand. Figure 33 presents an example of the 

determination of the Limit Price of the System. 
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FIGURE 33: DETERMINATION OF LIMIT PRICE (SOURCE: OEKO INSTITUTE) 

In order to protect consumers and create conditions of healthy competition, an 

upper limit on the price offered in the interconnected grid is set at 150 €/MWh, and 

a lower bidding level, which is the variable cost of the unit, is put in place, so that in 

most cases producers will have to pay their fuel costs. Nevertheless, due to the 

special conditions met in the non-interconnected grid, the upper limit for the 

purpose of simulating the energy market of Ikaria is set at 350 €/MWh, equal to the 

cost of the autonomous power station. 

Despite the operation of the Limit Price System in the interconnected grid, it is 

argued that its implementation in remote islands will lead to higher chances of the 

energy players forming a cartel and purposely letting the autonomous power station 

enter the market so that the Limit Price reaches its upper bound. In this case, the 

earnings of all the energy players will be maximized without even providing all the 

energy they could generate. 

Ikaria’s energy market will also be simulated with the use of a pricing model based 

on discrimination of the prices instead of the existing Limit Price System. According 

to this model, the cumulative price of the generated power in each time step will 

come from the weighted value of energy production. By the term weighted, it is 

meant that the price of energy will be a sum of the proportion of energy each 

producer generated multiplied by the price each proportion was agreed to be sold 

during the energy auction. As a result, the profit of each player will be restricted only 
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to the offer made during the energy auction and the competition among them will 

be embraced. 

Moreover, it is necessary to impose penalties to the energy players in case that they 

do not achieve to provide the energy they agreed to during the auction. This 

measure will force them making far more realistic offers, based on their energy 

generation capacity at the certain moment and, consequently, conditions of healthy 

competition will be created. Otherwise, the energy players will have the incentive to 

agree on providing unrealistic energy offers, regardless of their ability to produce 

such amounts. 

To sum up, all of the proposed pricing models are going to be examined during the 

simulation of the hybrid energy system in an attempt to define the one that provides 

the lowest power price to the public and draw conclusions on the operation of the 

energy market. 

 

SURPLUS MANAGEMENT 

The surpluses of energy during the operation of the hybrid energy system are used 

to pump water into higher levels, in order to store it as hydrodynamic energy. 

Surpluses are mostly created due to the stochastic nature of the wind energy 

generation. In particular, the energy generated from the wind park in many cases 

exceeds the corresponding demand of the island and, as a result, the pumped 

storage system is activated to store the energy surplus. In addition to this, during the 

operation of the energy auction and due to the failure of the wind speed forecasting 

procedure, it is possible that larger proportions of energy than agreed are generated. 

As a result, the energy demand is covered by one of the other two energy players 

and the surplus of wind energy is stored. 

Energy surpluses can also be created from the autonomous power station, which has 

response time of approximately 20-25 minutes. Therefore, it is taken into account 

that the autonomous power station can respond in any energy deficit in the hourly 

scale and secure the maximum energy generation reliability of the system. In order 

to do so, the power station has to be operating at least at 300 kW. Otherwise, its 

response time is increased to several hours, even a day. Hence, in cases that the 

demanded power from the autonomous power station is less than 300 kWh within 

an hour, energy surpluses are created and need to be stored. 

During the real-time simulation of the energy market, two major issues govern the 

management of energy surpluses. 
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First, the hydroelectric power station operator has the chance to buy energy 

surpluses by the other two players, probably on a fixed price set before the start of 

the hybrid energy system’s operation, and use it to pump its water on higher levels 

in order to increase its energy storage. In contrast, an alternative management 

model is that the wind park and autonomous power station operators use their 

energy surpluses in order to rent storage of the lower tank and pump it to the upper 

tank. As a result, the strategy of the wind park operator will change when bidding in 

the energy auction, as he may have enough energy storage to handle the stochastic 

nature of its energy generation, leading to making more antagonistic offers than its 

competitors. Therefore, the interest of the hydroelectric power station operator is 

prohibiting the wind park storing large amounts of energy. 

Second, the determination of the part of the storage capacity that the hydroelectric 

power plant operator will provide to the other two players to store their energy 

surpluses. On the one hand, the operator has the incentive of gaining earnings. 

However, by letting them getting more amounts of stored water will lead to the 

wind park operator making more antagonistic offers in the future and, consequently, 

putting the hydroelectric power plant out of the market. Thus, it is decided that the 

maximum allowed storage to be offered to the wind park and the autonomous 

power stations operators will be defined according to the month of operation. 

All aforementioned surplus management models will be examined in an attempt to 

draw conclusions on the operation of the energy market. 

 

TURBULENT CHARACTER OF WIND ENERGY 

Wind turbines generate electricity from turbulent wind. Large fluctuations, and, 

more importantly, frequent wind gusts cause a highly fluctuating electrical power 

feed into the grid. Such effects are the hallmark of high-frequency turbulence.  

Modern design enables variable rotational speed in order to optimize aerodynamic 

performance and reduce mechanical loads. AC-DC-AC inverters must then be used 

between the generator and the grid to match the specified grid frequency, thus 

decoupling the rotating mechanical parts of wind turbines from the grid. In this 

decoupled configuration, the controller of the wind turbine commonly operates 

freely to maximize his output; i.e., to follow the wind power fluctuations mostly 

regardless of the grid load. Furthermore, the typical reaction time of wind turbines is 

in seconds, so that the grid dynamics in this time range become more complex. 

More fundamentally, understanding and reliably predicting wind dynamics remains a 

central issue in wind forecasting. The widely used hypothesis of a spectral gap allows 

to conveniently separating the dynamics of microscale turbulence from mesoscale 
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climatology. This hypothesis supports the historical use of ten minute-averaged data 

records that supposedly contain all mesoscale dynamics without high-frequency 

turbulence. While mesoscale predictions are a central focus of energy meteorology, 

high-frequency fluctuations are seldom addressed (Milan et al., 2013). 

