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Baldo Bacchi: a multidimensional noble man, a frank guy,
a great humourist, a rigorous scientist

Baldassare Bacchi Baldo Bacchi’s research team in 2015 with faculty members, doctoral students
- PO di Costruzioni and post-docs; from left to right: Eleni Michailidi, Marco Pilotti (PA SSD

Idrauliche e ICAR/01), Luca Milanesi, Stefano Barontini (RC SSD ICAR/02), Giulia Valerio,
Marittime e Baldo Bacchi, Roberto Ranzi (PO SSD ICAR/02), Matteo Balistrocchi, Massimo
Idrologia (SSD Tomirotti, Alessandra Viani.

ICAR/02)
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Baldo Bacchi’s seminal contributions to the stochastics of
hydrological extremes
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The general framework: Seeking theoretical consistency in
analysis of geophysical data (Using stochastics)

(Rl Home 9 More w Q

Project
Seeking Theoretical Consistency in Analysis of S,
Geophysical Data (Using Stochastics) @
¥ Demetris Koutsoyiannis - § Panayiotis Dimitriadis - © Theano (Any) Qg@
lliopoulou - Show all & collaborators %@7
Goal: Analysis of geophysical data is (explicitly or implicitly) based on (S
stochastics, i.e. the mathematics of random variables and stochastic @ %
processes. These are abstract mathematical objects, whose prﬂpEmQ@

BooKk in preparation:

D. Koutsoyiannis, Stochastics of Hydroclimatic Extremes - A Cool Look at Risk
(2020)
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|Is “stationarity dead” and is there “rainfall intensification”?
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The climatic value of annual maximum daily rainfall of the 30-year period 1980 - 2010, compared to
that of 1960-80, is greater by 5% for dry areas and by 2% for wet areas (Donat et al., 2016).
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Climate change impacts on the scientific level of hydrology:
The surge of studies of nonstationary extremes
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|Quantification of “steps back” using bibliometrics

N In 2018, among the scientific articles,
precipitation + hydrology + extremes + trends i

precipitation + hydrology + extremes registered by Google Scholar that
1 contained the terms “precipitation”,
“hydrology” and “extremes”, 89% also
contained the word “trends”.
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o 06 _
= trend in the frequency of the word
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|D0 climate models allow a nonstationary approach on extremes?
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Tsaknias et al. (2016—
multirejected paper)
tested the reproduction
of extreme events by
three climate models of
the IPCC AR4 at 8 test
sites in the
Mediterranean with
long time series of
temperature and
precipitation.

They concluded that
climate models are not
able even to approach
the natural behaviour
in extreme events.

The graphs show plots of
time series and probability
distributions of annual
maximum daily
precipitation and
temperature in
comparison with climate
model results.

D. Koutsoyiannis, Advances in stochastics of hydroclimatic extremes 7



Both stationarity and ergodicity are abstract mathematical
concepts; hence they are immortal!

&JAGU PUBLICATIONS
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Citation:
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Modeling and mitigating natural hazards: Stationarity is
immortal!

Alberto Montanari' and Demetris Koutsoyiannis?

Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Bologna, italy
‘Department of Water Resources and Environmental Engineer ng, School of Civil Engineering, National Technical

University of Athens, Athens, Greece

Abstract Environmental change is a reason of relevant concern as it is occurring at an unprecedented
pace and might increase natural hazards. Moreover, it is deemed to imply a reduced representativity of past

expenence and data on extreme hydroclxmatuc events, The lanet concern has been epntomlzed by the state-

1174 Hydrological Sciences Joumal — Joumnal des Sciences Hydrologigues, 60 (7—8) 2015
hitp:fidx.doi.org/10.1080/02626667.2014.959859
Special issue: Modelling Temporally-varable Catchments

Negligent Killing of scientific concepts: the stationarity case

Demetris Koutsoyiannis' and Alberto Montanari®

Stationarity and
ergodicity are tightly
connected to each other.

Without stationarity
there cannot be
ergodicity.

Without ergodicity
inference from data
would not be possible.

Ironically, several
studies use time series
data to estimate
statistical properties, as
if the process were
ergodic, while at the
same time what they
(cursorily) estimate may
falsify the ergodicity
hypothesis.
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Stationary description of Earth’s perpetual change:

Hurst-Kolmogorov dynamics

Nilometer data: Koutsoyiannis (2013)
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The climacogram: A simple statistical tool to quantify change
across time scales

* Take the Nilometer time series, x1, X2, ..., Xs49, and calculate the sample estimate of
variance y(1), where the argument (1) indicates time scale (1 year)

* Form a time series at time scale 2 (years):

@ X1t Xz (o) XztXy (2) . Xga7 T Xgag
X1 T Ty e T Ty e K T 5

and calculate the sample estimate of the variance y(2).

* Repeat the same procedure and form a time series at time scale 3, 4, ... (years), up to
scale 84 (1/10 of the record length) and calculate the variances y(3), y(4),... y(84).

* The climacogram is the variance y (k) as a function of scale k; it is visualized as a double
logarithmic plot of y (k) vs. k.

« If the time series x; represented a pure random process, the climacogram would be a
straight line with slope -1 (the proof is very easy).

* Inreal world processes, the slope is different from -1, designated as 2H - 2, where H is
the so-called Hurst coefficient (0 < H < 1).

* The scaling law y(k) = y(1) / k?-2H defines the Hurst-Kolmogorov (HK) process.

* High values of H (> 0.5) indicate enhanced change at large scales, else known as long-
term persistence, or strong clustering (grouping) of similar values.
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The climacogram of the Nilometer time series

* The Hurst-Kolmogorov process
seems consistent with reality.

* The Hurst coefficient is H = 0.87
(Similar H values are estimated
from the simultaneous record of
maximum water levels and from
the modern, 131-year, flow
record of the Nile flows at
Aswan).

