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Baldo Bacchi: a multidimensional noble man, a frank guy,  
a great humourist, a rigorous scientist 
 

  

Baldassare Bacchi 
- PO di Costruzioni 
Idrauliche e 
Marittime e 
Idrologia (SSD 
ICAR/02)  

Baldo Bacchi’s research team in 2015 with faculty members, doctoral students 
and post-docs; from left to right: Eleni Michailidi, Marco Pilotti (PA SSD 
ICAR/01), Luca Milanesi, Stefano Barontini (RC SSD ICAR/02), Giulia Valerio, 
Baldo Bacchi, Roberto Ranzi (PO SSD ICAR/02), Matteo Balistrocchi, Massimo 
Tomirotti, Alessandra Viani. 



  D. Koutsoyiannis, Advances in stochastics of hydroclimatic extremes  2 

Baldo Bacchi’s seminal contributions to the stochastics of 
hydrological extremes 

 

 

 

 

 

 

 
  

http://www.itia.ntua.gr/ 
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The general framework: Seeking theoretical consistency in 
analysis of geophysical data (Using stochastics) 

 

Book in preparation: 
D. Koutsoyiannis, Stochastics of Hydroclimatic Extremes – A Cool Look at Risk 
(2020) 
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Is “stationarity dead” and is there “rainfall intensification”? 

  
 
The climatic value of annual maximum daily rainfall of the 30-year period 1980 – 2010, compared to 

that of 1960-80, is greater by 5% for dry areas and by 2% for wet areas (Donat et al., 2016). 

 

 

 Dry   Wet 
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Climate change impacts on the scientific level of hydrology:  
The surge of studies of nonstationary extremes  
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Quantification of “steps back” using bibliometrics 
In 2018, among the scientific articles, 
registered by Google Scholar that 
contained the terms “precipitation”, 
“hydrology” and “extremes”, 89% also 
contained the word “trends”. 

Since 1920, there has been a rising 
trend in the frequency of the word 
“trends” 

Since ~2010 there has been an upward 
shift in that frequency.  

 

Source: Iliopoulou and Koutsoyiannis (2019) 

 

Note: It appears that Baldo Bacchi had not 
been severely affected by climate 
change… 

None of his articles contained the terms 
“trend”, “trends”, “nonstationary”, 
“nonstationarity” in its title. 
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Do climate models allow a nonstationary approach on extremes? 
Tsaknias et al. (2016—
multirejected paper) 
tested the reproduction 
of extreme events by 
three climate models of 
the IPCC AR4 at 8 test 
sites in the 
Mediterranean with 
long time series of 
temperature and 
precipitation.  

They concluded that 
climate models are not 
able even to approach 
the natural behaviour 
in extreme events.  

The graphs show plots of 
time series and probability 
distributions of annual 
maximum daily 
precipitation and 
temperature in 
comparison with climate 
model results. 

Precipitation@Perpignan 

Precipitation@Perpignan Precipitation@Torrevieja 

Precipitation@Torrevieja 

Temperature@Tortosa 
Temperature@Bologna 
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Both stationarity and ergodicity are abstract mathematical 
concepts; hence they are immortal! 

Stationarity and 
ergodicity are tightly 
connected to each other.  

Without stationarity 
there cannot be 
ergodicity. 

Without ergodicity 
inference from data 
would not be possible. 

Ironically, several 
studies use time series 
data to estimate 
statistical properties, as 
if the process were 
ergodic, while at the 
same time what they 
(cursorily) estimate may 
falsify the ergodicity 
hypothesis. 
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Stationary description of Earth’s perpetual change:  
Hurst-Kolmogorov dynamics  
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The climacogram: A simple statistical tool to quantify change 
across time scales 
• Take the Nilometer time series, x1, x2, ..., x849, and calculate the sample estimate of 

variance γ(1), where the argument (1) indicates time scale (1 year) 

• Form a time series at time scale 2 (years):  

𝑥1
(2)
≔
𝑥1  +  𝑥2
2

, 𝑥2
(2) ∶=

𝑥3 + 𝑥4
2

, . . . , 𝑥424
(2) ∶=

𝑥847 + 𝑥848
2

 

and calculate the sample estimate of the variance γ(2). 

• Repeat the same procedure and form a time series at time scale 3, 4, … (years), up to 
scale 84 (1/10 of the record length) and calculate the variances γ(3), γ(4),… γ(84). 

• The climacogram is the variance γ (κ) as a function of scale κ; it is visualized as a double 
logarithmic plot of γ (κ) vs. κ. 

• If the time series 𝑥𝜏 represented a pure random process, the climacogram would be a 
straight line with slope –1 (the proof is very easy). 

• In real world processes, the slope is different from –1, designated as 2H – 2, where H is 
the so-called Hurst coefficient (0 < H < 1). 

• The scaling law γ(κ) = γ(1) / κ2 – 2H defines the Hurst-Kolmogorov (HK) process. 

• High values of H (> 0.5) indicate enhanced change at large scales, else known as long-
term persistence, or strong clustering (grouping) of similar values. 
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The climacogram of the Nilometer time series 
• The Hurst-Kolmogorov process 

seems consistent with reality. 

• The Hurst coefficient is H = 0.87 
(Similar H values are estimated 
from the simultaneous record of 
maximum water levels and from 
the modern, 131-year, flow 
record of the Nile flows at 
Aswan). 

• The Hurst-Kolmogorov 
behaviour, seen in the 
climacogram, indicates that:  

(a) long-term changes are 
more frequent and intense 
than commonly perceived, and 

(b) future states are much 
more uncertain and 
unpredictable on long time 
horizons than implied by pure 
randomness. 
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Change and predictability 

 

Simple systems – Short time horizons
Important but trivial

Complex systems – Long time horizons
Most interesting

Change

Predictable
(regular)

Unpredictable
(random)

Purely random
e.g. consecutive 
outcomes of dice

Non-periodic
e.g. acceleration of 

a falling body

Periodic
e.g. daily and 
annual cycles

Structured 
random

e.g. climatic 
fluctuations

Koutsoyiannis, 2013 
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Data for illustration 1: Daily precipitation in Bologna 
Bologna, Italy (44.50°N, 
11.35°E, +53.0 m).  

Available from the Global 
Historical Climatology 
Network (GHCN) – Daily. 

Uninterrupted for the period 
1813-2007: 195 years.  

For the period 2008-2018, 
daily data are provided by 
the repository Dext3r of 
ARPA Emilia Romagna. 

Total record length: 206 
years. 

Main observation:  
The 10-year climatic averages have varied irregularly by a factor of 2 for the average daily 
precipitation and by a factor > 3 for the maximum daily precipitation. 

