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Abstract 8 

Geophysical processes are often characterized by long-term persistence. An important 9 

characteristic of such behaviour is the induced large statistical bias, i.e. the deviation of a 10 

statistical characteristic from its theoretical value. Here, we examine the most probable value 11 

(i.e. mode) of the estimator of variance to adjust the model for statistical bias. Particularly, we 12 

conduct an extensive Monte-Carlo analysis based on the climacogram (i.e. variance of the 13 

average process vs. scale) of the simple scaling (Gaussian Hurst-Kolmogorov) process, and we 14 

show that its classical estimator is highly skewed especially in large scales. We observe that the 15 

mode of the climacogram estimator can be well approximated by its lower quartile (25% 16 

quantile). To derive an easy-to-fit empirical expression for the mode we assume that the 17 

climacogram estimator follows a gamma distribution, an assumption strictly valid for Gaussian 18 

white noise processes. The results suggest that when a single timeseries is available it is 19 

advantageous to estimate the Hurst parameter using the mode estimator rather than the 20 

expected one. Finally, it is discussed that while the proposed model for mode bias works well for 21 

Gaussian processes, for higher accuracy and non-Gaussian processes one should perform a 22 

Monte-Carlo simulation following an explicit generation algorithm. 23 

Keywords: statistical bias, long-term persistence, stochastic uncertainty, mode estimator, 24 

climacogram 25 

1. Introduction 26 

An important attribute characterizing geophysical processes is the high spatio-temporal 27 

dependence, in the sense that a random variable of such a process at a specific time or location 28 

strongly depends on several (even infinite) past, or of different location, random variables of the 29 

same process. This type of dependence requires long samples for its identification, which is a 30 

rare case in most natural processes, and thus, for the estimation of its parameters it is advised to 31 

use only up to the second-order statistics (Lombardo et al., 2014) and only in cases where very 32 

long samples are available to expand to higher orders. The above issues are further highlighted 33 

in Dimitriadis (2017), where several (overall thirteen) such processes with various lengths and 34 

physical properties expanding from small-scale turbulence to large-scale hydrometeorological 35 

processes are analyzed in terms of their long-term behaviour using massive databases and 36 

unbiased estimators of the second-order dependence structure. Interestingly, all the examined 37 

processes exhibited long-term-persistence, else known as Hurst-Kolmogorov (HK) behaviour 38 

(coined by Koutsoyiannis and Cohn, 2008), i.e. power-law decay of the autocorrelation function 39 

with lag (for a literature review on long-term persistent processes in hydrometeorology see also 40 
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O’Connell et al., 2016). Additionally, Koutsoyiannis (2011) provided a theoretical justification of 41 

the HK behaviour in geophysical processes showing that it is linked to the second-law of 42 

thermodynamics (i.e. entropy extremization), and specifically, the stronger the persistence of 43 

the dependence structure of a process, the higher the entropy of the process at large scales. 44 

The identification of the dependence structure of a process can be highly affected by the sample 45 

uncertainty and statistical bias, where the true statistical properties (mean, variance etc.) of a 46 

statistic (e.g. variance) of a stochastic process may differ from the one estimated from a series 47 

with finite length. The deviations of the statistical characteristics from their true values should 48 

be taken into account not only for the marginal characteristics but also for the dependence 49 

structure of the process. Therefore, to correctly adjust the stochastic model to the observed 50 

series of the physical process we should account for the bias effect since all series are of finite 51 

(and often short) lengths. 52 

The second-order properties can be similarly assessed by common stochastic tools such as the 53 

autocovariance function (a function of lag), power spectrum (a function of frequency), and 54 

variation of statistics (e.g. variance) of the averaged process vs. scale, a tool known as 55 

climacogram (Koutsoyiannis, 2010). It is shown that the latter estimator of the second-order 56 

dependence structure, as compared to the other two metrics, encompasses additional 57 

advantages in stochastic model building and interpretation from data; for example, it is 58 

characterized by smaller statistical uncertainty and easier to handle expressions of the statistical 59 

bias (Dimitriadis and Koutsoyiannis, 2015). Therefore, it is advisable that the sample 60 

uncertainty of the second-order dependence structure be tackled with the estimator with the 61 

lower variation, such as the climacogram. When multiple sample realizations (i.e. recorded 62 

series) are known, the handling of the statistical bias arising from a selected stochastic model 63 

may be based on the unbiased estimator of the expected value of the climacogram (Dimitriadis 64 

and Koutsoyiannis, 2018). However, when a single data series of observations is available for the 65 

model fitting (which is the case when geophysical processes are studied), it would be interesting 66 

to examine the mode of the climacogram, instead of the expected value; the two may differ in 67 

case of strong HK behaviour. This estimator is equivalent to a maximum-likelihood estimator 68 

(e.g. Kendziorski et al., 1999) for processes with zero (i.e. white noise) or short-term (e.g. 69 

Markov) dependence structure, while here we further extend it for HK processes (see also the 70 

work of Tyralis and Koutsoyiannis, 2011, for the expectation of the climacogram). It is noted that 71 

while the climacogram is often based on the second central moment (i.e. variance) other types of 72 

moments (e.g. raw, L-moments or K-moments; Koutsoyiannis, 2019) can be used to measure 73 

fluctuation in scale, and here, we focus on the central second-order climacogram (i.e. fluctuation 74 

measured by variance vs. scale). 75 

2. Methods 76 

In this section we present the applied methods, namely the climacogram estimator, the 77 

statistical bias expressions for the mode and expected values of the estimator and the algorithm 78 

for the stochastic synthesis of the Gaussian HK process for the Monte-Carlo analysis. 79 