* The Hurst-Kolmogorov
behaviour, seen in the
climacogram, indicates that:

(a) long-term changes are
more frequent and intense
than commonly perceived, and

(b) future states are much
more uncertain and
unpredictable on long time
horizons than implied by pure
randomness.
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Change and predictability

<Koutsoyiannis, 2013
| ) |
Predictable Unpredictable
(regular) (random)
| | d
Non-periodic Perlodlc Purely random Struc;ure

e.g. acceleration of e.g. daily and e.g. consecutive erarélirg?t}c
a falling body annual cycles outcomes of dice flhgétuations

Simple systems — Short time horizons Complex systems — Long time horizons
Important but trivial Most interesting
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Data for illustration 1: Daily precipitation in Bologna

Bologna, Italy (44.50°N, 160 : 3.2
11.35°E, +53.0 m). £ — Daily .y
Available from the Global ‘i’ T yesrmaximum T
Historical Climatology 2 120 10-yeargverage | 24 £
Network (GHCN) - Daily. 5.0 _ " o,
Uninterrupted for the period & _l S
1813-2007: 195 years. 5 T e s
For the period 2008-2018, € 60 hf ‘ l ol | i I‘ b0 B
daily data are provided by % i l %
the repository Dext3r of E 40 i 98 2
ARPA Emilia Romagna. Z 20 - | 04
Total record length: 206 ° . |
years. 1800 1850 1900 1950 2000

Main observation:
The 10-year climatic averages have varied irregularly by a factor of 2 for the average daily
precipitation and by a factor > 3 for the maximum daily precipitation.

Are “nonstationary” analyses and trend identification useful?

Author’s opinion: Such analyses are both fashionable and funny. But they are of little scientific
value. Scientifically, they rather signify a step back.
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Data for illustration 2: Hourly precipitation in Bologna

Hourly rainfall data of
the Bologna station for
the period 1990-2013
are also available,
provided by the
Dext3r repository.

23 years full coverage,
while the entire 2008
is missing (retrieved
and processed by
Lombardo et al.,,
2019).

Main observation:
Again we have
fluctuations with
upward and
downward segments.
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Data for illustration 3: Daily minimum and maximum
temperature in Milan

Milano, Italy (45.47N, 9.19E,150.0m). Available from the Global Historical Climatology Network
(GHCN) - Daily. Almost uninterrupted for the period 1763-2008: 246 years.

Main observation:

Again we 45
have upward 40
and 35 -
downward 30 -
fluctuations; 5
theupward  © ., .
ones prevail. < |
< 15
© 10 -
5 5 -
S o-
|_
-5 = Il |"||II
'10 | y I T
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220 —— Makx daily — Min|daily
55 e ] 0-year max of max daily | =====10-year min of min daily
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Introductory notes on statistical inference: moments

e Statistical inference (induction) is based on expectations of functions of stochastic variables,
and in particular, moments, which are estimated from samples by virtue of stationarity and
ergodicity.

e The behaviour of extremes is strongly related to high-order moments.

e The ergodic theorem enables, in theory, estimation of moments from data as n — oo,
irrespective of the moment order p. But what happens for finite n?

e Itisrecalled that the classical definitions of noncentral (or raw) and central moments of
order p are:

/ p
up =E[xP] = E[(x - )]
respectively, where y == p; = E[g] is the mean of the stochastic variable x. Their standard
estimators from a sample x;,i =1, ..., n, are

n n
~J 1 A b(n'p) A\ P
Hp = _zﬁzp' Hp = 2(&' —#)
i=1

n n
i=1

where b(n, p) is a bias correction factor (e.g. for the variance y> =: 62, b(n, 2) =n/(n - 1)).
e The estimators of the noncentral moments /i, are in theory unbiased, but in typical

hydrological records it is practically impossible to use them in estimation for p > 2:
cf. Lombardo et al. (2014), “Just two moments”.

e For this reason in Koutsoyiannis (2019) the term “unknowable” was coined to describe
this characteristic of classical moments.
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Illustration of slow convergence of moment estimates
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Convergence of the sample estimate of the eighth
non-central moment to its true value (thick
horizontal line) corresponding to a lognormal
distribution LN(0,1) where the process is an
exponentiated Hurst-Kolmogorov process with
Hurst parameter H = 0.9. The sample moments
(ta xip /n with p = 8; continuous lines), are
estimated from a single simulation of length

64 000, subset to sample size n from 10 to 64 000,
with the subsetting being done either from the
beginning to the end or from the end to the
beginning. Dashed lines represent maximum
values (max; < ;<,, (x;))?P /n.

1
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2 0'001 ------------------ -
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Simulation length

As in the example on the left but for 200
simulated series of length 1000 each. The
sampling distribution of the eighth moment
estimator Y1, x? /n is visualized by the
percentiles, the median and the average,
plotted as ratios to the true value.
Theoretically, the ratio should be 1, butitis
smaller by many orders of magnitude, and the
convergence to 1 is very slow. (The
convergence of the average could also be
achieved if we used millions of simulated
series instead of 200). In contrast, the ratio to

(max; < j<n (x:))°/n is 1.
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The reason of slow convergence

What is the result of raising to a power and adding, i.e. >}/ ; xf — like in estimating
moments?

Linear,p=1 Pythagorean, p = 2 Cubic,p=3 High order,p =8
3+4=7 32+42=52 33+43=453 38 +48x48
3+4+12=19 32+42+122=132 | 33+43+123=12.23 | 38+48+ 128128
e Symbolically, for relatively large p the estimate of u,, is™
n
1 1 p
A p ~ — .
o = nz & n (1??5)51(96‘))
=1

Thus, for an unbounded variable x and for large p, we can conclude that /i, is more an

estimator of an extreme quantity, i.e., the nth order statistic (the largest) raised to
power p, than an estimator of u,,.

Thus, unless p is very small, i, is an unknowable quantity: we cannot infer its value
from a sample. This is the case even if n is extraordinarily large!
Also, the various [, for different orders p are in fact deformed copies of the same

thing: they only differ on the power to which the maximum value is raised.