Are “nonstationary” analyses and trend identification useful?  

Author’s opinion: Such analyses are both fashionable and funny. But they are of little scientific 
value. Scientifically, they rather signify a step back. 
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Data for illustration 2: Hourly precipitation in Bologna 
Hourly rainfall data of 
the Bologna station for 
the period 1990-2013 
are also available, 
provided by the 
Dext3r repository. 

23 years full coverage, 
while the entire 2008 
is missing (retrieved 
and processed by 
Lombardo et al., 
2019). 

 

Main observation:  
Again we have 
fluctuations with 
upward and 
downward segments. 0
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Data for illustration 3: Daily minimum and maximum 
temperature in Milan 
Milano, Italy (45.47N, 9.19E,150.0m). Available from the Global Historical Climatology Network 
(GHCN) - Daily. Almost uninterrupted for the period 1763-2008: 246 years. 

Main observation:  
Again we 
have upward 
and 
downward 
fluctuations; 
the upward 
ones prevail. 
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Introductory notes on statistical inference: moments 
 Statistical inference (induction) is based on expectations of functions of stochastic variables, 

and in particular, moments, which are estimated from samples by virtue of stationarity and 
ergodicity. 

 The behaviour of extremes is strongly related to high-order moments. 
 The ergodic theorem enables, in theory, estimation of moments from data as n → ∞, 

irrespective of the moment order p. But what happens for finite n? 

 It is recalled that the classical definitions of noncentral (or raw) and central moments of 
order p are:  

𝜇𝑝
′ ≔ E[𝑥𝑝], 𝜇𝑝 ≔ E[(𝑥 − 𝜇)

𝑝
] 

respectively, where 𝜇 ≔ 𝜇1
′ = E[𝑥] is the mean of the stochastic variable 𝑥. Their standard 

estimators from a sample 𝑥𝑖, i = 1, …, n, are  

�̂�𝑝
′ =

1

𝑛
∑𝑥𝑖

𝑝

𝑛

𝑖=1

,        �̂�𝑝 =
𝑏(𝑛, 𝑝)

𝑛
∑(𝑥𝑖 − �̂�)

𝑝
𝑛

𝑖=1

 

where b(n, p) is a bias correction factor (e.g. for the variance μ2 ≕ σ2, b(n, 2) = n/(n – 1)).  
 The estimators of the noncentral moments �̂�𝑝

′  are in theory unbiased, but in typical 

hydrological records it is practically impossible to use them in estimation for p > 2: 

cf. Lombardo et al. (2014), “Just two moments”.  

 For this reason in Koutsoyiannis (2019) the term “unknowable” was coined to describe 
this characteristic of classical moments. 
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Illustration of slow convergence of moment estimates 

  

Convergence of the sample estimate of the eighth 
non-central moment to its true value (thick 
horizontal line) corresponding to a lognormal 
distribution LN(0,1) where the process is an 
exponentiated Hurst-Kolmogorov process with 
Hurst parameter H = 0.9. The sample moments 
(∑ 𝑥𝑖

𝑝𝑛
𝑖=1 /𝑛 with p = 8; continuous lines), are 

estimated from a single simulation of length 
64 000, subset to sample size n from 10 to 64 000, 
with the subsetting being done either from the 
beginning to the end or from the end to the 
beginning. Dashed lines represent maximum 
values (max1≤ 𝑖≤𝑛(𝑥𝑖))

𝑝/𝑛. 

As in the example on the left but for 200 
simulated series of length 1000 each. The 
sampling distribution of the eighth moment 
estimator ∑ 𝑥𝑖

8𝑛
𝑖=1 /𝑛 is visualized by the 

percentiles, the median and the average, 
plotted as ratios to the true value. 
Theoretically, the ratio should be 1, but it is 
smaller by many orders of magnitude, and the 
convergence to 1 is very slow. (The 
convergence of the average could also be 
achieved if we used millions of simulated 
series instead of 200). In contrast, the ratio to 
(max1≤ 𝑖≤𝑛(𝑥𝑖))

8/𝑛 is ≈1.  
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The reason of slow convergence  
 What is the result of raising to a power and adding, i.e. ∑ 𝑥𝑖

𝑝𝑛
𝑖=1  – like in estimating 

moments? 

Linear, p = 1 Pythagorean, p = 2 Cubic, p = 3 High order, p = 8 

3 + 4 = 7 32 + 42 = 52 33 + 43 = 4.53 38 + 48 ≈ 48 

3 + 4 +12 = 19 32 + 42 + 122 = 132 33 + 43 + 123 = 12.23 38 + 48 + 128 ≈ 128 

 Symbolically, for relatively large p the estimate of 𝜇𝑝
′  is*: 

�̂�𝑝
′ =

1

𝑛
∑𝑥𝑖

𝑝

𝑛

𝑖=1

≈
1

𝑛
( max
1≤ 𝑖≤𝑛

(𝑥𝑖))
𝑝

 

 Thus, for an unbounded variable 𝑥 and for large p, we can conclude that �̂�𝑝
′  is more an 

estimator of an extreme quantity, i.e., the nth order statistic (the largest) raised to 
power p, than an estimator of 𝝁𝒑

′ . 

 Thus, unless p is very small, 𝝁𝒑
′  is an unknowable quantity: we cannot infer its value 

from a sample. This is the case even if n is extraordinarily large! 
 Also, the various �̂�𝑝

′  for different orders p are in fact deformed copies of the same 

thing: they only differ on the power to which the maximum value is raised. 
 

                                           
* This is precise if xi are positive. Note that for large p the term (1/n) could be omitted with a negligible error. 
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From classical (but unknowable) moments to knowable 
moments 
To derive knowable moments for high orders p, in the expectation defining the pth moment:  

𝜇𝑝
′ ≔ E[𝑥𝑝] 

we raise 𝑥 to a smaller power 𝑞 < 𝑝 (e.g. 𝑞 = 1, 𝑞 = 2) and for the remaining (𝑝 − 𝑞) terms in the 

multiplication 𝑥𝑝 = 𝑥…𝑥⏟  
𝑝

 we replace 𝑥 with the distribution function 𝐹(𝑥):  

𝑥𝑝 → (𝐹(𝑥))
𝑝−𝑞

 𝑥𝑞 

We multiply the latter quantity by (𝑝 − 𝑞 + 1) and take its expected value. This leads to the following 
definition of noncentral knowable moment: 

𝐾𝑝𝑞
′ ≔ (𝑝 − 𝑞 + 1)E [(𝐹(𝑥))

𝑝−𝑞
𝑥𝑞] , 𝑝 ≥ 𝑞 

Likewise, we can define central and hypercentral knowable moments by the following 
substitutions: 