ENERGY MARKET STRUCTURE 

The energy auction regarding the next 24 hours takes place daily, at t0 = 12:00 am. 

First, the hourly wind speed from time steps t0 + 12 to t0 + 36 is estimated by the 

aforementioned forecasting procedure and then the three players make their offers 

against the projected energy demand (24 hourly values).  

The offer of the Wind Farm (WF) accounts for the forecasted energy and aims at 

least to the depreciation of the investment. When strong winds are expected, the 

WF is considered to be the most competitive player. The penalty that is imposed to 

the WF, if it does not generate the promised amount of energy, is relatively low, in 

order to favor renewable sources that are inherently highly uncertain. 

The criteria of the configuration of the Hydroelectric Power Station (HPS) offer are 

the completeness of the reservoir and the upper tank and the seasonally-varying 

restrictions that are imposed due to irrigation demands. The offers of HPS are 

generally higher than the ones of WF. Under some premise, e.g., during the winter 

and under high water storage, HPS is allowed to offer lower prices than WF, in order 

to enter the market and gain from the surplus of energy provided the other two 

players, through pumped-storage. In general, the configuration of the HPS offer is 

remarkably difficult due to the plethora of factors concerning its availability, as well 

as the relatively high penalty that is imposed in case of deficits. 

The offer of the Autonomous Power Station (APS) is significantly higher than the 

other ones, owning to the cost of the oil transport and environmental taxes. The 

energy demand is mostly fulfilled by the WF and HPS, thus leaving to the APS the 

role of covering the deficits, in order to maintain the reliability at 100%. Since for 

technical reasons the operation of APS cannot be terminated, energy surpluses are 

quite often and they are regulated by the pumped-storage system. 

According to a predetermined procedure, the energy players make offers regarding 

ten different levels of demand. Since the required power of Ikaria does not exceed 3 

MW at ~96% of time, it is chosen that in the simulation of the energy auction the 

nine first energy demand levels will refer to the first 3 MWh of each time step, while 

the last level will refer to the energy demand that exceeds 3 MW. Hence, each one 

of the nine first levels will be offers referring to one third of one MWh, cumulatively 

3 MWh, and the last one to rest of energy demand above 3 MWh. 
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ENERGY MARKET’S OPERATION 

The simulation of the operation of the hybrid energy system’s energy market was 

developed in Matlab®. The code runs a simulation procedure of 35 years using an 

hourly time step. For the operation of the energy market, all possible scenarios that 

were mentioned in the previous chapter were examined. The simulation consists of 

many phases which resemble the different functions of the energy market. 

First, at each time step the discharge capacity of each route is calculated on the basis 

of the nominal power of the two turbines, the distance between the reservoirs and 

the rate of turbine efficiency. 

Then, the reservoir spill takes place. At each step the runoff is added to the existing 

storage of the reservoir, and in case that the resulting storage is greater than the 

maximum capacity of the reservoir, water is driven down to the upper tank in order 

to generate energy. In that case, the local and linear hydraulic losses are defined, as 

described in Chapter 5. The surplus water, which is always less than the maximum 

capacity of the reservoir-upper tank route, is transferred to the upper tank through 

the Ano Proespera hydroelectric plant. If the transferred water is less than the 

minimum operation flow with of the Pelton turbine, then no hydropower is 

generated. The price of the generated energy due to spill has to be a fixed and low, 

otherwise the hydroelectric plant operator will have the incentive to let the spill 

happen in order to enter the market first, regardless of the energy auction’s results. 

Hence, the energy price due to spill is set at 16-25 €/MWh and varies across 

different simulations of the market. At the end, the reservoir storage equals its net 

capacity and the transferred water is added in the existing storage of the upper 

reservoir. Finally, the water level of the reservoir is updated, using eq. (9). 

Next, the irrigation takes place, by examining the ability of the existing storage of the 

reservoir to cover the associated needs. If not, then failure occurs and the 

proportion of irrigation demand failure is added in an adder which sums the total 

amount of water deficit for irrigation. 

Then, the reservoir level is updated using eq. (9). In addition, the completeness of 

the reservoir and the tanks are defined as a ratio between its storage and its 

maximum capacity. Concurrently, the amount of water that is owned by the wind 

park operator and the autonomous power station operator are defined in an 

attempt to determine a crucial factor of the configuration of the players’ offers. 

The hours during which the energy auction takes place are defined through the 

integral division of the time step with the total hours of each day, i.e. 24. After that, 

the energy auction starts. 
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The first step is to make a wind speed prediction for lead time of 12 to 36 hours 

ahead, i.e. the next day. When the SPARTA forecasting procedure is used, the 

number of realizations of the forecasted wind speed has to be defined. The larger 

the number of sets, the less is the bias of the forecasting model. If the 

meteorological forecasting procedure is used, then the forecasted wind speed equals 

to the observed one either increased or reduced by 5%, since the accuracy of this 

procedure is empirically estimated at about 95%. The accuracy of the energy 

demand forecast is set at 98%. 

Following, using the forecasted wind speed data, the wind farm forecasted energy 

generation is employed. The hourly wind speed data is used as input at the power 

curve (Figure 26) to define the amount of produced energy. For the display of the 

generation of the Stravokoundoura wind farm, the result is being multiplied by the 

number of the wind turbines, while for the display of the standalone Perdiki wind 

turbine, the result is being multiplied by (600/900), in order to approximate the 

generation of energy through the associated wind turbine of 600 kW. 

Knowing the predictions for energy demand and generation and the corresponding 

energy storage, the three energy players make their offers regarding the energy 

profile of the following day. 