* This is precise if x; are positive. Note that for large p the term (1/n) could be omitted with a negligible error.
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From classical (but unknowable) moments to knowable
moments

To derive knowable moments for high orders p, in the expectation defining the pth moment:
up = E[x”]

we raise x to a smaller power g < p (e.g. ¢ = 1,q = 2) and for the remaining (p — q) terms in the

multiplication x? = x ... x we replace x with the distribution function F(x):
N——
p

x? - (F()) " xf

We multiply the latter quantity by (p — g + 1) and take its expected value. This leads to the following
definition of noncentral knowable moment:

Kpq = (® —q+1E [(F@),,_q x"], p=q

Likewise, we can define central and hypercentral knowable moments by the following
substitutions:

(x-u) - (F)) " @-w)"or (x—u)" - (2F() - 1) “(x - n)’
Knowable moments or K-moments, introduced by Koutsoyiannis (2019, 2020), contain as special

cases (or are one-to-one connected to) classical moments, Probability Weighted Moments and L-
moments, and are tightly connected to expectations of order statistics.
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Formal definition of K-moments

Noncentral knowable moment of order (p, 1) [analogous to Probability Weighted Moments]
p—1
K}, := pE [(F({)) g] p=1

Noncentral knowable moment (or noncentral K-moment) of order (p, q) [recovering classical
noncentral moments for p = q|:

P—q
Kyo=@-q+DE|[(F(x)) 27, p=zgq
Central knowable moment of order (p, q) [recovering classical central moments for p = q]
pP—q q
qu:=(p—q+1)E[(F(£)) (E—H)], p=q
where p is the mean of x, i.e,, u == E[g(p)] = Kj.

Hypercentral knowable moment (or central K-moment) of order (p, q) [analogous to L-moments]

Kiz =@ —q+DE[(2F(x) -1)""(x-w) p=zgq
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K-moments and order statistics

A sample of a stochastic variable x is by definition a set {x4, x5, ..., X, } of independent copies of x. We
may arrange the sample in increasing order of magnitude such that x(;.,y be the ith smallest of the n,
Le.:
X(1:n) < X(2:n) S S X(n:n)

The stochastic variable x(;.,) is termed the ith order statistic. The minimum and maximum are,
respectively,

Xy = Min(Xy, Xz, ) Xn),  Xm) = X(uny = Max(xy, 25, ..., Xn)
and represent special cases of the order statistics, the lowest and the highest.

The distribution of the order statistic x;.,,) is given in terms of the Beta distribution function as:

Bren(ihn—i+1)
Fiim) (%) = Plaamy < x} = Plu < F(x)} = BO(? n—i+1)

For the special cases of the minimum and maximum we have, respectively,

Bro (1, n Brpn(n, 1 n
Fam () = ”é(fn)")ﬂ—(l—F(x)), Flum () = FB((;(,’;)L(F(;C))

It is shown that the expectation of the order statistic x;.,) is related to the noncentral K-moments by:

E n—i
(Ln) z< )( )] l+] 1+q,9
I+]

=0

.
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K-moments and expectation of extremes

Based on the definition of K-moments it is readily seen that

Kp = Elxp)] = E[max(x;, 2z, .., 2, )]
More generally, K-moments of all categories represent expected values of extremes. Thus, for odd g
or for nonnegative x (so that x;/ be monotonic function of x):

Kpo = Elmax(el 2 o200 )] = B[ o1s

Furthermore, for odd g we have,

Kpq = E|max((x, — )", (22 = 1) ., (pgua — 1) )] = E[(max(xs, ., xpg41) — 1)
which means that the central K-moment K, of x is identical to the expected maximum of order
p—q+lofz=(x—pn)"

The above properties also hold asymptotically, for large p, also for even q in any case of positively
skewed distribution.

For a symmetric distribution, an analogous property holds for the hypercentral moments with even
q:
q q q
Ky = B [max((x —#)", (2 = )" s (pqa = 1))
which means that the hypercentral K-moment K, of a stochastic variable x with symmetrical

distribution for g even is identical to the expected maximum of order p — g + 1 of z. In contrast, for g
odd, the hypercentral K-moment K, will obviously be zero.
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Are those high-order K-moments knowable?

Yes, because we can construct estimators with good properties such as unbiasedness, small variance
and fast convergence to the true value.

The unbiased estimator of the noncentral moment K,; and its extension for g > 1 are (Koutsoyiannis,
2020):

1=

n n
- o Pl | q
- Z bmp X(@in)» qu - z bl,n,p—CI"'l E(i:n)

where for any positive number p (usually, but not necessarily, integer):
0, I<p

binp =3P T(n—p+1) T
n I'(n) ri—-p+1)’

It can be verified that
Z?zl inp — 1
which is a necessary condition for unbiasedness. Furthermore, for p = 1, b;;;; = 1/n and thus we
recover the estimator of the mean. For p = 2, the quantity (n/2)b;,, is the estimator F (x(i)), ie.
" i—1
Flxw) = —

Because b;y,,, = 0 for i < p, as the moment order increases, progressively, fewer data values

determine the moment estimate, until it remains only one, the maximum, when p = n, with b,;,,, = 1.
Furthermore, if p > n then b;,;, = 0 for all i, 1 <i < n, and therefore estimation becomes impossible.
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|]ustification of the notion of unknowable vs. knowable

Moment value

Moment value
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| up
0 Kb
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o
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|
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Note: Sample sizes are ten times higher than the maximum p shown in graphs, i.e., 1000.
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Effect of persistence on K-moment estimates

A K-moment is a characteristic of the marginal, first
order, distribution of a process and therefore it is not
affected by the dependence structure. However, its
estimator is: time dependence induces bias to
estimators of K-moments. Thus, the unbiasedness
ceases to hold in stochastic processes.

For a Markov process the effect of autocorrelation is
negligible, unless n is low and r high (e.g. > 0.90).