(𝑥 − 𝜇)
𝑝
→ (𝐹(𝑥))

𝑝−𝑞

(𝑥 − 𝜇)
𝑞

 or  (𝑥 − 𝜇)
𝑝
→ (2𝐹(𝑥) − 1)

𝑝−𝑞
(𝑥 − 𝜇)

𝑞
 

Knowable moments or K-moments, introduced by Koutsoyiannis (2019, 2020), contain as special 
cases (or are one-to-one connected to) classical moments, Probability Weighted Moments and L-
moments, and are tightly connected to expectations of order statistics.  
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Formal definition of K-moments 

Noncentral knowable moment of order (p, 1) [analogous to Probability Weighted Moments] 

𝐾𝑝
′ ≔ 𝑝E [(𝐹(𝑥))

𝑝−1
𝑥] , 𝑝 ≥ 1 

Noncentral knowable moment (or noncentral K-moment) of order (p, q) [recovering classical 
noncentral moments for p = q]:  

𝐾𝑝𝑞
′ ≔ (𝑝 − 𝑞 + 1)E [(𝐹(𝑥))

𝑝−𝑞
𝑥𝑞] , 𝑝 ≥ 𝑞 

Central knowable moment of order (p, q) [recovering classical central moments for p = q] 

𝐾𝑝𝑞 ≔ (𝑝 − 𝑞 + 1)E [(𝐹(𝑥))
𝑝−𝑞
(𝑥 − 𝜇)

𝑞
] , 𝑝 ≥ 𝑞 

where μ is the mean of 𝑥, i.e., 𝜇 ≔ E[𝑥(𝑝)] ≡ 𝐾1
′.  

Hypercentral knowable moment (or central K-moment) of order (p, q) [analogous to L-moments] 

𝐾𝑝𝑞
+ ≔ (𝑝 − 𝑞 + 1)E[(2𝐹(𝑥) − 1)

𝑝−𝑞
(𝑥 − 𝜇)

𝑞
], 𝑝 ≥ 𝑞 
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K-moments and order statistics 
A sample of a stochastic variable 𝑥 is by definition a set {𝑥1, 𝑥2, … , 𝑥𝑛} of independent copies of 𝑥. We 

may arrange the sample in increasing order of magnitude such that 𝑥(𝑖:𝑛) be the ith smallest of the n, 

i.e.: 

𝑥(1:𝑛) ≤ 𝑥(2:𝑛) ≤ ⋯ ≤ 𝑥(𝑛:𝑛) 

The stochastic variable 𝑥(𝑖:𝑛) is termed the ith order statistic. The minimum and maximum are, 

respectively, 

𝑥(1:𝑛) = min(𝑥1, 𝑥2, … , 𝑥𝑛) , 𝑥(𝑛) ≔ 𝑥(𝑛:𝑛) = max(𝑥1, 𝑥2, … , 𝑥𝑛)  

and represent special cases of the order statistics, the lowest and the highest.  

The distribution of the order statistic 𝑥(𝑖:𝑛) is given in terms of the Beta distribution function as: 

𝐹(𝑖:𝑛)(𝑥) = 𝑃{𝑥(𝑖:𝑛) ≤ 𝑥} = 𝑃{𝑢 ≤ 𝐹(𝑥)} =
B𝐹(𝑥)(𝑖, 𝑛 − 𝑖 + 1)

B(𝑖, 𝑛 − 𝑖 + 1)
 

For the special cases of the minimum and maximum we have, respectively, 

𝐹(1:𝑛)(𝑥) =
B𝐹(𝑥)(1, 𝑛)

B(1, 𝑛)
= 1 − (1 − 𝐹(𝑥))

𝑛
, 𝐹(𝑛:𝑛)(𝑥) =

B𝐹(𝑥)(𝑛, 1)

B(𝑛, 1)
= (𝐹(𝑥))

𝑛
 

It is shown that the expectation of the order statistic 𝑥(𝑖:𝑛) is related to the noncentral K-moments by: 

E[𝑥(𝑖:𝑛)
𝑞
]

𝑖
= (
𝑛
𝑖
) ∑(

𝑛 − 𝑖
𝑗
) (−1)𝑗

𝑛−𝑖

𝑗=0

𝐾𝑖+𝑗−1+𝑞,𝑞
′

𝑖 + 𝑗
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K-moments and expectation of extremes 
Based on the definition of K-moments it is readily seen that  

𝐾𝑝
′ = E[𝑥(𝑝)] = E[max(𝑥1, 𝑥2, … , 𝑥𝑝)] 

More generally, K-moments of all categories represent expected values of extremes. Thus, for odd q 
or for nonnegative 𝑥 (so that 𝑥1

𝑞
 be monotonic function of 𝑥): 

𝐾𝑝𝑞
′ = E[max(𝑥1

𝑞
, 𝑥2
𝑞
 , … , 𝑥𝑝−𝑞+1

𝑞
 )] = E [𝑥(𝑝−𝑞+1)

𝑞
] 

Furthermore, for odd q we have, 

𝐾𝑝𝑞 = E [max((𝑥1 − 𝜇)
𝑞
, (𝑥2 − 𝜇)

𝑞
 , … , (𝑥𝑝−𝑞+1 − 𝜇)

𝑞
 )] =  E[(max(𝑥1, … , 𝑥𝑝−𝑞+1) − 𝜇)

𝑞
] 

which means that the central K-moment 𝐾𝑝𝑞  of 𝑥 is identical to the expected maximum of order 

𝑝 − 𝑞 + 1 of 𝑧 = (𝑥 − 𝜇)
𝑞

.  

The above properties also hold asymptotically, for large p, also for even q in any case of positively 
skewed distribution.  

For a symmetric distribution, an analogous property holds for the hypercentral moments with even 
q: 

𝐾𝑝𝑞
+ = E [max((𝑥1 − 𝜇)

𝑞
, (𝑥2 − 𝜇)

𝑞
 , … , (𝑥𝑝−𝑞+1 − 𝜇)

𝑞
 )] 

which means that the hypercentral K-moment 𝐾𝑝𝑞
+  of a stochastic variable 𝑥 with symmetrical 

distribution for q even is identical to the expected maximum of order 𝑝 − 𝑞 + 1 of 𝑧. In contrast, for q 
odd, the hypercentral K-moment 𝐾𝑝𝑞

+  will obviously be zero. 
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Are those high-order K-moments knowable? 
Yes, because we can construct estimators with good properties such as unbiasedness, small variance 
and fast convergence to the true value. 