2.1. The climacogram 80 

The analysis of a process through the variance of the averaged process vs. scale has been 81 

thoroughly applied in stochastic processes (e.g. Papoulis 1991; Vanmarcke, 2010). However, its 82 
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importance to the analysis of the second-order dependence structure is highlighted mainly by 83 

more recent works (see a historical review in Koutsoyiannis, 2018). Also, the simple name 84 

climacogram allowed its further understanding through visualization; indeed, the term 85 

originates from the Greek climax (meaning scale) and gramma (meaning written; cf. the terms 86 

autocorrelogram for the autocorrelation, scaleogram for the power spectrum and wavelets). 87 

It has been shown that the climacogram, treated as an estimator (rather than just a tool for the 88 

identification of long-term behaviour of the second-order dependence structure), has additional 89 

advantages from the more widely applied estimators of the autocovariance and power spectrum 90 

(Dimitriadis and Koutsoyiannis, 2015). Namely, the climacogram could provide a more direct, 91 

easy and accurate means to make diagnoses from data and build stochastic models in 92 

comparison to the power spectrum and autocovariance. For example, the climacogram, 93 

compared to other tools, has the lowest standardized estimation error for processes with short-94 

term and long-term persistence, zero discretization error for averaged processes, simple and 95 

analytical expression for the statistical bias, always positive values, well defined and usually 96 

monotonic behaviour, smallest fluctuation of skewness on small scales while closest to zero 97 

skewness in larger scales, and mode closest to the expected (i.e. mean) value in large scales. 98 

Also, the climacogram is directly linked to the entropy production of a process (Koutsoyiannis, 99 

2011; 2016). Furthermore, the climacogram expands the notion of variance by making it a 100 

function of time scale and is per se further expandable for statistics different from the central 101 

estimators of fluctuation (e.g. second raw moment, second L-moment vs. scale; Koutsoyiannis, 102 

2019), for different characteristics of the estimator (e.g. mode, median), and even for moments 103 

of higher (e.g. third, fourth) orders (Dimitriadis and Koutsoyiannis, 2018). Recently, 104 

Koutsoyiannis (2019) extended the notion of climacogram for orders higher than two and 105 

showed how to substitute the joint moments of a process, allowing in this manner to tackle some 106 

limitations of the latter such as the discretization effect and statistical bias. 107 

Symbolically, the climacogram is: 108 

𝛾(𝑘) ≔  var[𝑥(𝑘)] (1) 

where var[ ] denotes the variance and 𝑥(𝑘) ≔ 1/𝑘 ∫ 𝑥(𝑡)d𝑡
𝑘

0
 is the continuous-time process at 109 

scale k (in dimensions of time), which equals the discrete-one averaged in time intervals Δ, i.e. 110 

𝑥𝜅 ≔ 1/𝜅 ∑ 𝑥𝑖
𝜅
𝑖=1 , in the discrete-time scale κ=k/Δ (dimensionless natural number whereas for 111 

real numbers see adjustment in Koutsoyiannis, 2011). 112 

2.2. The Gaussian long-term persistent process and its stochastic synthesis 113 

The most common processes employed in geophysics, and particularly in hydrology, are the 114 

white noise process, the Markov process (with an exponential decay of the autocorrelation) and 115 

long-term persistent processes, which are characterized by a power-law decay of the 116 

climacogram (or equivalently of the autocorrelation) as a function of scale (or lag). A typical 117 

representative of the latter processes is the Gaussian HK process defined as: 118 

(𝑥(𝑘) − 𝜇) =d (𝑘)(𝐻−1)(𝑥(1) − 𝜇) (2) 

where =d denotes equality in distribution with μ the mean and 𝛾(𝑘) = 𝛾(𝛥)/𝜅2−2𝐻 the variance 119 

of the process for each scale k, H is the Hurst parameter (0 < H < 1) else defined as (Dimitriadis 120 
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et al., 2016a) 𝐻 ≔ 1 +
1

2
lim𝑘→∞ d ln(𝛾(𝑘)) /d ln 𝑘; the quantity in the limit is the derivative of 121 

ln(𝛾(𝑘)) with respect to ln(𝑘). 122 

It is noted that this process has infinite variance at scale zero and thus, it should not be used to 123 

model the small scales of a physical process (in spite of the fact that the fractional-Gaussian-124 

noise -fGn- process is widely used to model several processes at small scales; Koutsoyiannis et 125 

al., 2018). For the stochastic synthesis of the Gaussian HK model, we may use the sum of 126 

arbitrarily many independent Markov processes, thus expressing the target climacogram as 127 

(Dimitriadis and Koutsoyiannis, 2015): 128 

𝛾(𝜅𝛥) = ∑
2𝜆𝑖

(𝜅𝛥/𝑞𝑖)2
(𝜅𝛥/𝑞𝑖 + 𝑒−𝜅𝛥 𝑞𝑖⁄ − 1)

𝑙

𝑖=1

 (3) 

where 𝜆𝑖 is the variance and 𝑞𝑖 a time scale parameter for each Markov model i, and l the total 129 

number of Markov processes. Mandelbrot (1963) has shown that for 𝑙 → ∞ the above model can 130 

adequately describe an fGn (or else Gaussian HK) process for any generated length (see also 131 