However, for an HK process, as shown in
Koutsoyiannis (2020), the effect can be substantial:

Kg—szZH(l—H)_ 1
K, n—1 2(n—1)2-2H

Kp' = Kg = (1 + @)K ,p’ ~ 20 + (1 _ 2@)p((1+@)2)

[llustration of the performance of the adaptation of K-
moment estimation for an HK process with Hurst parameter
0.9 and lognormal marginal distribution (LN(0,1)). Shown
are noncentral and central moments, for g = 1. The
estimates are averages of 200 simulations each with n =
2000 and are almost indistinguishable from the theoretical
values. The 95% prediction limits (PL) are also shown. The
maximum p = 2000 reduces p’ = 500, i.e. to one fourth, with
an analogous reduction to the return period.

O(n,H) =

100

e Theoretical

—— Simulated, average

— — = Simulated, 95% PL

= Simulated, average, adapted
= -« Simulated, 95% PL, adapted |

- -~

. -
/ L d
-~
. -
g

1000

100
Moment order, p

1000
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K-moments and classical moments

Not only are K-moments knowable but they can also predict the value that a classical moment

estimator will give, through equation:

p

!

A (Kmn.l) !

Hp = 73 Hp
mn+p—1,p

where n is the sample size and m is the number of samples for the case where more than one sample
are available to make the estimate.

100

=
o

Moment, (u’,)*/?

e Theoretical

—— Adapted theoretical for 1 simulation
—— Adapted theoretical for 1000 simulations

Empirical, 1 simulation

A Empirical, average of

1000 simulations

10
Moment order, p

100

100

[E
o

Moment, (u’)Ye (K*) P
[

W'p, theoretical
e e |K',.,1,,/n, theoretical

—— (K'm1)P/n, theoretical
H'p, empirical
O | (K'm)P/n, empirical

10 100

Moment order, p

(Left) Comparison of
the estimates of
classical noncentral
moments from 1 and
1000 independent
samples from the
exponential
distribution to (a) the
theoretical moments
and (b) to the values
determined by the
above equation
(adapted theoretical).
(Right) Additional
information of the
terms appearing in the
above equation.
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K-moments and classical moments (2)

Generally, as p becomes large approaching n, estimates of both classical and K-
moments, central or non-central, become estimates of expressions involving
extremes such as (max;<;<, ¥;)" or max;<;<, (x; — )9,

For the K-moments this is consistent with their theoretical definition. For the classical
moments this is an inconsistency.

A common property of both central classical moments and hypercentral K-moments is
that symmetrical distributions have all their odd moments equal to zero.

For unbounded variables both classical and K moments are non-decreasing functions
of p, separately for odd and even p.

In geophysical processes we can justifiably assume that the variance u; = y1 = 02
= K>; is finite (an infinite variance would presuppose infinite energy to materialize,
which is absurd). Hence, high order K-moments K, and Kj; are finite too, even if
classical moments u, diverge to infinity beyond a certain p (i.e., in heavy tailed
distributions).
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K-moments and L-moments

Hypercentral K-moments are virtually equivalent to L-moments for small orders. In

addition, the framework of K-moments provides alternative options to define summary
statistical characteristics of the distribution, including the classical ones, as in the table
below. (Which option is preferable depends on the statistical behaviour, and in particular,
the mean, mode and variance, of the estimator.)

Characteristic | Order p Option 1 Option 2 Option 3”
Location 1 K{; = u (the classical mean)
Variability 2 K} = 2Ky, = 2(Ky1 — ) K =K,y = iy = 02
= 21, (the classical variance)
SkewneSS 3 K;—l _ K31 3 _ /13 K;—Z _ K32 2 K33 .u3
(dimensionless) K, K, 2, K, Ky K232/2 53
Kurtosis 4 K. K K K, K K Kiy 1y
" - 424 4 _ gl #: 42 _ o232 4 2
(dimensionless) K, K4 Ky, K}, K, K, K;, o
42 6
51, 5

However, the real power of K-Moments is in their determination and use for very high
orders p, up to the sample size.
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High order moments for stochastic processes at different

time scales: the K-climacogram and the K-climacospectrum

* The full description of the third-order, fourth-order, etc., properties of a stationary
stochastic process requires functions of 2, 3, ..., variables.

* For example, the third order properties are expressed in terms of a function of
two lags:

c3(hy, h2) = E[(x(8) - p) (x(t + h1) = ) (x(€ + h2) - )]

* Such a description is not parsimonious and its accuracy holds only in theory,
because sample estimates are not reliable.

* This problem is remedied if we introduce single-variable descriptions for any
order p, expanding the idea of the climacogram and climacospectrum based on K-
moments.

K-climacogram: Yoq(k) = (p—q+ 1)El(2F()_((k)/k) — 1)p_q()_((k)/k - H)Q]

k (g () = ¥pq (26))
K-climacospectrum: pq(k) = In 2

where X (k) = |, Ok x(t)dt is the cumulative process, and X (k)/k is the time averaged
process at time scale k.

* Forp = q = 2 we obtain the standard climacogram, y,, (k) = y(k), and the standard
climacospectrum, {,, (k) = {(k).
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Assigning return periods to K-moments of any order

p—1
e The non-central K-moment for g = 1is K, = pE I(F(g)) g]

e By definition, it represents the expected value of the maximum of p copies of x.
e To determine the theoretical return period T (K,) we introduce the ratio 4, which happens to
vary only slightly with p; assuming a time unit D we have:

D 1
( 1)_ A = ( 1)

1-F(Kp) . Dp (1—F( 1))

e Any symmetric distribution will give exactly 4;= 2 because K; is the mean, which equals the
median and thus has a return period of 2D. Thus, a rough approximation is the rule of thumb:

A, = 2
p
e Generally, the exact value 4, is easy to determine, as it is the return period of the mean:
1 T
A, =
1—F(@w) D

e The exact value of 4., depends only on the tail index ¢ of the distribution:

1
_ra-o% ¢=o0
e, E=0
where y = 0.577 is the Euler’s constant.
e These enable the simple approximation of A,, and hence of the return period:

Ay = Ay + (A1 — A)(1/P),  T(K})/D = pA, = Ap + (A1 — A)
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Better approximation of the relationship betweenp and T

e Analmost perfect approximation of A, for any distribution function is:

A, z/loo+(/11—Aoo—Bln(1+

This involves two
constants f and B,
which depend on the
distribution function.
For example, in the
Pareto distribution,
B =1and

. (3 - E)Aoo - 2/11
~ 2(1-1n2) p

For parameters of other
distributions see
Koutsoyiannis (2020).
The graph indicates the
perfect agreement of
the approximation to
the exact values for
several distributions.