The offer of the wind park operator accounts for the forecasted energy and aims at 

least to the depreciation of the investment. In particular, for every one of the ten 

energy levels of the auction: 

 If the forecasted energy generation exceeds the demand, or if it is slightly 

lower but the water storage of the wind park exceeds 10.000 mᶾ, which 

accounts for about 2,60 MWh, then the wind park’s offer is set at 75 €/MWh.  

 If the forecasted energy demand exceeds the forecasted generation for less 

than 100 kWh, while the water storage of the wind park exceeds 20.000 mᶾ, 

the offer of the wind park is set at 75 €/MWh, which is expected to be higher 

than the one of the hydroelectric power station and lower than the offer of 

the autonomous power station. 

 If the forecasted energy generation is notably lower than the associated 

demand, the wind park makes an offer high enough so that it will not enter 

the energy market at all. It is expected that if the wind park operator sells its 

energy at approximately 50 €/MWh, then the investment will be depreciated.  

In general, we argue that the wind park makes the most antagonistic offers. 

The determination of the hydroelectric power plant’s offer is much more complex. In 

most cases, its offers are higher than the ones of the wind park. In particular, the 
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criteria accounted for are the completeness of the reservoir and the upper tank and 

the month that the auction refers to, due to the reservoir’s seasonal restrictions.  

If the auction takes place from October to February, when the minimum allowable 

water level is the lowest one, as set by PPC SA, while either the completeness of the 

upper tank and the reservoir exceed 75% and 90%, respectively, then the offer of the 

hydroelectric station for the first three energy levels is set to 70 €/MWh, even lower 

than the lowest offer of the wind park. Using this strategy the hydroelectric station 

aims in entering the market first and gaining from the surplus of energy provided the 

other two players, through pumped-storage and is implemented approximately 24% 

of the simulated time. Nevertheless, the conditions set are strict, because there is a 

high chance of failure, leading to paying costly penalties. Moreover, in this case the 

offers for the next four energy spaces are set at 90 €/MWh, while the last one is high 

enough so that it will not enter the energy market at all. 

During the transitional months of March and April, if the completeness of the upper 

tank and the completeness of the reservoir are both above 90%, the offer of the 

hydroelectric power station for the first two energy spaces is set equal to 70 €/MWh, 

the one for the next five is 90 €/MWh and the last two are high enough so that it will 

not enter the energy market. 

If the aforementioned conditions are not feasible during the winter season, and the 

completeness of the upper tank is above 40%, then the hydroelectric power station 

offers for the four first energy levels 90 €/MWh and extremely high prices for the 

other ones. 

During the summer months, when the irrigation needs are large and the seasonal 

restrictions do not allow energy generation from the Ano Proespera power station, if 

the completeness of the upper tank is above 40%, the offer of the hydroelectric 

station for the four first energy spaces is 90 €/MWh and extremely high prices for 

the other ones. Otherwise, the hydroelectric station stays out of the market. 

The above empirical procedure regarding the offers made by the wind park and the 

hydroelectric station came in an attempt to define market equilibrium. These values 

may vary during the different simulations of the hybrid energy system. 

The offer of the autonomous power station is notably higher than the ones made by 

the other two players, due to the cost of the oil transport and environmental taxes. 

Specifically, in every time step and energy level this equals 350 €/MWh. The main 

role of the autonomous power station is to cover the deficits, thus maintaining the 

energy generation reliability at 100%. In other words, even though the majority of 

the other two players’ offers are by far more antagonistic, when the hydroelectric 

power station has no storage to use for energy generation and the wind speed is 
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either low or extremely high, the autonomous station has the chance to offer energy 

at the highest acceptable price. In addition to this, given the low response time of 

the station, it is used to cover deficits that have not been predicted. 

Then, the offers of the three players are compared, and the lowest one enters the 

market for each given energy level. As a result, a 10×24 table is created, referring to 

every hour of the day. The next step is the definition of the agreed earnings for every 

energy player. In particular, the amount of energy that every player agreed to is 

multiplied by each guaranteed price. Consequently, the earnings of each player for 

the next day are defined, given that they manage to provide the guaranteed energy. 

In 22% of simulated time the wind park enters the market first, while this percentage 

for the hydroelectric power station is 37% and for the autonomous power station 

41%. In Graph 37, a simulation of the decisions for the first energy space of one third 

of MWh for 5.000 hours is shown. 

 

GRAPH 37: DECISIONS REGARDING THE FIRST ENERGY LEVEL FOR 5.000 HOURS 

After the energy auction is completed, the real-time energy generation proceeds. At 

first, the water storage of the wind park is converted to potential energy storage 

using eq. (10). Then, the hourly wind data is used to define the amount of energy 

produced, as described before. Also, the percentage of the energy demand that it is 

to be covered by the wind park operation is defined. If the wind energy generation is 

greater than the guaranteed amount of energy the wind park would provide (not the 

energy demand apparently), then surplus of energy occurs. Otherwise, the deficit 

that is created will be encountered by either the hydroelectric power station or the 

autonomous power station. In case that this occurs during one of the winter season 
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months in which the minimum allowable water level is the lowest one, i.e. October 

to April, and the completeness of the reservoir is above its minimum allowable level 

or in case that the completeness of the upper tank is above 60%, then the 

unexpected deficit made by the wind speed forecasting failure is encountered by the 

hydroelectric power station. Otherwise, the autonomous power station enters the 

market to cover the deficit. Since the response time is really low and the two power 

players have to generate more energy than agreed to, the prices paid are much 

higher. Specifically, the one for the hydroelectric power station is set at 300 €/MWh 

and for the autonomous power station at 500 €/MWh. Hence, this procedure 

increases drastically the power price of the island and highlights the need for 

trustworthy forecasting. 