Mandelbrot and Wallis, 1968; Mandelbrot and van Ness, 1968). Koutsoyiannis (2002) has 132 

analytically estimated the parameters of three AR(1) models (l = 3) to capture the HK process 133 

for n < 104. Dimitriadis and Koutsoyiannis (2015) have expanded this framework to the sum of 134 

arbitrarily many AR(1) models (abbreviated as SAR) for the generation of any type of process 135 

with autoregressive dependence structure and up to any number of scales, by using a suitable 136 

function with only two parameters, namely 𝑝1 and 𝑝2, that link the lag-1 autocorrelations of each 137 

Markov model, e.g. through the expression 𝑞𝑖 = 𝑝1𝑝2
𝑖−1, with i = 1, …,l and l often taken equal to 138 

the integer part of log(n)+1. For example, for n = 106 and H = 0.8, we have l = 7, 𝑝1 =0.394 and 139 

𝑝2 =12.356 for a maximum standardized error between the true 𝛾𝑡 (Eqn. 2) and modelled 𝛾𝑚 140 

(Eqn. 3) climacogram (i.e. max|(𝛾𝑡 − 𝛾𝑚)/ 𝛾𝑡| for all scales) equal to 0.009 (Table 1). 141 

Table 1: Parameters p1 and p2 estimated to approximate different types of the Ν(0,1)-HK model 142 

(i.e. μ = 0 and γ(Δ) = 1) with l = 7 and n ≤ 106. 143 

H p1 p2 maximum error 

(standardized)  

0.51 0.022 17.122 0.001 

0.60 0.091 12.607 0.006 

0.70 0.124 13.317 0.009 

0.80 0.394 12.356 0.009 

0.90 0.395 14.708 0.005 

0.99 0.548 19.465 0.001 

 144 

2.3. The mode of climacogram estimator and its statistical bias 145 

The climacogram can be estimated from a sample through an estimator as similarly done for the 146 

estimators of the marginal moments. Here, for the climacogram we use a classical estimator: 147 
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𝛾(𝜅𝛥) =
1

⌊𝑛/𝜅⌋ − 1
∑ (𝑥𝑖

(𝜅)
− 𝑥)

2
⌊𝑛/𝜅⌋

𝑖=1

 (4) 

where ⌊𝑛/𝜅⌋ is the integer part of 𝑛/𝜅, 𝑥𝑖
(𝜅)

= ∑ 𝑥𝑙
𝜅𝑖
𝑙=𝜅(𝑖−1)+1 /𝜅 is the averaged process at scale 148 

𝜅 = 𝑘/𝛥 for 𝑖 ∈ [1, ⌊𝑛/𝜅⌋], 𝑥 = ∑ 𝑥𝑙
𝑛
𝑙=1 /𝑛 = 𝑥1

(𝑛)
 is the sample average and n is the series length. 149 

Since the above estimator is a random variable, it has a marginal distribution (see an illustration 150 

in Fig. 1). The true value of a statistical characteristic (e.g. variance) of a stochastic model may 151 

differ from the one estimated from a series with finite length. To correctly adjust the stochastic 152 

model to the observed series of the physical process one should account for the bias effect. An 153 

important question is how the statistical bias is generally handled through the second-order 154 

dependence structure in case of long-term persistent processes. Particularly, the selected 155 

stochastic model should be adjusted for bias before it is fitted to the sample dependence 156 

structure. It is noted that neglecting the bias effect in case of a long-term persistent process 157 

leads to underestimations of the stochastic model parameters such as the Hurst parameter, and 158 

to erroneous conclusions. Adjustment of the models for bias is usually done by equating the 159 

observed dependence structure to the expected value of the applied estimator. The alternative 160 

studied here is the mode, instead of the expected value, of the dependence structure, which 161 

represents the most probable value (and thus, the most expected) of the variance estimator at 162 

each scale. 163 

  164 

Figure 1: An illustration for a N(0,1)-HK (H = 0.83, n = 200) process of [left] how several 165 

statistical characteristics of the climacogram estimator vary with scale and [right] the observed 166 

quantile (qo) vs. the non-exceedance probability of the modelled quantile P(qm≤qo), showing how 167 

the gamma distribution can adequately approximate the distribution of the climacogram 168 

estimator especially at large scales. 169 

The statistical bias of an estimator is the difference of the expected value of an estimator from its 170 

true value (e.g. Papoulis, 1991). Thus, the bias of the climacogram is (e.g. Koutsoyiannis, 2011): 171 

BE [�̂�(𝜅𝛥)] = E [�̂�(𝜅𝛥)] − 𝛾(𝜅𝛥) =
(𝜅/𝑛)𝛾(𝜅𝛥) − 𝛾(𝑛𝛥)

1 − 𝜅/𝑛
 (5) 

where BE[ ] denotes the bias of the expected value of a statistical estimator of a process. Clearly, 172 

for the mean value of a process we have that BE [�̂�] = Ε[∑ 𝑥𝑙
𝑛
𝑙=1 /𝑛] − 𝜇 = 0. 173 

Following the same rationale, we define an expansion of the notion of bias for the mode of the 174 

above estimator of the climacogram, i.e.: 175 
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BM [𝛾(𝜅𝛥)] = M [𝛾(𝜅𝛥)] − 𝛾(𝜅𝛥) (6) 

where M[𝑥] ≔ arg max [𝑓(𝑥)] denotes the mode of the variable x with density function f(x). We 176 

refer to BM[ ] as the mode bias. 177 

For a Gaussian white noise process of length n and variance 𝛾(1) the distribution of its sample 178 

variance follows the gamma distribution Γ((𝑛 − 1)/2 ,2𝛾(1)/(𝑛 − 1)) (Cochran, 1934). The 179 

averaged process at scale κ, with sample length of n/κ and variance 𝛾(𝑘) = 𝛾(𝛥)/𝜅, follows 180 