10

Moment order, p

=), d
Z4+Bln (1 + )
2F 1)) p (p+1F -1
Lognormal, g = 2 Exact
e» o Approximation
/ | Weibull, = 0.5
Pareto, { = 0. oy
—_— . ]
T
Normal
bamma, (= 0.
1 10 100 1000 10000
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Assigning return periods to order statistics (plotting positions)

The classical formula for assigning a return period to x;.,), i.e., the ith smallest value in a sample of
size n is:
T(i:n) _ n+~B
D n—i+A

where A and B are constants. For an unbiased estimate of the distribution quantile these constants
areA=1/A,,B = A;/A, — 1 (Koutsoyiannis, 2020) and thus

T(i:n) _ /loo(n — 1) + /11

D  Aex(n—i)+1

For the highest value x(;,;y = x(;,.) both approaches, K-moments and order statistics, result in
precisely the same value, T(K;)/D = T(nn)/D = Awp + (A1 — Ao).

For smaller i, the pth K-moment should be equivalent, in terms of the corresponding return period, if
_n-— (A — A)(n — i)
 Ap(n—0+1

p

This means that:

(@) x(;n can be used as a quick-and-dirty (QAD) estimate of Ky, provided that p is given as a
function of i from the above equation.

(b) The return period estimate based on the typical estimator KZ’, = Y1 binp X(i:n) is better than
that based on a single x;.,y because it is derived from many data points (except for the
maximum value, when i = n, where the two approaches are precisely identical).
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Comparison of return periods assigned by the two approaches

We assume a Pareto distribution with ¢ = 0.15, in which 4, = 2.035 and A; = 2.955, and a sample
of n =100. We will have the following values of T and p for the highest and the second highest values:

I T p
100 204.4 100
99 67.4 32.6

Hence the estimate of the x quantile corresponding to a return period of 67.4, will be equal to:

® X(99:100) according to the order-statistics approach (the estimate is based on one data point);

e K3, . according to the K-moments approach (the estimate is based on 68 data points and will be
a weighted average of x(;.190) for i = 33 to i = 100).

S~ o
. . .. . . "'235 68 a4 ~ m in S R ® B RS
Simulation results of empirical return periods assigned to e - ,
Pareto quantiles (for tail index £ = 0.15, scale parameter A=  * -
L 10 P .
1 and lower bound zero). Averages and prediction limits o=
(PL) were calculated from 200 simulations each with n = Pt
. * - |
100. The curves of averages for both the order statistics and P ot
the K-moment approaches are indistinguishable from the o _Fied
theoretical curves. The return periods were assigned for the 1 2 Had »Theoretical
3 3 - ’ N i i
unbiased quantile option. The correspondence between the 7 T | Ordersratio average
K-moment of order p and the return period T is also shown o —— K-moment, av;rage
through the upper horizontal axis. The plots of a single ,” - === K-moment, 95% PL
realization are also shown (but for part of the empirical A E‘ Ei:iﬁ::;‘i‘;;;“f:lfat'::;t'"“
points to avoid an overcrowded graph). 0.1 '
1 10 100

T/D
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Very high order K-moments relationships between pand T
From the relationship:

T A
" AoD  Ae

we can easily find the K-moment order p corresponding to the return period T. An example is given
in the following table:

p + 1,

Example of the K-moment order p corresponding
to the specified return period for the Pareto
distribution with shape parameter & = (.15.

D=10min| D=1h D=1d

T = 2 months 4307 717 29
T=1year 25842 4307 179
T =2 years 51 684 8614 358

T=100years | 2584212 430702 17 945

In a stochastic process with dependence, what is given in the table is the adapted moment order p’
while p should be estimated from p’ based on the relationship in p. 25.

Alternatively, the more accurate approximation of p. 31 or even the exact relationships could be used
but the resulting p will not differ substantially from the above values.

K-moments of such high order are reliably estimated.
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Illustration that high-order K-moments are preferable to
low-order moments

For the sake of illustration, for the daily rainfall in Bologna, we intentionally choose the simplest and
blatantly unsuitable model, the 1-parameter exponential distribution, F (x) = 1 — e ¥/,

One moment suffices to estimate the single (scale) parameter A—but which moment to choose?

2 2
The exact K-moments are: K,y = (H, — 1)A, K, = ((Hp _q1— 1) + HIS 2 1) A2, Ky, = up, = (Ip)AP,

where H,, is the pth harmonic number and HZSZ) is the pth harmonic number of order 2.
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The moment order
p affects the fitting
dramatically.

The scale parameter
A increases with
increasing p, q.

If we wish to model
maxima, it is better
to fit based on the
1000th K-moment
than on the 1st!
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Better fitting on K-moments for orders p from ~100 to 10 000

(T =~21to 200 years)

We assume Pareto distribution with zero lower
bound (for physical consistency):
1

Fx)=1—-(1+&x/2) ¢or

T(x 1
% =1 +&x/1)?
The exact relationship of K-moments with
return period is:

T(K, 1

(D”) =pdy = ((0+1-9HBA-§p+ D)

We estimate the parameters by minimizing the
mean square error of the logarithms of the

empirical T (Rz’)) from the theoretical T(K}). We

x(T), mm/d

100

10

2,

l'—- Theoretical (Pareto)
e Empirical, K-moments
Empirical, Order statistics, above threshold
-|- Empirical, Order statistics, all data
0.01 0.1 1 10 100 1000
T, years

calculate the error for a range of T from 2 to 200 years. The fitted parameters are ¢ = 0.096, A = 8.37

mm/d.