 

GRAPH 38: SIMULATION OF DEFICITS AND SURPLUSES BY THE WIND PARK FOR 30.000 HOURS 

At the end, the total deficit is calculated as a sum between the energy that was not 

undertaken by the wind park plus the deficit that its miscalculations created. In 

addition to this, its surplus of energy, which occurs almost 32% of the simulation 

hours, is defined. It is possible that deficit and surplus of energy occur at the same 

time step: in case that the energy that the wind park agreed to provide is less than 

the energy it generated and simultaneously less than the demand of energy. This 

case occurs with a frequency of 24%. In Graph 38, the deficits and surpluses of the 

wind farm for 30.000 hours are presented. 
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Next, the seasonal restrictions of the reservoir are defined for the simulating time 

step, as set by PPC SA. Next, the reservoir level is calculated using eq. (9). 

Afterwards, if deficit occurs the procedure continues with the simulation of the 

hydro turbines and the autonomous power station. The selection of either the 

reservoir-upper tank route or the upper tank-lower tank one depends on the 

completeness of the reservoir and the tank, and on the seasonal restrictions. During 

the winter period and if the reservoir level of the is above the minimum allowed and 

the completeness of the upper tank is less than the one of the lower tank or below 

5%, the reservoir-upper tank route is selected. Otherwise, energy is generated 

through the upper tank-lower tank route, especially during the summer months. 

If the reservoir-upper tank route is selected for energy generation, first the discharge 

is calculated using eq. (13). As deficit, the total amount of energy that the 

hydroelectric power station has agreed to generate is put into the equation. The 

discharge cannot exceed the maximum reservoir-upper tank’s capacity and the 

existing storage of the reservoir. Simultaneously, the discharge should be high 

enough so that the hydro turbine has the ability to operate. In case of small-scale 

deficits and due to the existence of the minimum discharge with which the Pelton 

hydro turbine can produce hydro power, larger amounts of water are released, and 

as a result more water is transported to lower levels for the need of deficit coverage. 

Next, by applying eq. (12) and calculating the flow velocity, linear and local hydraulic 

losses are defined. Given that, using eq. (10) the water to be released into in order to 

generate energy equal to the deficit is calculated. This amount does not exceed the 

existing storage and the maximum capacity of the turbines.  

If the released water is less than the minimum operational flow of the turbine, no 

energy is generated and the deficit is covered by the autonomous power station at 

the price of 500 €/MWh. If the available storage or turbine capacity limit the energy 

generation in quantities less than the existing deficit, then the generated energy is 

injected to the energy grid, and the remaining deficit is covered by the autonomous 

power station. 

Next, the total energy generation by the hydroelectric power station is calculated 

using eq. (10). If this is less than the amount agreed to, then a penalty of 160 €/MWh 

is implemented, while if it is larger, then the price paid for the additional energy is 

400 €/MWh. 

The amount of energy generation by the autonomous power station is increased due 

to storage deficit in the reservoir. If the total energy generation of the autonomous 

power station is more than the amount agreed to and above the minimum power of 

300 KWh, then the price paid for the extra energy is 350 €/MWh. In case that the 
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energy generation of the autonomous power station is above 300 kWh and does not 

enter the grid, then surplus owned by the autonomous power station is created. In 

Graph 39, the energy generation and surpluses of the autonomous power station for 

30.000 hours are presented. 

  

GRAPH 39: TIME SERIES OF ENERGY GENERATION AND SURPLUSES BY THE APS FOR 30.000 

HOURS 

Following, the transported water is removed from the reservoir storage and added 

to the storage of the upper tank. 

If the upper tank-lower tank route is selected, the discharge is calculated using eq. 

(13). The deficit consists of the total amount of energy that the hydroelectric power 

station has agreed to generate plus the deficit of the wind park plus the amount of 

energy exceeding 300 kWh the autonomous power station agreed to provide, given 

that the last two have available storage at the upper tank. The discharge cannot 

exceed the maximum capacity of the upper tank-lower tank route and the existing 

storage of the upper tank. This discharge has to be large enough so that the hydro 

turbine has the ability to operate and produce energy. 

By applying eq. (12) and defining the flow velocity, linear and local hydraulic losses 

are calculated. Next, using eq. (10) the total amount of water to be released into the 
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turbine in order to generate energy equal to the deficit is calculated. This amount 

cannot exceed the existing storage and the maximum capacity of the turbines.  

If the released water is less than the minimum operation flow of the turbine, no 

energy is generated and the deficit is covered by the autonomous power station at 

the price of 500 €/MWh. If the available storage or turbine capacity limit the energy 

generation in quantities less than the existing deficit, then the generated energy is 

injected to the energy grid, and the autonomous power station is forced to cover the 

remaining deficit. 

Following, the total amount of energy generation by the hydroelectric power station 

is calculated using eq. (10). If the latter is less than the agreed quantity, a penalty of 

160 €/MWh is set, otherwise the price paid for the extra energy is 400 €/MWh. 

If the total energy generation of the autonomous power station is more than the 

amount agreed to and above the minimum power of 300 KWh, then the price paid 

for the extra energy is 350 €/MWh. If the energy generation of the autonomous 

power station is above 300 kWh and its energy does not enter the grid, then surplus 

owned by the autonomous power station is created. 

Next, the transported amount of water is removed from the upper tank and added 

to the lower one. 

The sum of payments of the three energy players during the above procedure minus 

the penalties paid by them defines the price of power for the simulated hour. By 

dividing this value by the energy demand of the time step, the power price per MWh 

for the simulated hour is calculated. In Graph 40, a time series of the completeness 

of the reservoir and the tanks and the power price at each time are shown. 

Following, the reservoir level is updated using eq. (9). Moreover, the completeness 

of the reservoir and the tanks are defined as a ratio of its storage to its capacity. 