Γ((𝑛/𝜅 − 1)/2 ,2𝛾(𝛥)/(𝑛 − 𝜅)), with M [𝛾(𝜅𝛥)] = 𝛾(𝛥)
𝑛−3𝜅

𝜅(𝑛−𝜅)
 for 𝑛/𝜅 ≥ 3, else 0. Hence, for 181 

𝑛/𝜅 ≫ 3 we have that (𝑛 − 3𝜅)/(𝑛 − 𝜅) ≈ 1, and M [𝛾(𝜅𝛥)] ≈ E [𝛾(𝜅𝛥)] = 𝛾(𝛥)/𝜅 = 𝛾(𝜅𝛥), i.e. 182 

zero bias. However, for long-term persistent processes the mode bias is non-zero and its 183 

analytical solution is no longer possible. 184 

From the above results it becomes evident that the statistical bias always depends on the 185 

selected model and not on the data as commonly thought. For example, consider the Gaussian-186 

HK process in the previous section with an autocorrelation function in discrete-time 187 

𝜌𝜐 = 1/2(|𝜐 + 1|2𝐻 + |𝜐 − 1|2𝐻) − |𝜐|2𝐻, where 𝜐 is the discrete-time lag. The bias of the 188 

autocorrelation is similarly defined as BE [�̂�(𝜐)] = Ε [�̂�(𝜐)] − 𝜌(𝜐), and thus, depends on the 189 

model parameter H. It is noted that the above apply even to the so-called non-parametric 190 

models, since they also involve estimation from data, and thus, these models should be similarly 191 

adjusted for statistical bias to avoid underestimation of the process variability during a Monte-192 

Carlo simulation. 193 

For simplicity, and without loss of generality, we set Δ = 1 for the rest of the analysis. It is evident 194 

that BM [�̂�(𝜅)] ≤ BE [𝛾(𝜅)] ≤ 0 or else |BE [𝛾(𝜅)]| ≤ |BM [𝛾(𝜅)]|, since the sample variance is 195 

positively skewed, i.e. E [𝛾(𝜅)] ≥ M [𝛾(𝜅)], and the equality holds when 𝑛 → ∞, where the 196 

variance of the sample variance is zero for an ergodic process. A preliminary analysis of common 197 

HK-type processes has shown that the mode climacogram is close to the low quartile (25% 198 

quantile) of the marginal distribution of variance at each scale (Dimitriadis et al., 2016c; 199 

Gournary, 2017). Therefore, when the mode of the variance estimator is of interest, we may use 200 

a Monte-Carlo technique (as described in the next section) to accurately estimate the mode bias 201 

or, in case the marginal distribution of the climacogram is known, to calculate the 25% quantile 202 

at each scale to approximate the mode bias. 203 

3. Monte-Carlo analysis for the mode of the variance estimator 204 

We perform Monte-Carlo experiments over the N(0,1)-HK model for a wide range of Hurst 205 

parameters H (i.e. 0.5 to 0.95), and for a wide range of series lengths n (i.e. 20 to 2000). 206 

Specifically, we produce a number (N) of synthetic series through the SAR model described in 207 

section 2.2, where N depends on the sample mean value to reach the expected one at scale κ = 208 

n/10 based on the rule of thumb when using the climacogram as shown in Dimitriadis and 209 

Koutsoyiannis (2015). We found that for 𝑁 ≈ 106/𝑛2−2𝐻 the standardized error between the 210 

theoretical expected value and the sample one (Eqn. 5) is lower than 1% at scale κ = n/10. In this 211 

way, the mode is expected also to be well preserved with a similar error. However, caution 212 

should be given to the selection of the sample mode estimator to ensure that its variance permits 213 

a robust estimation of the true value of the mode. Since the distribution function of the estimator 214 
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of variance is unknown for long-term persistent processes, and given that the mode value is the 215 

most probable to occur within the sample, we calculate the sample mode from each simulated 216 

series by finding the most probable value with an accuracy of two decimal digits. Specifically, we 217 

round up each value of the time series, and for each scale, to the second decimal digit, and we 218 

estimate the most probable value of the rounded time series (for higher accuracies a larger N 219 

was required). Also, other estimators for the sample mode (e.g. Bickel and Fruwirth, 2006) could 220 

be used and compared to the proposed one in future research to optimize the performance of 221 

the analysis. 222 

Here, to derive an easy-to-fit empirical expression to approximate the mode bias, we adopt the 223 

assumption that the above distribution is nearly gamma for smaller scales (see also a similar 224 

analysis in Gournary, 2017, and Dimitriadis et al., 2018). Using the results from the Monte-Carlo 225 

analysis we then evaluate the parameter of the gamma distribution for each H, n and κ, and we 226 

build a model for the mode, which we later test its performance. Although the true 227 

autocorrelation function of the averaged process for a long-term persistent process does not 228 

vary with scale, the sample autocorrelation will be also prone to bias (e.g. Dimitriadis and 229 