The graph shows a perfect fit of theoretical and empirical curves for T > 1 year (the two curves are

indistinguishable).

For comparison, empirical curves for order statistics are also plotted (Weibull plotting positions).

Note: Minimizing the error of ﬁz’, with respect to Ky, without reference to T, is another possibility but presupposes
exact relationships for K, which in other distributions may be infeasible to derive.
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Slight improvement for a global fitting

By adding one parameter to the
theoretical distribution function we
can get a model applicable for the
entire range of rainfall depth.

Namely, we use the Pareto-Burr-
Fuller (PBF) distribution with zero
lower bound (for physical
consistency for rainfall):

F(x)=1- (1 + k(x/2)° )_%

We use the same estimation
procedure as above but calculate the
error on the entire range of values.

The estimated parameters are: & =
0.096, (= 0.883, 1 = 5.04 mm/d.

A perfect fit of the model (green

x(T), mm/d

100

10

1

2
Theoretical (PBF)
e e Empirical, K-moments
<& | Empirical, Order statistics, above threshold
- — = - Empirical, Order statistics, all data
0.01 0.1 1 10 100 1000
T, years

continuous line) and empirical curve (blue dashed line) is seen for the entire range.

For comparison, empirical curves for order statistics are also plotted (Weibull plotting positions).
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Ombrian model: Marginal distribution of rainfall intensity

An ombrian model (from the Greek ombros, meaning rainfall) describes the stochastic properties of
the distribution of rainfall of any order, or equivalently, at any time scale.

From an ombrian model that is simple enough, the ombrian relationships, also known with the
misnomer rainfall intensity - duration [meaning time scale] - frequency [meaning return period]
curves are directly extracted. The assumptions of the proposed ombrian model follow.

1. Pareto distribution with discontinuity at the origin for small time scales:

~1/¢
F®(x) =1 —p® (1 + Eﬁ) 1

It is shown by theoretical reasoning (Koutsoyiannis, 2020) that the tail index ¢ should be constant,
while the probability wet, Pl(k), and the state scale parameter, A(k), are functions of the time scale k.

Here we sacrifice the exactness of the PBF distribution (see previous page) in order to get simpler
ombrian relationships for small scales.

2. Continuous PBF distribution with possible discontinuity at zero for large time scales, i.e.:

-1/¢
F® () =1-pY (1 *te (ﬁ)m>

In this case a new parameter {(k) is introduced, which is again a function of time scale. The Pareto
distribution is a special case of PFB for {(k) = 1. In contrast to the Pareto distribution, whose
density is a decreasing function of x, the PBF tends to be bell-shaped for increasing { (k). Here we
sacrifice the constancy of tail index (= ¢/{(k)) to assure simplicity and ergodicity.
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|Ombrian model: Mean and climacogram

1

3. Constant mean of the time averaged
. S~ process:
< - K] —
£ E[xV] = u
0.01 . .
= 4. Climacogram of Filtered Hurst-Kolmogorov
J 0.001 _ - Cauchy (FHK-C) type, i.e.:
S e Empirical
0.0001 Model, optimized for extremes (k)
Maodel, adapted for bias, gptimized for climacogr Var[£ ] = )/(k) = Al 1+ (-
— — Model, adapted for bias, gptimized for extremes a
0.00001
1 10 100 1000 10000 100000 1000000 Or Of Filtered Hurst-Kolmogorov - Cauchy-
o0 Time scale, k (h) Dagum (FHK-CD) type; in the latter case, to
avoid an overparametrized model (and as we
% expect H > 0.5 and M < 0.5 due to roughness),
E we set M = 1 — H and thus we get:
% / L \2H~2 0y 2H-2
: y(k)=/11(1+—> +/12(1—(1+—) )
g 251 k
g ! o Clearly, in both cases, y(k) — 0,as k — oo,
£ M”",Z';:’czptim ed for climacogram which makes the process ergodic; for k = 0,
— — Model, optimized for extremes ]/(O) = %Yo = /1 in the FHK-C case and
0.1 .
1 10 100 1000 10000 100000 1000000 ]/(0) - yo - /11 + /12 1n the FHK-CD case In
Time scale, k (h) both cases y(0) is finite and the number of

parameters is four.
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The ombrian model: Probability wet/dry
5. Probability wet and dry, Pl(k) =1- Po(k), varying with time scale according to:
InP® =P (k/k*)°,  k=k

where k™ is the transition time scale from Pareto to PBF distribution, for which Po(k*) > 0 and

{(k*) = 1 (for continuity in the transition point), and 0 is a parameter (0 < 8 < 1). This equation has
been derived in

Koutsoyiannis (2006) 10 —
based on maximum Ll
entropy considerations.

In the Pareto case, since
{(k) = 1, the probability
wet is fully determined
from the other
parameters:

pt _ 1-¢ K
Y12 = ¢&y(k) + u?