If either the energy surplus owned by the wind park or one owned by the 

autonomous power station occurs, the water pumping process takes place. 

The discharge is calculated using eq. (14). As surplus, the sum of the surplus of the 

wind park and the autonomous power station is used. The discharge cannot exceed 

the maximum capacity of the pumping station and the existing storage of the lower 

tank. Then, by calculating the energy gradient and the flow velocity, linear and local 

hydraulic losses are defined and by using eq. (10) the total amount of water that can 

be pumped into the upper tank is computed. This amount cannot exceed the existing 

storage of the lower tank and the maximum capacity of the pumping station.  
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GRAPH 40: TIME SERIES OF COMPLETENESS OF THE RESERVOIR, THE TANKS AND THE POWER 

PRICE FOR 100.000 HOURS 

Next, the total amount of stored energy is calculated and the transported water is 

removed from the lower tank and added to the upper one. If the total stored energy 

equals to the sum of the energy surplus of the wind park and the autonomous power 

station, then the property of the stored amount of water is separated accordingly. If 

not, then the property is defined by the ratio of the surplus of each energy player to 

the total energy stored by the pumped water to the upper tank. 

It is decided that the maximum storage capacity that the hydroelectric power station 

provides to the other two energy players is varying according to the month of the 

simulation. In particular, during the summer months, due to high water needs, only 

10.000 m3 can be offered for energy storage. Between October and February, this 

limit increases to 40.000 m3, while for March and April the maximum water storage 

offered is 24.000 m3. 

In Graph 41, the surpluses of the wind park and the autonomous power station for 

30.000 hours are presented. 
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GRAPH 41: TIME SERIES OF ENERGY SURPLUSES BY THE WIND PARK AND THE AUTONOMOUS 

POWER STATION FOR 30.000 HOURS 

At the end of each step, three counters estimate the time steps during which the 

reservoir and the two tanks are empty. After that, the counters are divided by the 

total number of simulation hours in order to express the percentage of times that 

either the reservoir or the tanks have no storage during the simulation. 

At the end of the simulation the following quantities are computed: 

 irrigation failure, as the ratio of the counter of irrigation failure to the total 

hours of simulation; 

 irrigation resilience, as the ratio of the maximum times of consecutive 

irrigation failure to the counter of irrigation failure; 

 irrigation vulnerability, as the ratio of the sum of the total amount of water 

that the irrigation system was short of to the number of irrigation failures; 

 the percentage of time that the reservoir and the tanks are empty; 

 the earnings of the wind park operator, the hydroelectric power plant and 

reservoir operator and the autonomous power station operator; 

 the earnings of irrigation; 

 the mean value of power price. 
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In conclusion, this procedure employs the internal function of the hybrid system 

featuring the operation of a daily energy market. The management models of the 

hybrid system are differentiated on factors relating to the options and capabilities. 

These management models are presented and compared in the next section in an 

attempt to define the optimal one. 

 

SIMULATION OF DIFFERENT MANAGEMENT MODELS 

So far, we described the market’s operation under specific operation rules. By 

changing these rules, we get significantly dissimilar outcomes. The most critical 

factors that define the alternative management policies are the pricing model of the 

power generation, the forecasting procedure used for the prediction of the wind 

speed during the energy auction and the structure of the energy market. 

First of all, we will examine which one of the aforementioned pricing models leads to 

lower power price, given that it provides balanced earnings for all the power players. 

Secondly, the predictive capacity of the simulation model is of high importance, as 

poor forecasting of wind speeds would lead to a large number of deficits. Finally, the 

determination of the proper surplus management model is also of high importance. 

In conclusion, the impacts of these factors on the system behavior and especially on 

the power price will be examined and compared by employing simulations for 

several different management policies. 

 

SIMULATION NO.1 

Simulation No.1 aims at representing the operation of the hybrid energy system 

featuring the “guaranteed price” pricing model for each energy player. In particular, 

the wind park generation is priced at 84,6 €/MWh, as set in Table 1, and the 

hydroelectric power station at 295 €/MWh. The autonomous power station is used 

to cover the deficits the other two producers create and is priced at 350 €/MWh. 

The criteria for deciding the proper route for energy generation are the following: 

Between October and April, if the completeness of the reservoir is higher than the 

limit set by the seasonal restrictions, while the storage of the upper tank is lower 

than the one of the lower tank, or the completeness of the upper tank is below 5%, 

then the reservoir-upper tank route is selected for energy generation; otherwise the 

upper tank-lower tank one is used. As a result, the reservoir-upper tank route is 

chosen about 34% of time in which deficits occurred, while 66% of time energy is 

generated by releasing water from the upper tank. Regarding energy storage, given 
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that water cannot be pumped into the reservoir, the only way to store energy 

surpluses is the lower tank-upper tank route. 

The final results of the simulation were: 

 Irrigation Reliability = 93,2% 

 Irrigation Resilience = 0,005% 

 Irrigation Vulnerability = 112,5 m3 

In Graph 42, the time series of storage completeness of the reservoir, the upper tank 

and the lower tank are presented. The reservoir remains empty 22,9% of time, the 

upper tank 24,5% and the lower tank 41,9%. 

 

GRAPH 42: TIME SERIES OF COMPLETENESS OF THE RESERVOIR AND THE TANKS FOR 

SIMULATION NO.1 

The mean value of wind energy generation is 0,72 MWh, with standard deviation 1,1 

MWh, while in 22,4% of the time steps energy was generated due to spill of the 

reservoir with mean value of 0,81 ΜWh per operating time step. The mean value of 

the hydroelectric energy generation is 1,14 MWh per operating hour. 
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During the operation, 50,7% of annual energy is generated from the wind park (6,23 

GWh), 28,9% from the hydroelectric stations and the rest by the autonomous power 

station. The wind park operator earns approximately 527.000 €/year, the 

hydroelectric power station 1.385.000 €/year and the autonomous power station 

1.175.000 €/year. The earnings due to irrigation are 22.000 €/year. Concurrently, the 

mean power price is estimated at 276 €/MWh. It is noted that if only the 

autonomous power station was used for energy production, as made in several non-

interconnected Greek islands, the mean power price would be 350 €/MWh. 