The unbiased estimator of the noncentral moment 𝐾𝑝1
′  and its extension for q > 1 are (Koutsoyiannis, 

2020): 

�̂�𝑝
′ =∑𝑏𝑖𝑛𝑝 𝑥(𝑖:𝑛)

𝑛

𝑖=1

, �̂�𝑝𝑞
′ =∑𝑏𝑖,𝑛,𝑝−𝑞+1 𝑥(𝑖:𝑛)

𝑞

𝑛

𝑖=1

 

where for any positive number p (usually, but not necessarily, integer):  

𝑏𝑖𝑛𝑝 = {

0, 𝑖 < 𝑝

𝑝

𝑛
 
Γ(𝑛 − 𝑝 + 1)

Γ(𝑛)
 

Γ(𝑖)

Γ(𝑖 − 𝑝 + 1)
, 𝑖 ≥ 𝑝 ≥ 0

 

It can be verified that  
∑ 𝑏𝑖𝑛𝑝
𝑛
𝑖=1 = 1  

which is a necessary condition for unbiasedness. Furthermore, for p = 1, 𝑏𝑖𝑛1 = 1/𝑛 and thus we 

recover the estimator of the mean. For p = 2, the quantity (𝑛/2)𝑏𝑖𝑛2 is the estimator �̂�(𝑥(𝑖)), i.e., 

�̂�(𝑥(𝑖)) =
𝑖 − 1

𝑛 − 1
 

Because 𝑏𝑖𝑛𝑝 = 0 for i < p, as the moment order increases, progressively, fewer data values 

determine the moment estimate, until it remains only one, the maximum, when p = n, with 𝑏𝑛𝑛𝑛 = 1. 
Furthermore, if p > n then 𝑏𝑖𝑛𝑝 = 0 for all i, 1 ≤ i ≤ n, and therefore estimation becomes impossible.  
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Justification of the notion of unknowable vs. knowable 

  

 
Note: Sample sizes are ten times higher than the maximum p shown in graphs, i.e., 1000.  
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Effect of persistence on K-moment estimates 
A K-moment is a characteristic of the marginal, first 
order, distribution of a process and therefore it is not 
affected by the dependence structure. However, its 
estimator is: time dependence induces bias to 
estimators of K-moments. Thus, the unbiasedness 
ceases to hold in stochastic processes.  

For a Markov process the effect of autocorrelation is 
negligible, unless n is low and r high (e.g. > 0.90). 

However, for an HK process, as shown in 
Koutsoyiannis (2020), the effect can be substantial:  

𝛩(𝑛,𝐻) =
𝛫𝑝
d − 𝐾𝑝

𝐾𝑝
≈
2𝐻(1 − 𝐻)

 𝑛 − 1
−

1

2(𝑛 − 1)2−2𝐻
 

𝐾𝑝′ = 𝐾𝑝
d = (1 + 𝛩)𝐾𝑝, 𝑝

′ ≈ 2𝛩 + (1 − 2𝛩)𝑝((1+𝛩)
2) 

Illustration of the performance of the adaptation of K-
moment estimation for an HK process with Hurst parameter 
0.9 and lognormal marginal distribution (LN(0,1)). Shown 
are noncentral and central moments, for q = 1 . The 
estimates are averages of 200 simulations each with n = 
2000 and are almost indistinguishable from the theoretical 
values. The 95% prediction limits (PL) are also shown. The 
maximum p = 2000 reduces 𝑝′ ≈ 500, i.e. to one fourth, with 
an analogous reduction to the return period. 
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K-moments and classical moments 
Not only are K-moments knowable but they can also predict the value that a classical moment 
estimator will give, through equation: 

�̂�𝑝
′ ≈  

(𝐾𝑚𝑛,1
′ )

𝑝

𝐾𝑚𝑛+𝑝−1,𝑝
′ 𝜇𝑝

′  

where n is the sample size and m is the number of samples for the case where more than one sample 
are available to make the estimate.  

(Left) Comparison of 
the estimates of 
classical noncentral 
moments from 1 and 
1000 independent 
samples from the 
exponential 
distribution to (a) the 
theoretical moments 
and (b) to the values 
determined by the 
above equation 
(adapted theoretical). 
(Right) Additional 
information of the 
terms appearing in the 
above equation. 
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K-moments and classical moments (2) 

 Generally, as p becomes large approaching n, estimates of both classical and K-
moments, central or non-central, become estimates of expressions involving 

extremes such as (max1≤𝑖≤𝑝 𝑥𝑖)
𝑞

 or max1≤𝑖≤𝑝(𝑥𝑖 − 𝜇)
𝑞 .  

 For the K-moments this is consistent with their theoretical definition. For the classical 
moments this is an inconsistency.  

 A common property of both central classical moments and hypercentral K-moments is 
that symmetrical distributions have all their odd moments equal to zero. 

 For unbounded variables both classical and K moments are non-decreasing functions 
of p, separately for odd and even p. 

 In geophysical processes we can justifiably assume that the variance μ2 ≡ γ1 ≡ σ2 

≡ K22 is finite (an infinite variance would presuppose infinite energy to materialize, 
which is absurd). Hence, high order K-moments Kp and Kp2 are finite too, even if 
classical moments μp diverge to infinity beyond a certain p (i.e., in heavy tailed 
distributions). 
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K-moments and L-moments 
Hypercentral K-moments are virtually equivalent to L-moments for small orders. In 
addition, the framework of K-moments provides alternative options to define summary 
statistical characteristics of the distribution, including the classical ones, as in the table 
below. (Which option is preferable depends on the statistical behaviour, and in particular, 
the mean, mode and variance, of the estimator.) 

Characteristic Order p Option 1 Option 2 Option 3* 

Location 1 𝐾11
′ = 𝜇 (the classical mean) 

Variability 2 𝐾21
+ = 2𝐾21 = 2(𝐾21

′ − 𝜇)
= 2𝜆2 

𝐾22
+ = 𝐾22 = 𝜇2 = 𝜎

2  
(the classical variance) 

Skewness 
(dimensionless) 

3 𝐾31
+

𝐾21
+ = 2

𝐾31
𝐾21

− 3 =
𝜆3
𝜆2

 
𝐾32
+

𝐾22
+ = 2

𝐾32
𝐾22

− 2 
𝐾33

𝐾22
3/2
 
=
𝜇3
𝜎3

 

Kurtosis 
(dimensionless) 

4 𝐾41
+

𝐾21
+ = 4

𝐾41
𝐾21

− 8
𝐾31
𝐾21

+ 6

=
4

5

𝜆4
𝜆2
+
6

5
 

𝐾42
+

𝐾22
+ = 4

𝐾42
𝐾22

− 6
𝐾32
𝐾22

+ 3 
𝐾44

𝐾22
2  
=
𝜇4
𝜎4

 

However, the real power of K-Moments is in their determination and use for very high 
orders p, up to the sample size. 
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High order moments for stochastic processes at different 
time scales: the K-climacogram and the K-climacospectrum 
• The full description of the third-order, fourth-order, etc., properties of a stationary 

stochastic process requires functions of 2, 3, …, variables.  
• For example, the third order properties are expressed in terms of a function of 

two lags: 

c3(h1, h2) := E[(x(t) – μ) (x(t + h1) – μ) (x(t + h2) – μ)] 

• Such a description is not parsimonious and its accuracy holds only in theory, 
because sample estimates are not reliable.  