2

0.1

Empirical) from hourly series
- Empirical| from daily series
e \odel, optimized for probability wet/dry

Logarithm of probability dry, In (1-P,)

Fitting of the ombrian

- = = Model, optimized for extremes

model to the empirical 0.01
estimates of probability 1 10 100 1000 10000
wet (P;) or dry (1 — Py). Time scale, k (h)
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Mathematical relationships of the ombrian model

Large scales, k > k* (PBF)1

Quantity Small scales, k < k™ (Pareto)
E[x®] u
H-1 oy 22 o~ 2H=2
y (k) L1+ (k/a)?M)Y ™ or A (1 + E) + A, (1 -(1+ E) )
(k) 1-¢ u? k) (k/k*)?
A 1/2 —ey(k) + 12 1-(1-p*7)
1 2
L ) Y (K) +u
40 1 j“‘zf)(”lk )
1 U - 1 1 \p¥
200 (172 = DG ) + 1) A-9(W)" (uw)”)
1
0 ¢ ®© 00 /) 1 \°®
©fore>0| 00 (P10 /1K) 1 A (POTwO/K) 1
$ $
xforé=0| x=Ak)In ( p T(k)/k) % = A0k (m ( p® T(k)/k))ﬁ

The ombrian curves per se are given in the last two rows. The transition time scale k* has a default value of ~100 h.
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Parameters of the ombrian model

Parameter |Meaning of parameter Related tool

u Mean intensity Mean, u

A (or A4,A,) |Variance scale parameters? Climacogram, y (k)

a Time scale parameter Climacogram, y (k)

M Fractal (smoothness) parameter? Climacogram, y (k)

H Hurst parameter Climacogram, y (k)

& Tail index Probability distribution, F(x)
0 Exponent of the expression of probability dry Probability wet, pl(k)

1 One or two parameters for the two cases depending on the choice of the climacogram expression.

2 The fractal (roughness/smoothness) parameter M is an independent parameter if we have chosen a
climacogram expression with one 4; otherwise itis assumed M =1 — H.

3 The transition time scale k* but this is not regarded a parameter but a modelling choice.

With these seven parameters, the ombrian model achieves:

(a) mathematical and physical consistency;

(b) coverage of all time scales (from zero to infinity);

(c) good respresentation on the very fine time scales, through the fractal parameter M;

(d) good respresentation on very large time scales, through the Hurst parameter H and the
preserved mean y whose effect becomes important as time scale increases;

(e) simultaneous treatment and preservation of the climacogram; and

(f) simultaneous treatment and preservation of the probability dry/wet.
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Ombrian curves for Bologna: Comparison of model to
K-moment estimates of return period

Ombrian curves as resulted
from the ombrian model for
Bologna for time scales
spanning 5 orders of
magnitude (1 h to 16 years =
140 256 h). The empirical
points are estimated from K-
moments. The effect of
persistence was taken into
account; the model was
plotted with bias-adapted
variance in order to be
comparable with empirical
plots.

Parameter values

u 0.0773 mm/h
M 0.00103 mm?/h?
A2 1.978 mm?2/h?

a 9.704 mm

H 0.95

& 0.120

0 0.849

Emp
Emp
Omb

rical from hourly series

rical from daily series L —
rian model : —

B N
> OO

Precipitation intensity, x (mm/h)

1 10 100 1000
Return period, T (years)
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Ombrian curves for Bologna: Comparison of model to
order-statistics estimates of return period

Ombrian curves as resulted
from the ombrian model for
Bologna for time scales
spanning 5 orders of
magnitude (1 h to 16 years =
140256 h). The empirical
points are estimated from
order statistics. The effect of
persistence was taken into
account; the model was
plotted with bias-adapted
variance in order to be
comparable with empirical
plots.

Parameter values as in previous
page.

Precipitation intensity, x (mm/h)

100

irical from hourly series 1h
irical from daily series 2h
rian model 4 h

Return period, T (years)

D. Koutsoyiannis, Advances in stochastics of hydroclimatic extremes 44



Temperature extremes in Milan: A diagnostic analysis of the
evolution of climatic extremes in cyclostationary setting

45
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35 e
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20 -
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-5 -
-10 -
-15
-20

Max and min temperature (°C)

1780 1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 2020

In monthly setting, using a window of 30 years, the plot shows the second highest value out of
~ 30 X 30 = 900 values for the maximum temperature and the second lowest value for minimum
ones. The second highest value is a QAD estimate of a K-moment for some order p (see next page).

There exist upward and downward fluctuations; the upward ones prevail, particularly in the
low extremes.

The climatic range, measured as the difference of the high and low extremes, was 47 °C in in 1800,
increased to 53 °C in 1860 (worst), deceased to 45 °C in 2000 (best), and increased to 48 °C in 2008.
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Assessment of return periods of each of the two extremes

Assuming normal distribution with A,, = 1.781, 4; = 2, the return period of the second highest
value among 900 monthly values of 30 years is:

T(899:900) _ Ax0(900—1)+A4
(1/30)  Ao(900—899)+1

This corresponds to K-moment order:

=576 > T = 19.2 years

= Wi eo)7D) _ 353 5
Aoo(n—1)+1

However, both time series suggest strong Hurst-Kolmogorov behaviour, with Hurst parameter
H = 0.93 (even excluding the 21st century data). For large n the equation on p. 25 can be written as:

1 1 1vyn
MK (n, H) ~ — st = — L= 1
! 2n2-2H 2n’ 2y, —
. . . T
where n' is the effective sample size; for the
Milano daily temperature and n = 900, €
+ 10
n' % 90/1=90and & = —0.01. £
In turn, this results in p’ ~ 20 + (1 — = . o
2 g Maximum,|from daily series
2@)p((1+@) ) — 546 and T’ = 18.2 years. § 1 Minimum, from daily series
L. . . s e \aximum,|from annual series
This is a I'Ollgh appr0X1mat10n as the > = == Maximum, from annual series, excl. 21st century
Climacograms are Of HK type Only —Mlnlmum, from annual series
; ] = = Minimum, from annual series} excl. 21st century
asymptotically (for large k); stochastic 0.1

simulation is required for a better
approximation.