 

SIMULATION NO.2 

Simulation No.2 represents the energy market featuring the SPARTA forecasting 

model using five realizations during each forecasting procedure, a pricing model 

based on discrimination, a Limit Price System pricing model and the renting of water 

from the hydroelectric station to the wind park and the autonomous power station. 

The criteria for deciding the proper route for energy generation are the following: 

Between October and April, if the completeness of the reservoir is higher than the 

limit set by the seasonal restrictions, while the storage of the upper tank is lower 

than the one of the lower tank, or the completeness of the upper tank is below 5%, 

then the reservoir-upper tank route is selected for energy generation; otherwise the 

upper tank-lower tank one is used. 

The final results of the simulation were: 

 Irrigation Reliability = 82,7% 

 Irrigation Resilience =0,005 % 

 Irrigation Vulnerability = 92 m3 

Graph 43 presents the time series of storage completeness of the reservoir, the 

upper tank and the lower tank. The reservoir remains empty 18,7% of time, the 

upper tank 2,1% and the lower tank 45,5%. 

The mean value of wind energy generation is 0,72 MWh, with standard deviation 

approximately 1,1 MWh. In 21,7% of the time steps energy was generated due to 

spill of the reservoir with mean value of 0,90 ΜWh per operating time step. 

Concurrently, the mean value of energy generation was 0,32 MWh per hour for the 

hydroelectric power station and 0,88 MWh for the autonomous power station. 
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GRAPH 43: TIME SERIES OF COMPLETENESS OF THE RESERVOIR AND THE TANKS FOR 

SIMULATION NO.2 

The wind park operator earns 651.000 €/year, the hydroelectric power station 

791.000 €/year and the autonomous power station 825.000 €/year. The simulation 

assumes that the wind park operator rents water from the upper tank at the price of 

2 €/mᶾ (which is quite low, in order to confront stochasticity), while the autonomous 

power station rents at 20 €/mᶾ. The mean losses due to irrigation are 52.730 €/year. 

Concurrently, the mean power price is estimated at approximately 168,8 €/MWh, 

while if the Limit Price System was used it is about 204,3 €/MWh. 

Graph 44 shows the mean power price per hour and per MWh of the simulation. 

 

GRAPH 44: TIME SERIES OF POWER PRICE FOR SIMULATION NO.2 
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SIMULATION NO.3 

Simulation No.3 represents the energy market featuring the SPARTA forecasting 

model using ten realizations during each forecasting procedure, a pricing model 

based on discrimination, a Limit Price System pricing model and the purchase of the 

energy surpluses from the hydroelectric power station. 

The criteria for deciding the proper route for energy generation are the following: 

Between October and April, if the completeness of the reservoir is higher than the 

limit set by the seasonal restrictions, while the storage of the upper tank is lower 

than the one of the lower tank, or the completeness of the upper tank is below 5%, 

then the reservoir-upper tank route is selected for energy generation; otherwise the 

upper tank-lower tank one is used. 

The final results of the simulation were: 

 Irrigation Reliability = 82,1% 

 Irrigation Resilience = 0,006% 

 Irrigation Vulnerability = 88,7 m3 

Graph 45 presents the time series of storage completeness of the reservoir, the 

upper tank and the lower tank. The reservoir remains empty 20,3% of time, the 

upper tank 2% and the lower tank 46,4%. 

 

GRAPH 45: TIME SERIES OF COMPLETENESS OF THE RESERVOIR AND THE TWO TANKS FOR 

SIMULATION NO.3 
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The mean value of wind energy generation is 0,72 MWh, with standard deviation 

approximately 1,1 MWh. In 21% of the time steps energy was generated due to spill 

of the reservoir with mean value of 0,86 ΜWh per operating time step. The mean 

value of energy generation was 0,47 MWh per operating hour for the hydroelectric 

power station and 0,90 MWh for the autonomous power station. 

The wind park operator earns approximately 111.000 €/year, the hydroelectric 

power station about 538.000 €/year and the autonomous power station 1.566.000 

€/year. The losses due to irrigation are about 52.240 €/year. Concurrently, the mean 

power price is estimated at approximately 155,7 €/MWh, while if the Limit Price 

System was used it would be about 190 €/MWh. 

Graph 46 shows the mean power price per hour and per MWh of the simulation. 

 

GRAPH 46: TIME SERIES OF POWER PRICE FOR SIMULATION NO.3 

 

SIMULATION NO.4 

Simulation No.4 represents the energy market featuring a pricing model based on 

discrimination, a Limit Price System pricing model and the renting of water from the 

hydroelectric power station to the wind park and the autonomous power station. 

The forecasting process is assumed that predicts wind speeds with 95% accuracy. 

The criteria for deciding the proper route for energy generation are the following: 

Between October and April, if the completeness of the reservoir is higher than the 

limit set by the seasonal restrictions, while the storage of the upper tank is lower 

than the one of the lower tank, or the completeness of the upper tank is below 5%, 

then the reservoir-upper tank route is selected for energy generation; otherwise the 

upper tank-lower tank one is used.  

The final results of the simulation were: 
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 Irrigation Reliability = 85% 

 Irrigation Resilience = 0,006% 

 Irrigation Vulnerability = 95 m3 

Graph 47 presents the time series of storage completeness of the reservoir, the 

upper tank and the lower tank. The reservoir remains empty 16,7% of time, the 

upper tank 2,1% and the lower tank 44,8%. 