• This problem is remedied if we introduce single-variable descriptions for any 
order p, expanding the idea of the climacogram and climacospectrum based on K-
moments. 

K-climacogram:    𝛾𝑝𝑞(𝑘) = (𝑝 − 𝑞 + 1)E[(2𝐹(𝑋(𝑘)/𝑘) − 1)
𝑝−𝑞
(𝑋(𝑘)/𝑘 − 𝜇)𝑞] 

K-climacospectrum: 𝜁𝑝𝑞(𝑘) =
𝑘 (𝛾𝑝𝑞(𝑘) − 𝛾𝑝𝑞(2𝑘))

ln 2
 

where 𝑋(𝑘) ≔ ∫ 𝑥(𝑡)d𝑡
𝑘

0
 is the cumulative process, and 𝑋(𝑘)/𝑘 is the time averaged 

process at time scale k. 

• For 𝑝 = 𝑞 = 2 we obtain the standard climacogram, 𝛾22(𝑘) ≡ 𝛾(𝑘), and the standard 
climacospectrum, 𝜁22(𝑘) ≡ 𝜁(𝑘). 
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Assigning return periods to K-moments of any order 

 The non-central K-moment for q = 1 is 𝐾𝑝
′ = 𝑝E [(𝐹(𝑥))

𝑝−1
𝑥] 

 By definition, it represents the expected value of the maximum of p copies of 𝑥.  
 To determine the theoretical return period 𝑇(𝐾𝑝

′) we introduce the ratio 𝛬𝑝 which happens to 
vary only slightly with p; assuming a time unit D we have:  

𝑇(𝐾𝑝1
′ ) =

𝐷

1 − 𝐹(𝐾𝑝1
′ )
, 𝛬𝑝 ≔

𝑇(𝐾𝑝1
′ )

𝐷 𝑝
=

1

𝑝 (1 − 𝐹(𝐾𝑝1
′ ))

 

 Any symmetric distribution will give exactly 𝛬1= 2 because 𝛫1
′ is the mean, which equals the 

median and thus has a return period of 2D. Thus, a rough approximation is the rule of thumb: 

𝛬𝑝 ≈ 2 

 Generally, the exact value 𝛬1 is easy to determine, as it is the return period of the mean: 

𝛬1 =
1

1 − 𝐹(𝜇)
=
𝑇(𝜇)

𝐷
 

 The exact value of 𝛬∞ depends only on the tail index ξ of the distribution: 

𝛬∞ = {𝛤(1 − 𝜉)
1
𝜉 , 𝜉 ≠ 0

eγ, 𝜉 = 0
 

where γ = 0.577 is the Euler’s constant. 
 These enable the simple approximation of 𝛬𝑝 and hence of the return period: 

𝛬𝑝 ≈ 𝛬∞ + (𝛬1 − 𝛬∞)(1 𝑝⁄ ), 𝑇(𝐾𝑝
′) 𝐷⁄ = 𝑝𝛬𝑝 ≈ 𝛬∞𝑝 + (𝛬1 − 𝛬∞) 
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Better approximation of the relationship between p and T 
 An almost perfect approximation of 𝛬𝑝 for any distribution function is: 

𝛬𝑝 ≈ 𝛬∞ + (𝛬1 − 𝛬∞ − 𝐵 ln (1 +
𝛽

2𝛽 − 1
))
1

𝑝
+ 𝐵 ln (1 +

𝛽

(𝑝 + 1)𝛽 − 1
) 

 This involves two 
constants β and B, 
which depend on the 
distribution function. 

 For example, in the 
Pareto distribution, 
𝛽 = 1 and  

𝐵 =
(3 − 𝜉)𝛬∞ − 2𝛬1
2(1 − ln 2)

 

 For parameters of other 
distributions see 
Koutsoyiannis (2020). 

 The graph indicates the 
perfect agreement of 
the approximation to 
the exact values for 
several distributions. 
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Assigning return periods to order statistics (plotting positions) 
The classical formula for assigning a return period to 𝑥(𝑖:𝑛), i.e., the ith smallest value in a sample of 

size n is:  
𝑇(𝑖:𝑛)

𝐷
=

𝑛 + 𝐵

𝑛 − 𝑖 + 𝐴
 

where A and B are constants. For an unbiased estimate of the distribution quantile these constants 
are 𝐴 = 1 𝛬∞⁄ , 𝐵 = 𝛬1 𝛬∞⁄ − 1 (Koutsoyiannis, 2020) and thus 

𝑇(𝑖:𝑛)

𝐷
=
𝛬∞(𝑛 − 1) + 𝛬1
𝛬∞(𝑛 − 𝑖) + 1

 

For the highest value 𝑥(𝑛) ≡ 𝑥(𝑛:𝑛) both approaches, K-moments and order statistics, result in 

precisely the same value, 𝑇(𝐾𝑛
′ ) 𝐷⁄ = 𝑇(𝑛:𝑛) 𝐷⁄ = 𝛬∞𝑝 + (𝛬1 − 𝛬∞). 

For smaller i, the pth K-moment should be equivalent, in terms of the corresponding return period, if  

𝑝 =
𝑛 − (𝛬1 − 𝛬∞)(𝑛 − 𝑖)

𝛬∞(𝑛 − 𝑖) + 1
 

This means that: 

(a) 𝑥(𝑖:𝑛) can be used as a quick-and-dirty (QAD) estimate of 𝐾𝑝
′ , provided that p is given as a 

function of i from the above equation. 
(b) The return period estimate based on the typical estimator �̂�𝑝

′ = ∑ 𝑏𝑖𝑛𝑝 𝑥(𝑖:𝑛)
𝑛
𝑖=1  is better than 

that based on a single 𝑥(𝑖:𝑛) because it is derived from many data points (except for the 

maximum value, when 𝑖 = 𝑛, where the two approaches are precisely identical). 
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Comparison of return periods assigned by the two approaches 
We assume a Pareto distribution with 𝜉 = 0.15, in which 𝛬∞ = 2.035 and 𝛬1 = 2.955, and a sample 
of n = 100. We will have the following values of T and p for the highest and the second highest values: 

i 𝑇(𝑖:𝑛) p 

100 204.4 100 
99 67.4 32.6 

Hence the estimate of the 𝑥 quantile corresponding to a return period of 67.4, will be equal to: 

 𝑥(99:100) according to the order-statistics approach (the estimate is based on one data point); 

 �̂�32.6
′  according to the K-moments approach (the estimate is based on 68 data points and will be 

a weighted average of 𝑥(𝑖:100) for 𝑖 = 33 to 𝑖 = 100). 