Koutsoyiannis, 2015) affecting the distribution function of the sample variance at each scale. To 230 

minimize the sample error for the fitting of the two-parameter gamma distribution we use the 231 

theoretical expression for the expected value of the sample climacogram, i.e. E[𝛾(𝜅)], and the 232 

variance of the sample climacogram, i.e. Var[�̂�(𝜅)], as evaluated from the Monte-Carlo analysis, 233 

which exhibits the lowest variability in estimation among the four central moments (Dimitriadis 234 

and Koutsoyiannis, 2018, Fig. 2). Based on these two measures, we estimate the two parameters 235 

of the gamma distribution. 236 

We first set the scale parameter of the gamma distribution such as to simulate the sample ratio 237 

of the aforementioned parameters, i.e. 𝑏(𝐻, 𝑛, 𝜅) = Var[𝛾(𝜅)]/E[𝛾(𝜅)] and so, the shape 238 

parameter can be also estimated as 𝑎(𝐻, 𝑛, 𝜅) = E[𝛾(𝜅)]/𝑏(𝐻, 𝑛, 𝜅). 239 

We observe (e.g. Fig. 2) that for 𝑎(𝐻, 𝑛, 𝜅) > 1 the shape parameter 𝑎(𝐻, 𝑛, 𝜅) is approximately 240 

proportional, by a function 𝑐(𝐻), to the corresponding shape parameter for the white noise 241 

process 𝑎(0.5, 𝑛, 𝜅) = (𝑛/𝜅 − 1)/2 raised to a function p(H), i.e.: 242 

𝑎(𝐻, 𝑛, 𝜅) = 𝑐(𝐻)((𝑛/𝜅 − 1)/2)
𝑝(𝐻)

 (7) 

where 𝑎(𝐻, 𝑛, 𝜅) > 1 is a function corresponding to the shape parameter of the gamma 243 

distribution function, while for 𝑎(𝐻, 𝑛, 𝜅) ≤ 1 or 𝜅 ≳ 𝑛/3, the mode is considered close to zero. 244 

The two functions of the above expression are fitted as (Fig. 2): 245 

𝑐(𝐻) = 1.68(𝐻 − 0.5)2 − 0.3025(𝐻 − 0.5) + 1 

 
(8) 

and 246 

𝑝(𝐻) = −2.4865(𝐻 − 0.5)2 + 0.1485(𝐻 − 0.5) + 1 

 
(9) 

The above two adjustments allow to empirically express the mode of the climacogram estimator 247 

as a function of H, n and κ: 248 
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M [𝛾(𝜅)] = (𝑎(𝐻, 𝑛, 𝜅) − 1)𝑏(𝐻, 𝑛, 𝜅) = (1 − 1/𝑎(𝐻, 𝑛, 𝜅))E [𝛾(𝜅)] (10) 

It is noted that based on the above assumptions the standard deviation, and the skewness and 249 

excess kurtosis coefficients of the climacogram estimator can be estimated as 250 

𝑏(𝐻, 𝑛, 𝜅)√𝑎(𝐻, 𝑛, 𝜅), 2/√𝑎(𝐻, 𝑛, 𝜅), and 6/𝑎(𝐻, 𝑛, 𝜅), respectively. Since 𝑎(𝐻, 𝑛, 𝜅) ≤ 𝑎(0.5, 𝑛, 𝜅) 251 

all the above measures will be larger than those in case of a white noise process. 252 

The above expression can approximate the mode by an absolute difference of 0.005 from the 253 

Monte-Carlo estimates, while for better approximations it is advised to implement a new Monte-254 

Carlo analysis (see also discussion and application in sect. 4). Interestingly, the standardized 255 

error between the mode and expected values of the estimator, i.e. 𝜀 = |E[𝛾(𝜅)] − M[𝛾(𝜅)]| /256 

E[𝛾(𝜅)], is calculated from the Monte-Carlo analysis to reach a maximum value of 67% 257 

corresponding to cases with H ≥ 0.6 and n/κ ≤ 10, while for the white noise process it can be 258 

theoretically estimated as ε = 2/(𝑛/𝜅 − 1), which for κ = n/10 is approximately 20%. 259 

  260 

Figure 2: [left] The shape parameter assuming a gamma distribution for the mode estimator of 261 

the climacogram of an N(0,1)-HK process (for H = 0.8 and for all n and κ simulated in the Monte-262 

Carlo analysis) versus the theoretical shape parameter of the white noise process. [right] 263 

Proposed model for the c(H) and p(H) functions for all examined H from the Monte-Carlo 264 

analysis. 265 

4. Applications to annual streamflow 266 

For illustrations of possible implications of the above results, we apply a stochastic analysis 267 

based on the expected and the mode values of the climacogram to a streamflow process at the 268 

Peneios river (Thessaly, Greece), where a historical streamflow annual time series is available at 269 

the upstream station of Ali Efenti with only a 13 years length (for more information on the study 270 

area see Dimitriadis et al., 2016b). For the identification of the stochastic model we adjust for 271 

statistical bias and, in particular, we fit the mode of the estimator rather than its expectation. It 272 

is noted that the proposed empirical model for the mode bias (Eqn. 10) is derived from a Monte-273 

Carlo analysis for sample lengths of n ≥ 20, and so for this application we perform a new Monte-274 

Carlo analysis to fit the observed climacogram for scales 1 ≤ κ ≤ n/10 (rule of thumb; Dimitriadis 275 

and Koutsoyiannis, 2015) and so here, for the first two scales (Fig. 3). We find that an HK model 276 

can adequately simulate the observed standardized climacogram, i.e. 𝛾(𝜅)/𝛾(1), with H = 0.9. 277 