 

GRAPH 47: TIME SERIES OF COMPLETENESS OF THE RESERVOIR AND THE TANKS FOR 

SIMULATION NO.4 

The mean value of wind energy generation is 0,72 MWh, with standard deviation 

approximately 1,1 MWh. In 21,9% of the time steps energy was generated due to 

spill of the reservoir with mean value of 0,90 ΜWh per operating time step. The 

mean value of energy generation was 0,33 MWh per operating hour for the 

hydroelectric power station and 0,86 MWh for the autonomous power station. 

The wind park operator earns approximately 615.000 €/year, the hydroelectric 

power station about 791.000 €/year and the autonomous power station 824.000 

€/year. The simulation assumes that the wind park operator rents water from the 

upper tank at the price of 2 €/mᶾ (which is quite low, in order to confront 

stochasticity), while the autonomous power station rents at 20 €/mᶾ. The losses due 

to irrigation are about 46.590 €/year. Concurrently, the mean power price is 

estimated at approximately 165 €/MWh, while if the Limit Price System was used it 

would be about 194,9 €/MWh. 

Graph 48 shows the mean power price per hour and per MWh of the simulation. 
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GRAPH 48: TIME SERIES OF POWER PRICE FOR SIMULATION NO.4 

 

SIMULATION NO.5 

Simulation No.5 represents the energy market featuring a pricing model based on 

discrimination, a Limit Price System pricing model and the purchase of the energy 

surpluses from the hydroelectric power station. The forecasting process is assumed 

that predicts wind speed up to 36 hours ahead with 95% accuracy. 

The criteria for deciding the proper route for energy generation are the following: 

Between October and April, if the completeness of the reservoir is higher than the 

limit set by the seasonal restrictions, while the storage of the upper tank is lower 

than the one of the lower tank, or the completeness of the upper tank is below 5%, 

then the reservoir-upper tank route is selected for energy generation; otherwise the 

upper tank-lower tank one is used. 

The final results of the simulation were: 

 Irrigation Reliability = 82,1% 

 Irrigation Resilience = 0,006% 

 Irrigation Vulnerability = 88,83 m3 

Graph 49 presents the time series of storage completeness of the reservoir, the 

upper tank and the lower tank. The reservoir remains empty 20,1% of time, the 

upper tank 2,1% and the lower tank 46%. 

The mean value of wind energy generation is 0,72 MWh, with standard deviation 

approximately 1,1 MWh. In 21,2% of the time steps energy was generated due to 

spill of the reservoir with mean value of 0,89 ΜWh per operating time step. The 

mean value of energy generation was 0,47 MWh per operating hour for the 

hydroelectric station and 0,87 MWh for the autonomous power station. 
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GRAPH 49: TIME SERIES OF COMPLETENESS OF THE RESERVOIR AND THE TANKS FOR 

SIMULATION NO.5 

The wind park operator earns approximately 1.413.700 €/year, the hydroelectric 

power station about 245.000 €/year and the autonomous power station 1.670.000 

€/year. The losses due to irrigation are about 52.240 €/year. Concurrently, the mean 

power price is estimated at approximately 143,2 €/MWh, while if the Limit Price 

System was used it would be about 167,2 €/MWh. 

Graph 50 shows the mean power price per hour and per MWh of the simulation. 

 

GRAPH 50: TIME SERIES OF POWER PRICE FOR SIMULATION NO.5 
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COMPARISON AND CONCLUSIONS 

Table 5 summarizes the key outcomes of the five simulations, investigating the 

impacts of different forecasting procedures, pricing policies and surplus 

management practices. 

 

TABLE 5: AGGREGATED RESULTS OF DIFFERENT ENERGY MARKET SIMULATIONS 

We conclude that the operation of an energy market with a pricing model based on 

discrimination provides an average power price 36-44% lower than the existing 

“guaranteed price” model. It also provides approximately 16-20% lower prices than 

the Limit Price System, without taking into account the possibility of the power 

players forming a cartel during the operation of a Limit Price System pricing model. 

Undoubtedly, the simulation of different management models of Ikaria’s energy 

market shows that a pricing model based on discrimination provides the lowest 

power prices of all, regardless of the other factors affecting the simulation. 

The purchase of the energy surpluses of the wind park and the autonomous power 

station from the hydroelectric power station provides the lowest power prices of all, 

but the earnings of the power players are not equally spread.  

Specifically, in Simulation No.3 the wind park earns only 111.000 €/year due to the 

penalties implied to deficits, because of the poor wind speed predictions. Hence, the 

depreciation of the wind park investment will last longer than the average lifetime of 

its wind turbines, which is about 20 years. As a result, the incentives for investing at 

a wind park would have been rescinded and the hybrid energy system would not 

have been made at the first place. 

In addition, in Simulation No.5 the hydroelectric power station earns only 245.000 

€/year and loses 52.240 €/year due to irrigation failure. Thus, the depreciation of the 

hydroelectric station investment would be completed at approximately 150 years. 
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On the contrary, renting water from the hydroelectric power station to the wind 

park and the autonomous power station provides about 10% higher power prices on 

average, but also ensures a fairer spread of earnings to the power players, leading to 

better incentives for investments on the island’s hybrid energy system. 

In simulations No.2 and No.4 the depreciation of the wind park investment would 

have been made at approximately 8 years, leaving the rest years of the wind 

turbines’ lifetime to provide profits to the operator. Concurrently, the hydroelectric 

power station depreciates its investment at about 40 years. 

Moreover, the results of the different simulations highlight the need for a procedure 

ensuring high wind speed forecasting accuracy. The earnings of the wind park in 

simulation No.5 are 140% higher than the ones in simulation No.3, which uses 

SPARTA as forecasting model. On the other hand, simulation No.4 that resembles the 

accuracy of meteorological forecasting provides lower power prices than simulation 

No.2, but similar earnings of the power players. 