1
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Time scale, k (d)
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10000

Climacograms of maximum and minimum daily temperature in Milano.
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What is the culprlt of temperature increase in Milan?

| ¢ : ' Milan 1988:
Population 3 506 838
Urban extent 88 417 ha

Milan 2013:
Population: 6402 051
- Urban extent 277 177 ha

Graphs: Glynis (2019)

- Data: Atlas of Urban Expansion

€ Mastoo € CoenSteetMag improve ttes map
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Comparison with nearby non-urbanized areas

Second highest 42 29
daily temperature e Miilano S
maximum in 41 _ 28 =
sliding windows 20 = Monte Cimone — =
of size 30 years. S — = Paganella §0
Note that both < 39 26 &2
Monte Cimone S 28 . o3
and Paganella = c
: . = £
stations are in J 37 I L r 14 g
elevations about 3 — ——— —-I lJ 9
2000 m higher C36 —— I I 23 5
. . -] L ] . J
than Milan, which £ 35 | — | -I _ _._'.—' 2y %
causes a 2 |T-',! __ﬂb'_ - |..| I e =
temperature 34 21 g
difference of i g
6.5°C/kmx2km 33 20 o
=13°C. 32 19
1960 1970 1980 1990 2000 2010

It appears that urbanization is the principal factor causing temperature increase non-urban stations
have not been affected.
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If we assume that Milan is affected by global warming, can
we use climate model results for future prediction?

Tyralis and Koutsoyiannis (2017) have proposed a method to incorporate one or many deterministic
forecasts, such as those of climate models, into an initially independent stochastic model.

If the deterministic forecasts are good, then the Bayesian framework proposed takes them into
account, otherwise they are automatically disregarded.

With reference to the sketch on the right, we simulate the unknown future y3 conditional on the
known past y1, y2 and the deterministic model outputs xz, X3 by:

h(y3ly1, y2, x2, x3) oc f(x3|y3) g(¥y3|y1, y2)

where f(x3|y3) is the model Linear model fitting Prediction
likelihood (evaluated f_rom x2and i ——pie »
y2) and the other functions are ‘Normal stationary model fitting, l
conditional densities. Historical * T P, i
The method was tested on large observations Y Y1 v Yo o Y3 :
data sets in the USA (not yet in | - i ¢ Botecass '
Italy). " : } I I
Deterministic & »e o
forecast X P Xo X3
Time ! i | >
I n, ntn, ntnytng
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Example of climate model testing in the USA

Historical data for temperature and precipitation from ?aﬁﬂ
362 and 319 stations, respectively, have been used to
estimate the areal averages (historical observations).

Deterministic forecasts were taken from 14 different
climate models. The model likelihood was evaluated in
the period 2006-15.

The example on temperature (95% prediction

intervals) shows a slight

increase in annual R S GECMggm NP

temperature in the USA{f 5 © 7|77 fmacmaee /\r _____ J\ﬂ\f W\ U\ffff-‘f-----: _____

conditioned on the output § = - \/V Vv A ”Tﬁ v\]] <5

- i a - v

of MRI-CGCM3 climate ¢ % ~ MM\/\J\/\ \/‘ " J\/"J\\ M V\f\/\/

The example on . | : I |

precipitation shows N g

indifference despite 28 | A e W/‘AN W /\4 M w N\M

conditioning on the GISS- £~ |- Eéi‘lf\fa‘iﬂaﬁsi?rlii \,J\ MM /W\)\/H /V\w,/ \f\/ WV ,\I\IJ

E2-H climate model. £ g | A N, PN 4“”,\,\ TR VI
g7 VA\]“L__ qv WL ZWDN\ L L Mt Luw_“’__\_r‘_Jy__Lf_f_f\v
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| |
1950 2000 2050 2100
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Final multimodel results for temperature and precipitation

in the USA

If all models are taken into account, the temperature change up to 2100 could be somewhere in the
range -4 to 4 °C. The negative predictions result from the fact that some models have negative
correlation with historical data!

Precipitation does not change by conditioning on all models. Only its uncertainty increases slightly

(£50 mm, if
compared to
that without
conditioning on
models).

General
conclusion:

Climate model
predictions (or
projections) can
hardly justify a
reason to be
incorporated in
studies of real

world processes.
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Stochastic forecast-oriented estimation

The process mean is a neutral predictor of the future (zero efficiency) but in most cases is better
than climate model predictions (negative efficiency).

However, because in real world processes there is dependence in time, a local mean (of a few recent
values) can be a better predictor than the global (or the true) mean, as well as than trend models

(Iliopoulou and Koutsoyiannis, 2019).

In particular, for the FHK-C model (with
climacogram y (k) = A(1 + k/a)?H~2), if we
wish to predict a future time window of
length k, then the optimal value v of the
number of past terms, forming the local
mean, is (Koutsoyiannis, 2020):

, k=23(@+ DH? -1
"(max(0,2.5H — 1.5))?>

vzmax<

It can be seen in the graph on the right that
there are cases (for large H and «a) that the
optimal v can be as small as 1; this means
that the present value of the process, rather
than the mean of the past, should be used as
the predictor of the future (even though the
process is stationary).

Past time steps, v

1000

100

[EEY
o

1 10 100 1000
Future time steps, «
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Conclusions

Trend following may mean taking steps back. Therefore: better classic than trendy
(cf. lliopoulou and Koutsoyiannis, 2019).

In a non-trendy (meaning stationary and ergodic) framework, the newly introduced
knowable moments (K-moments) are powerful tools that unify other statistical
moments (classical, L-, probability weighted) and order statistics, offering several
advantages.

In particular, they offer a sound basis for distribution fitting with emphasis on
extremes.

For independent identically distributed variables, K-moments offer unbiased,
reliable and workable estimators for low and high orders p, up to order equal to the
sample size n.

Time dependence influences the estimates, yet K-moments offer a basis to assess
that influence and properly adapt the estimates.

Rainfall extremes can be effectively modelled by a rather simple ombrian model,
which, in addition to modelling extremes, provides a good representation the
climacogram of the rainfall process and its intermittence.

For temperature extremes further research is required.
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I Data sources
GHCN Version 3 data: retrieved on 2019-02-17 from https://climexp.knmi.nl/gdcnprep.cgi?WMO=ITE00100550

Dext3r data: retrieved on 2019-02-17 from http://www.smr.arpa.emr.it/dext3r/
Atlas of Urban Expansion: retrieved on 2019-11-17 from http://www.atlasofurbanexpansion.org/cities /view/Milan
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