We also estimate the Hurst parameter with the expectation of the estimator, and we find H’ ≈ 0.8 278 

and H’’ ≈ 0.7, with or without adjusting for bias, respectively. Evidently, both latter values 279 

underestimate the long-term persistence behaviour (Fig. 3). 280 
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 281 

Figure 3: Standardized climacogram estimations of the observed standardized time series (black 282 

line), the white noise model (grey line), and the three fitted N(0,1)-HK stochastic processes: (a) 283 

adjusting for bias of the mode of the estimator (green line), i.e. M[𝛾(𝜅)]/M[𝛾(1)], , and of its 284 

expectation (red line), i.e. E[𝛾(𝜅)]/E[𝛾(1)], and (b) not adjusting for bias (blue line), i.e. 285 

𝛾(𝜅) = 𝛾(𝜅), also corresponding to the non-parametric model configuration. 286 

It is noted that the dependence structure of a process (e.g. streamflow) will have a small effect at 287 

the risk imposed by the expected number of peaks over threshold (e.g. for the design of a dam or 288 

for flood risk mapping) as compared to the effect of the marginal distribution of the process 289 

(Volpi et al., 2015; Serinaldi and Kilsby, 2018). However, the dependence structure will have a 290 

great effect (especially for processes with long-term behaviour) at the duration of successive 291 

peaks over threshold (e.g. maximum duration of wet/dry periods or of flood inundation), which 292 

may highly affect urban as well as agricultural areas and insurance policies (e.g. Serinaldi and 293 

Kilsby, 2016; Goulianou et al., 2019). To illustrate this, we generate an adequate number N (see 294 

sect. 3) of HK synthetic timeseries with H = 0.5 (N = 5×103), H = 0.7 (N = 4×104), H = 0.8 (N = 105) 295 

and H = 0.9 (N = 3×105). For convenience and simplification, we assume a N(0,1) distribution for 296 

all processes. We then estimate the expected frequency of the number of peaks over various 297 

thresholds (PoT) as well as the expected frequency of the maximum duration of successive 298 

peaks over various thresholds (MdT), and we standardize them with the PoT and MdT values of 299 

the white noise process (Fig. 4). We find that the MdT varies with threshold and long-term 300 

persistence while the PoT stays almost unaffected by both. Additional analyses and 301 

quantifications on the reflection of long-term term persistence in terms of clustering in time can 302 

be found in Iliopoulou and Koutsoyiannis (2019). 303 
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 304 

Figure 4: Expected frequency of peak over threshold (PoT) and expected maximum duration of 305 

successive peaks over threshold (MdT) standardized with the PoT and MdT values of the N(0,1) 306 

white noise process for various HK-N(0,1) processes. 307 

The results from this study suggest that the sample estimator of the variance can be skewed 308 

even for long samples in the presence of long-term persistence behaviour as opposed to the 309 

white noise process. Therefore, the mode is different from the expectation and more suitable to 310 

use in estimation. We propose that, when a single recorded series is available and a Gaussian HK 311 

process is fitted with small sample size and relatively high Hurst parameter, it is advantageous 312 

to employ the mode of the estimator as calculated from the empirical model of Eqn. 10, rather 313 

than its expectation (Eqn. 5), so as to avoid underestimation of the Hurst parameter (and thus, 314 

the uncertainty of the process). In case of a non-Gaussian distribution, larger accuracy or a 315 

different estimator of the second-order dependence structure (e.g. other climacogram estimator, 316 

autocovariance, power spectrum, variogram etc.), we should employ the Monte-Carlo technique 317 

and test whether the mode of the estimator used is close enough to its expected value. If this is 318 

true then the expected value can be used to adjust the model for bias, whereas if the two values 319 

vary then for the model should be adjusted for bias based on the mode estimator. For Monte-320 

Carlo analysis of a non-Gaussian correlated process an explicit algorithm should be preferred 321 

(Dimitriadis and Koutsoyiannis, 2018) since the mode value is expected to highly depend on 322 

higher-order moments in case of long-term persistent processes. 323 

5. Conclusions and discussion 324 

Awareness of uncertainty in assessing the dependence structure of a process is of paramount 325 

importance as it may critically affect the interpretation of results. Estimation uncertainty may 326 

introduce large statistical bias, which can be additionally magnified in the presence of long-term 327 

persistence (Dimitriadis and Koutsoyiannis, 2015). In addition, if the uncertainty is 328 

underestimated then a regular cluster of events could be erroneously regarded as an extreme 329 

cluster. Although the mode of the examined classical estimator for variance is close to its 330 

expectation for small Hurst parameters and large lengths, we show that for larger values of the 331 

Hurst parameter and small sample lengths, equating the expected climacogram to the observed 332 

one may lead to underestimation of the long-term persistence and thus, the uncertainty of the 333 

process. 334 
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We propose that when the available series have short lengths or when the empirical Hurst 335 

parameter is estimated larger than 0.5, we should always account for statistical bias. Particularly 336 

for the bias adaptation, when information is available on only a single series/realization of the 337 

process, it is advantageous to equate the mode instead of the expectation of the climacogram 338 

estimator to the sample values. Interestingly, in case of a N(0,1)-HK process, the absolute 339 

difference between the mode and expected values of the estimator is calculated (from a Monte-340 