Simulation results of empirical return periods assigned to 
Pareto quantiles (for tail index ξ = 0.15, scale parameter λ = 
1 and lower bound zero). Averages and prediction limits 
(PL) were calculated from 200 simulations each with n = 
100. The curves of averages for both the order statistics and 
the K-moment approaches are indistinguishable from the 
theoretical curves. The return periods were assigned for the 
unbiased quantile option. The correspondence between the 
K-moment of order p and the return period T is also shown 
through the upper horizontal axis. The plots of a single 
realization are also shown (but for part of the empirical 
points to avoid an overcrowded graph). 0.1
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Very high order K-moments relationships between p and T 
From the relationship:  

𝑝 =
𝑇

𝛬∞𝐷
−
𝛬1
𝛬∞
+ 1, 

we can easily find the K-moment order p corresponding to the return period T. An example is given 
in the following table: 

 

Example of the K-moment order p corresponding 
to the specified return period for the Pareto 
distribution with shape parameter ξ = 0.15. 

 D = 10 min D= 1 h D = 1 d 

T = 2 months 4 307 717 29 

T = 1 year 25 842 4 307 179 

T = 2 years 51 684 8 614 358 

T = 100 years 2 584 212 430 702 17 945  

In a stochastic process with dependence, what is given in the table is the adapted moment order 𝑝′ 
while p should be estimated from 𝑝′ based on the relationship in p. 25.  

Alternatively, the more accurate approximation of p. 31 or even the exact relationships could be used 
but the resulting p will not differ substantially from the above values. 

K-moments of such high order are reliably estimated.  
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Illustration that high-order K-moments are preferable to 
low-order moments  
For the sake of illustration, for the daily rainfall in Bologna, we intentionally choose the simplest and 
blatantly unsuitable model, the 1-parameter exponential distribution, 𝐹(𝑥) = 1 − e−𝑥/𝜆. 

One moment suffices to estimate the single (scale) parameter λ—but which moment to choose? 

The exact K-moments are: 𝐾𝑝1 = (𝐻𝑝 − 1)𝜆, 𝐾𝑝2 = ((𝐻𝑝 − 1 − 1)
2
+ 𝐻𝑝 − 1

(2)
) 𝜆2, 𝐾𝑝𝑝 = 𝜇𝑝 = (! 𝑝)𝜆

𝑝, 

where 𝐻𝑝 is the pth harmonic number and 𝐻𝑝
(2)

 is the pth harmonic number of order 2. 
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The moment order 
p affects the fitting 
dramatically. 

The scale parameter 
λ increases with 
increasing p, q.  

If we wish to model 
maxima, it is better 
to fit based on the 
1000th K-moment 
than on the 1st! 
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Better fitting on K-moments for orders p from ~100 to 10 000 
(T = ~2 to 200 years) 
We assume Pareto distribution with zero lower 
bound (for physical consistency): 

𝐹(𝑥) = 1 − (1 + 𝜉 𝑥 𝜆⁄ )
−
1

𝜉 or  
𝑇(𝑥)

𝐷
= (1 + 𝜉 𝑥 𝜆⁄ )

1
𝜉  

The exact relationship of K-moments with 
return period is: 

�̂�(�̂�𝑝
′)

𝐷
= 𝑝𝛬𝑝 = ((𝑝 + 1 − 𝜉) Β(1 − 𝜉, 𝑝 + 1))

1
𝜉 

We estimate the parameters by minimizing the 
mean square error of the logarithms of the 

empirical �̂�(�̂�𝑝
′) from the theoretical 𝑇(�̂�𝑝

′). We 

calculate the error for a range of T from 2 to 200 years. The fitted parameters are ξ = 0.096, λ = 8.37 
mm/d. 

The graph shows a perfect fit of theoretical and empirical curves for T > 1 year (the two curves are 
indistinguishable).  

For comparison, empirical curves for order statistics are also plotted (Weibull plotting positions).  

Note: Minimizing the error of �̂�𝑝
′  with respect to 𝐾𝑝

′ , without reference to T, is another possibility but presupposes 

exact relationships for 𝐾𝑝
′ , which in other distributions may be infeasible to derive.  
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Slight improvement for a global fitting 
By adding one parameter to the 
theoretical distribution function we 
can get a model applicable for the 
entire range of rainfall depth. 

Namely, we use the Pareto-Burr-
Fuller (PBF) distribution with zero 
lower bound (for physical 
consistency for rainfall): 

𝐹(𝑥) = 1 − (1 + 𝜅(𝑥 𝜆⁄ )𝜁  )
−
1
𝜁𝜉  

We use the same estimation 
procedure as above but calculate the 
error on the entire range of values.  

The estimated parameters are: ξ = 
0.096, ζ= 0.883, λ = 5.04 mm/d. 

A perfect fit of the model (green 
continuous line) and empirical curve (blue dashed line) is seen for the entire range. 

For comparison, empirical curves for order statistics are also plotted (Weibull plotting positions).  
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Ombrian model: Marginal distribution of rainfall intensity 
An ombrian model (from the Greek ombros, meaning rainfall) describes the stochastic properties of 
the distribution of rainfall of any order, or equivalently, at any time scale. 

From an ombrian model that is simple enough, the ombrian relationships, also known with the 
misnomer rainfall intensity – duration [meaning time scale] – frequency [meaning return period] 
curves are directly extracted. The assumptions of the proposed ombrian model follow. 

1. Pareto distribution with discontinuity at the origin for small time scales: 

𝐹(𝑘)(𝑥) = 1 − 𝑃1
(𝑘)
(1 + 𝜉

𝑥

𝜆(𝑘)
)
−1 𝜉⁄

 

It is shown by theoretical reasoning (Koutsoyiannis, 2020) that the tail index ξ should be constant, 

while the probability wet, 𝑃1
(𝑘)

, and the state scale parameter, 𝜆(𝑘), are functions of the time scale k. 
Here we sacrifice the exactness of the PBF distribution (see previous page) in order to get simpler 
ombrian relationships for small scales. 