In brief, the simulation of the different management models provides several 

conclusions about the operation of the hybrid energy system. First, the operation of 

an energy market with a pricing model based on discrimination provides better 

power prices than the existing “guaranteed price” model and is also better than the 

Limit Price System. Secondly, the short-term wind speed projections should be 

account for meteorological forecasts. Thirdly, the operation of the energy market by 

the renting of water from the hydroelectric power station to the wind park and the 

autonomous power station provides higher power prices on average, but more 

equally spread earnings to the power players. All things considered, is can be 

concluded that simulation No.4 is the most representative of an optimal operation of 

the energy market. 
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CHAPTER 8: CONCLUSIONS AND FUTURE RESEARCH 

PERSPECTIVES  

The aim of the NAERAS project is to produce energy through the combination of two 

different forms of RES, i.e. wind and hydroelectric, by storing the surplus of wind 

energy through pumping. This project is the second in the world and the evolution of 

operation of such hybrid energy systems will provide a credible response to the issue 

of storage and controlled distribution of clean energy production and the 

penetration of RES on the non-interconnected network. 

First, we investigated the functionality of such a project in order to determine the 

hybrid energy system’s characteristics to meet combined irrigation and energy 

generation demands. Furthermore, the sensitivity of the hybrid energy system to its 

components was examined in an attempt to define its optimal operation. 

Secondly, via the energy market simulation we have drawn important conclusions 

about the possibility of establishing an optimal energy management policy to a non-

interconnected network, by comparing the existing legislative framework with a 

more liberal management model. In particular, the existing "guaranteed price" 

pricing model was compared with a free market case study. Consequently, we 

evaluated the incentives to invest in RES units and optimal management to reduce 

the price of the supplied electricity. 

CONCLUSIONS 

Throughout the simulation of the hybrid energy system and its energy market, the 

following research objectives were attained: 

 High exploitation of renewable energy production due to the flexibility 

offered by the hybrid system (in terms of storage of excess energy), which 

allows regulating the highly varying  input meteorological drivers; 

 Production of synthetic wind speed time series that represent the 

stochastic behavior of the observed processes; 

 Configuring a suitable wind forecast model up to 36 hours ahead; 

 Comparison of different simulations and determination of the optimal 

rules governing the hybrid energy system in an attempt to maximize the 

reliability of energy generation and abstractions for irrigation, while 

minimizing the average cost of electricity; 

 Comparison of the existing "guaranteed price" model of RES with a more 

liberal management model. 

 Comparison of different energy market simulations and determination of 

its optimal rules and fixed prices, in an attempt to minimize the cost of 
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electricity in the non-interconnected island, but also offering motivation 

for investments. 

Moreover, the general conclusions regarding the rationale of hybrid energy systems, 

especially in the non-interconnected network, are: 

 Determination of the level of exploitation of RES in small non-

interconnected communities and finding solutions for improved RES 

penetration in the island energy system; 

 Elimination of risks of energy deficits, at the same time ensuring energy 

production in lower prices than today (monopoly of diesel station); 

 Fulfillment of irrigation demand with high reliability; 

 Description of the hybrid energy system’s operation; 

 Description of the energy market’s operation; 

 Determination of the structure of a hypothetical energy market on a non-

interconnected island; 

 Determination of the optimal surplus management model through the 

operation of the energy market; 

 Restricting the possibility of energy players forming a cartel. 

The particular conclusions from the modelling of Ikaria’s hybrid energy system and 

its energy market are: 

 Reduction of pollutants emitted by 13,800 tons per year; 

 Awareness that the seasonal restrictions of the hybrid energy system not 

only improves the coverage of irrigation, but also increases the reliability 

of energy production; 

 Determination of the mean power price of Ikaria using the existing pricing 

model; 

 Presentation of the possibility of optimization of the hybrid energy 

system and the its sensitivity to major characteristics, i.e. reservoir and 

tank storage capacities, pumping station nominal power and minimum 

hydro-turbine discharge; 

 Investigation of the possibility of reducing the price of energy offered on 

a non-interconnected island; 

 Addressing the monopoly status of energy production from the existing 

oil station; 

 Simulation of a three-player energy stock, by preserving the associated 

governing rules and determining the criteria of the configuration of each 

player’s offer; 
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 Optimization of the energy market’s fixed prices in an attempt to achieve 

reasonable profits for all counterparties, while reducing the average price 

of electricity; 

 Comparison of the existing “guaranteed price” pricing model, as set by 

PPC SA, the existing Limit Price System for the operation of energy stocks 

and a pricing model based on discrimination; 

 Determination of an energy market operation which results to a 36,6% 

lower power price than the one provided by the existing pricing model 

and simultaneously enables the opportunity for depreciation of the 

energy players’ investments. 

 

FUTURE RESEARCH PERSPECTIVES 

From the experience gained so far we also detected several issues for future 

research, regarding the operation of the hybrid energy system. Specifically: 

 Improving wind velocity forecasts by coupling stochastic and deterministic 

approaches; 

 In case a more accurate forecasting model is to be developed, the intra-daily 

energy auction can be simulated; 

 Investigating the possibility of larger RES penetration (plans for a PV station 

of 1,04 MW are already being discussed) and simulating the energy stock 

with more than three energy players; 

 Adjusting the model to a finer temporal scale, i.e. 5 min, thus taking into 

account the turbulent character of wind energy, which forces the wind 

energy generation not to enter the grid immediately, thus favoring the use of 

a double pipeline of the hydroelectric power station; 

 Investigating different structures of the energy stock; 

 Optimizing the components and especially the fixed values set for the 

operation of the energy market; 

 Investigating the possibility of the connection of the island with the domestic 

network and evaluation of this investment. 
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