Carlo analysis performed in this study) to reach a maximum value of 67% of the expected value, 341 

corresponding to cases with H ≥ 0.6 and n/κ ≤ 10, while for the white noise process is 342 

approximately 20% for 𝜅 =  𝑛/10. In cases of different stochastic processes or estimators or 343 

when a larger accuracy of the mode bias is of interest, one should employ a Monte-Carlo 344 

technique through an explicit generation algorithm (Dimitriadis and Koutsoyiannis, 2018) to 345 

estimate the mode climacogram estimator or use the lower quartile (25% quantile) of the 346 

estimator (in case its distribution is known) as an approximation. 347 

From the Monte-Carlo analysis performed in this study, it is also observed that for a N(0,1)-HK 348 

process with variance 𝛾(𝜅) = 𝛾(1)/𝜅2−2𝐻, and for large n and small n/𝜅, the distribution of the 349 

climacogram estimator tends to that of Γ((𝑛/𝜅 − 1)/2 ,2𝛾(𝜅)/(𝑛/𝜅 − 1)), with a mean value of 350 

𝛾(𝜅), i.e. zero bias. However, given the estimation uncertainty present in records exhibiting 351 

persistence, the autocorrelation of the averaged process is independent of the scale, and thus, 352 

the above distribution will never be truly reached. The underestimation of the persistence of the 353 

parent process has also critical implications for the estimation of the properties of its extremes, 354 

as it was shown that the maximum duration of successive peaks over threshold is greatly 355 

affected by the degree of dependence. Additional analyses and quantifications on the reflection 356 

of long-term term persistence in terms of clustering in time can be found in Iliopoulou and 357 

Koutsoyiannis (2019). 358 

A final remark for discussion, considering the etymology of the terms, is that the expected value 359 

of a random process is less expected to occur than its mode (i.e. most probable value; a term 360 

coined by Pearson, 1895, p. 345), where only in symmetrical distributions the two coincide. 361 

Therefore, when only one value is known (here, only one realization of the climacogram 362 

estimator), it is more accurate to fit the model and evaluate the Hurst parameter based on the 363 

proposed mode estimator rather than the expected one. 364 

Acknowledgment 365 

The Authors would like to thank the Editor Luigi Berardi for handling the paper, one anonymous 366 

Reviewer for useful comments, and Federico Lombardo for his fruitful discussion, comments and 367 

suggestions that helped us improve the paper. 368 

Code availability 369 

The MATLAB script for the SAR generation algorithm is available as well as the script for a fast 370 

estimation algorithm of the sample climacogram in very long timeseries and in many scales. 371 

References 372 

Bickel, D.R. and Fruwirth, R., On a fast, robust estimator of the mode: Comparisons to other 373 

robust estimators with applications, Computational Statistics & Data Analysis, 50: 3500–3530, 374 

2006. 375 



12 

Cochran, W. G., The distribution of quadratic forms in a normal system, with applications to the 376 

analysis of covariance, Mathematical Proceedings of the Cambridge Philosophical Society, 30 (2): 377 

178–191. doi:10.1017/S0305004100016595, 1934. 378 

Dimitriadis, P., Hurst-Kolmogorov dynamics in hydrometeorological processes and in the 379 

microscale of turbulence, PhD thesis, 167 pages, National Technical University of Athens, 2017. 380 

Dimitriadis, P., and D. Koutsoyiannis, Climacogram versus autocovariance and power spectrum 381 

in stochastic modelling for Markovian and Hurst–Kolmogorov processes, Stochastic 382 

Environmental Research & Risk Assessment, 29 (6), 1649–1669, 2015. 383 

Dimitriadis, P., and D. Koutsoyiannis, Stochastic synthesis approximating any process 384 

dependence and distribution, Stochastic Environmental Research & Risk Assessment, 32 (6), 385 

1493–1515, doi:10.1007/s00477-018-1540-2, 2018. 386 

Dimitriadis, P., D. Koutsoyiannis, and P. Papanicolaou, Stochastic similarities between the 387 

microscale of turbulence and hydrometeorological processes, Hydrological Sciences Journal, 61 388 

(9), 1623–1640, doi:10.1080/02626667.2015.1085988, 2016a. 389 

Dimitriadis, P., A. Tegos, A. Oikonomou, V. Pagana, A. Koukouvinos, N. Mamassis, D. 390 

Koutsoyiannis, and A. Efstratiadis, Comparative evaluation of 1D and quasi-2D hydraulic models 391 

based on benchmark and real-world applications for uncertainty assessment in flood mapping, 392 

Journal of Hydrology, 534, 478–492, 2016b. 393 

Dimitriadis, P., N. Gournari, and D. Koutsoyiannis, Markov vs. Hurst-Kolmogorov behaviour 394 

identification in hydroclimatic processes, European Geosciences Union General Assembly, Vol. 18, 395 

EGU2016-14577-4, 2016c. 396 

Dimitriadis, P., N. Gournary, A. Petsiou and D. Koutsoyiannis, How to adjust the fGn stochastic 397 

model for statistical bias when handling a single time series; application to annual flood 398 

inundation, 13th Hydroinformatics Conference, 1-6 July 2018, Palermo, Italy, 2018. 399 

Goulianou, T., K. Papoulakos, T. Iliopoulou, P. Dimitriadis, and D. Koutsoyiannis, Stochastic 400 

characteristics of flood impacts for agricultural insurance practices, European Geosciences Union 401 