2. Continuous PBF distribution with possible discontinuity at zero for large time scales, i.e.: 

𝐹(𝑘)(𝑥) = 1 − 𝑃1
(𝑘)
(1 + 𝜉 (

𝑥

𝜆(𝑘)
)
𝜁(𝑘)

)

−1 𝜉⁄

 

In this case a new parameter 𝜁(𝑘) is introduced, which is again a function of time scale. The Pareto 
distribution is a special case of PFB for 𝜁(𝑘) = 1. In contrast to the Pareto distribution, whose 
density is a decreasing function of 𝑥, the PBF tends to be bell-shaped for increasing 𝜁(𝑘). Here we 
sacrifice the constancy of tail index (= 𝜉/𝜁(𝑘)) to assure simplicity and ergodicity. 
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Ombrian model: Mean and climacogram 
3. Constant mean of the time averaged 
process:  

Ε[𝑥(𝑘)] = 𝜇 

4. Climacogram of Filtered Hurst-Kolmogorov 
– Cauchy (FHK-C) type, i.e.: 

var[𝑥(𝑘)] = 𝛾(𝑘) = 𝜆1 (1 + (
𝑘

𝛼
)
2𝑀

)

𝐻−1
𝑀

 

or of Filtered Hurst-Kolmogorov – Cauchy-
Dagum (FHK-CD) type; in the latter case, to 
avoid an overparametrized model (and as we 
expect 𝐻 > 0.5 and 𝑀 < 0.5 due to roughness), 
we set 𝑀 = 1 − 𝐻 and thus we get:  

𝛾(𝑘) = 𝜆1 (1 +
𝑘

𝛼1
)
2𝐻−2

+ 𝜆2 (1 − (1 +
𝛼2
𝑘
)
2𝐻−2

) 

Clearly, in both cases, 𝛾(𝑘) → 0, as 𝑘 → ∞, 
which makes the process ergodic; for 𝑘 = 0, 
𝛾(0) = 𝛾0 = 𝜆 in the FHK-C case and 
𝛾(0) = 𝛾0 = 𝜆1 + 𝜆2 in the FHK-CD case In 
both cases 𝛾(0) is finite and the number of 
parameters is four. 
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The ombrian model: Probability wet/dry 
5. Probability wet and dry, 𝑃1

(𝑘)
= 1 − 𝑃0

(𝑘)
, varying with time scale according to: 

ln 𝑃0
(𝑘)
= ln𝑃0

(𝑘∗) (𝑘/𝑘∗)𝜃 , 𝑘 ≥ 𝑘∗ 

where 𝑘∗ is the transition time scale from Pareto to PBF distribution, for which 𝑃0
(𝑘∗)

> 0 and 
𝜁(𝑘∗) = 1 (for continuity in the transition point), and θ is a parameter (0 ≤ 𝜃 ≤ 1). This equation has 
been derived in 
Koutsoyiannis (2006) 
based on maximum 
entropy considerations. 

In the Pareto case, since 
𝜁(𝑘) = 1, the probability 
wet is fully determined 
from the other 
parameters: 

𝑃1
(𝑘)
=
1 − 𝜉

1/2 − 𝜉

𝜇2

𝛾(𝑘) + 𝜇2
 

 

Fitting of the ombrian 
model to the empirical 
estimates of probability 
wet (𝑃1) or dry (1 − 𝑃1). 

0.01

0.1

1

10

1 10 100 1000 10000

Lo
ga

ri
th

m
 o

f 
p

ro
b

ab
ili

ty
 d

ry
,  

ln
 (

1
-P

1)

Time scale, k (h)

Empirical, from hourly series

Empirical, from daily series

Model, optimized for probability wet/dry

Model, optimized for extremes



  D. Koutsoyiannis, Advances in stochastics of hydroclimatic extremes  41 

Mathematical relationships of the ombrian model 
Quantity Small scales, 𝑘 ≤ 𝑘∗ (Pareto) Large scales, 𝑘 ≥ 𝑘∗ (PBF)1 

Ε[𝑥(𝑘)] 𝜇 

𝛾(𝑘) 𝜆1(1 + (𝑘/𝛼)
2𝑀)

𝐻−1
𝑀    or   𝜆1 (1 +

𝑘

𝛼
)
2𝐻−2

+ 𝜆2 (1 − (1 +
𝛼

𝑘
)
2𝐻−2

) 

𝑃1
(𝑘)

 
1 − 𝜉

1/2 − 𝜉

𝜇2

𝛾(𝑘) + 𝜇2
 1 − (1 − 𝑃1

(𝑘∗)
)
(𝑘/𝑘∗)𝜃

 

1

𝜁(𝑘)
 1 √(1 − 2𝜉) (𝑃1

(𝑘) 𝛾(𝑘) + 𝜇
2

𝜇2
− 1) 

1

𝜆(𝑘)
 

𝜇

(1/2 − 𝜉)(𝛾(𝑘) + 𝜇2)
 (1 +

1

(1 − 𝜉)(𝜁(𝑘))
2 −

1

(𝜁(𝑘))
√2
)
𝑃1
(𝑘)

𝜇
 

𝑥 for 𝜉 > 0 𝜆(𝑘)
( 𝑃1

(𝑘)
𝑇(𝑘) 𝑘⁄ )

𝜉
− 1

𝜉
 𝜆(𝑘)(

( 𝑃1
(𝑘)
𝑇(𝑘) 𝑘⁄ )

𝜉
− 1

𝜉
)

1
𝜁(𝑘)

 

𝑥 for 𝜉 = 0 𝑥 = 𝜆(𝑘) ln ( 𝑃1
(𝑘)
𝑇(𝑘) 𝑘⁄ ) 𝑥 = 𝜆(𝑘) (ln ( 𝑃1

(𝑘)
𝑇(𝑘) 𝑘⁄ ))

1
𝜁(𝑘) 

The ombrian curves per se are given in the last two rows. The transition time scale 𝑘∗ has a default value of ~100 h.  
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Parameters of the ombrian model 
Parameter Meaning of parameter Related tool 

μ Mean intensity Mean, μ 

𝜆 (or 𝜆1, 𝜆2) Variance scale parameters1  Climacogram, 𝛾(𝑘) 

𝛼 Time scale parameter Climacogram, 𝛾(𝑘) 

M Fractal (smoothness) parameter2 Climacogram, 𝛾(𝑘) 

H Hurst parameter Climacogram, 𝛾(𝑘) 

ξ Tail index Probability distribution, 𝐹(𝑥) 

θ Exponent of the expression of probability dry  Probability wet, 𝑃1
(𝑘)

 
1  One or two parameters for the two cases depending on the choice of the climacogram expression. 
2  The fractal (roughness/smoothness) parameter M is an independent parameter if we have chosen a 

climacogram expression with one 𝜆; otherwise it is assumed 𝑀 = 1 − 𝐻. 
3  The transition time scale 𝑘∗ but this is not regarded a parameter but a modelling choice. 