General Assembly, Vol. 21, EGU2019-5891, 2019. 402 

Gournary, N., Probability distribution of the climacogram using Monte Carlo techniques, Diploma 403 

thesis, 108 pages, Department of Water Resources and Environmental Engineering – National 404 

Technical University of Athens, Athens, July 2017 (in Greek). 405 

Iliopoulou, T., and D. Koutsoyiannis, Revealing hidden persistence in maximum rainfall records, 406 

Hydrological Sciences Journal, doi.org/10.1080/02626667.2019.1657578, 2019. 407 

Koutsoyiannis, D., The Hurst phenomenon and fractional Gaussian noise made easy, 408 

Hydrological Sciences Journal, 47 (4), 573–595, 2002. 409 

Koutsoyiannis, D., HESS opinions “A random walk on water”, Hydrology and Earth System 410 

Sciences, 14, 585–601, 2010. 411 

Koutsoyiannis, D., Hurst-Kolmogorov dynamics as a result of extremal entropy production, 412 

Physica A: Statistical Mechanics and its Applications, 390 (8), 1424–1432, 2011. 413 

Koutsoyiannis, D., Generic and parsimonious stochastic modelling for hydrology and beyond, 414 

Hydrological Sciences Journal, 61 (2), 225–244, 2016. 415 

Koutsoyiannis, D., Climate change impacts on hydrological science: A comment on the 416 

relationship of the climacogram with Allan variance and variogram, ResearchGate, 2018. 417 

Koutsoyiannis, D., Knowable moments for high-order stochastic characterization and modelling 418 

of hydrological processes, Hydrological Sciences Journal, 2019. 419 

http://www.sciencedirect.com/science/journal/03784371


13 

Koutsoyiannis, D., and T.A. Cohn, The Hurst phenomenon and climate (solicited), European 420 

Geosciences Union General Assembly, Vol. 10, Vienna, 11804, doi:10.13140/RG.2.2.13303.01447, 421 

European Geosciences Union, 2008. 422 

Koutsoyiannis, D., Dimitriadis, P., Lombardo, F, and Stevens, S., From fractals to stochastics: 423 

Seeking theoretical consistency in analysis of geophysical data, Advances in Nonlinear 424 

Geosciences, edited by A.A. Tsonis, 237–278, Springer, 2018. 425 

Kendziorski, C.M., J.B. Bassingthwaighte, and P.J. Tonellato, Evaluating maximum likelihood 426 

estimation methods to determine the Hurst coefficient, Physica A, V. 273, 3-4, pp. 439–451, 1999. 427 

Lombardo, F., E. Volpi, D. Koutsoyiannis, and S.M. Papalexiou, Just two moments! A cautionary 428 

note against use of high-order moments in multifractal models in hydrology, Hydrology and 429 

Earth System Sciences, 18, 243–255, doi:10.5194/hess-18-243-2014, 2014. 430 

Mandelbrot, B.B., The Variation of Certain Speculative Prices, J. Bus., 36, 394–419, 1963. 431 

Mandelbrot, B.B. and Wallis, J.R., Noah, Joseph and operational hydrology, Water Resour. Res., 4, 432 

909–918, 1968. 433 

Mandelbrot, B.B., and Van Ness, J.W., Fractional Brownian Motions, Fractional Noises and 434 

Applications, SIAM Rev., 10, 422–437, 1968. 435 

O’Connell P.E., D. Koutsoyiannis, H. F. Lins, Y. Markonis, A. Montanari, and T.A. Cohn, The 436 

scientific legacy of Harold Edwin Hurst (1880 – 1978), Hydrological Sciences Journal, 61 (9), 437 

1571–1590, doi:10.1080/02626667.2015.1125998, 2016. 438 

Papoulis, A., Probability, Random Variables and Stochastic Processes, 3rd edn., McGraw-Hill, New 439 

York, 1991. 440 

Pearson, K., Contributions to the mathematical theory of evolution—II, Skew variation in 441 

homogeneous material, Philosophical Transactions of the Royal Society of London, 186, 343-442 

414, 1895 (available at https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1895.0010). 443 

Serinaldi, F., and Kilsby, C.G., Understanding Persistence to Avoid Underestimation of Collective 444 

Flood Risk. Water, 8, 152, 2016. 445 

Serinaldi, F., and Kilsby, C.G., Unsurprising Surprises: The Frequency of Record-breaking and 446 

Over-threshold Hydrological Extremes Under Spatial and Temporal Dependence, Water 447 

Resources Research, 54(9), 6460-6487, 2018. 448 

Tyralis, H., and D. Koutsoyiannis, Simultaneous estimation of the parameters of the Hurst-449 

Kolmogorov stochastic process, Stochastic Environmental Research & Risk Assessment, 25 (1), 450 

21–33, 2011. 451 

Vanmarcke, E., Random Fields: Analysis and Synthesis, World Scientific, New Jersey, USA, 2010. 452 

Volpi, E., Fiori, A., Grimaldi, S., Lombardo, F., and Koutsoyiannis, D., One hundred years of return 453 

period: Strengths and limitations, Water Resources Research, 51(10), 8570-8585, 2015. 454 


	1. Introduction
	2. Methods
	2.1. The climacogram
	2.2. The Gaussian long-term persistent process and its stochastic synthesis
	2.3. The mode of climacogram estimator and its statistical bias

	3. Monte-Carlo analysis for the mode of the variance estimator
	4. Applications to annual streamflow
	5. Conclusions and discussion
	Acknowledgment
	Code availability
	References