With these seven parameters, the ombrian model achieves:  

(a) mathematical and physical consistency; 
(b) coverage of all time scales (from zero to infinity); 
(c) good respresentation on the very fine time scales, through the fractal parameter M; 
(d) good respresentation on very large time scales, through the Hurst parameter H and the 

preserved mean μ whose effect becomes important as time scale increases; 
(e) simultaneous treatment and preservation of the climacogram; and 
(f) simultaneous treatment and preservation of the probability dry/wet. 
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Ombrian curves for Bologna: Comparison of model to  
K-moment estimates of return period 
Ombrian curves as resulted 
from the ombrian model for 
Bologna for time scales 
spanning 5 orders of 
magnitude (1 h to 16 years = 
140 256 h). The empirical 
points are estimated from K-
moments. The effect of 
persistence was taken into 
account; the model was 
plotted with bias-adapted 
variance in order to be 
comparable with empirical 
plots. 

Parameter values 
μ 0.0773 mm/h 
λ1 0.00103 mm2/h2 
λ2 1.978 mm2/h2 
α 9.704 mm 
Η 0.95 
ξ 0.120 
θ 0.849 
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Ombrian curves for Bologna: Comparison of model to  
order-statistics estimates of return period 
Ombrian curves as resulted 
from the ombrian model for 
Bologna for time scales 
spanning 5 orders of 
magnitude (1 h to 16 years = 
140256 h). The empirical 
points are estimated from 
order statistics. The effect of 
persistence was taken into 
account; the model was 
plotted with bias-adapted 
variance in order to be 
comparable with empirical 
plots. 

Parameter values as in previous 
page. 
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Temperature extremes in Milan: A diagnostic analysis of the 
evolution of climatic extremes in cyclostationary setting 

 
In monthly setting, using a window of 30 years, the plot shows the second highest value out of 
≈ 30 × 30 = 900 values for the maximum temperature and the second lowest value for minimum 
ones. The second highest value is a QAD estimate of a K-moment for some order p (see next page). 

There exist upward and downward fluctuations; the upward ones prevail, particularly in the 
low extremes.  

The climatic range, measured as the difference of the high and low extremes, was 47 °C in in 1800, 
increased to 53 °C in 1860 (worst), deceased to 45 °C in 2000 (best), and increased to 48 °C in 2008. 
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Assessment of return periods of each of the two extremes 
Assuming normal distribution with 𝛬∞ = 1.781, 𝛬1 = 2, the return period of the second highest 
value among 900 monthly values of 30 years is: 

𝑇(899:900)

(1/30)
=
𝛬∞(900−1)+𝛬1

𝛬∞(900−899)+1
= 576 ⇒ 𝑇 = 19.2 years  

This corresponds to K-moment order: 

𝑝 =
𝑛−(𝛬1−𝛬∞)(𝑛−𝑖)

𝛬∞(𝑛−𝑖)+1
= 323.5  

However, both time series suggest strong Hurst-Kolmogorov behaviour, with Hurst parameter 
𝐻 = 0.93 (even excluding the 21st century data). For large n the equation on p. 25 can be written as: 

𝛩HK(𝑛, 𝐻) ≈ −
1

2𝑛2−2𝐻
= −

1

2𝑛′
= −

1

2

𝛾𝑛

𝛾1
 

where 𝑛′ is the effective sample size; for the 
Milano daily temperature and n = 900, 
𝑛′ ≈ 90 1⁄ = 90 and 𝛩 = −0.01.  

In turn, this results in 𝑝′ ≈ 2𝛩 + (1 −

2𝛩)𝑝((1+𝛩)
2) = 546 and 𝑇′ = 18.2 years. 

This is a rough approximation as the 
climacograms are of HK type only 
asymptotically (for large k); stochastic 
simulation is required for a better 
approximation. 

Climacograms of maximum and minimum daily temperature in Milano. 
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What is the culprit of temperature increase in Milan?  
Milan 1988: 

Population 3 506 838 

Urban extent 88 417 ha 

 

 

 

 

 

 

Milan 2013: 

Population: 6 402 051 

Urban extent 277 177 ha 

 

 

 

 

Graphs: Glynis (2019) 

Data: Atlas of Urban Expansion 
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Comparison with nearby non-urbanized areas 
Second highest 
daily temperature 
maximum in 
sliding windows 
of size 30 years. 
Note that both 
Monte Cimone 
and Paganella 
stations are in 
elevations about 
2000 m higher 
than Milan, which 
causes a 
temperature 
difference of 
6.5 °C/km × 2 km 
= 13 °C. 

 

 

It appears that urbanization is the principal factor causing temperature increase non-urban stations 
have not been affected. 
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If we assume that Milan is affected by global warming, can 
we use climate model results for future prediction?  
Tyralis and Koutsoyiannis (2017) have proposed a method to incorporate one or many deterministic 
forecasts, such as those of climate models, into an initially independent stochastic model. 

If the deterministic forecasts are good, then the Bayesian framework proposed takes them into 
account, otherwise they are automatically disregarded. 

With reference to the sketch on the right, we simulate the unknown future y3 conditional on the 
known past y1, y2 and the deterministic model outputs x2, x3 by:  

h(y3|y1, y2, x2, x3)  f(x3|y3) g(y3|y1, y2)  

where f(x3|y3) is the model 
likelihood (evaluated from x2 and 
y2) and the other functions are 
conditional densities. 

The method was tested on large 
data sets in the USA (not yet in 
Italy). 

 
x

y y1 y2 y3

x2 x3
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Example of climate model testing in the USA 
Historical data for temperature and precipitation from 
362 and 319 stations, respectively, have been used to 
estimate the areal averages (historical observations). 

Deterministic forecasts were taken from 14 different 
climate models. The model likelihood was evaluated in 
the period 2006-15. 

The example on temperature (95% prediction 
intervals) shows a slight 
increase in annual 
temperature in the USA if 
conditioned on the output 
of MRI-CGCM3 climate 
model. 

The example on 
precipitation shows 
indifference despite 
conditioning on the GISS-
E2-H climate model. 
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Final multimodel results for temperature and precipitation 
in the USA 
If all models are taken into account, the temperature change up to 2100 could be somewhere in the 
range −4 to 4 °C. The negative predictions result from the fact that some models have negative 
correlation with historical data! 

Precipitation does not change by conditioning on all models. Only its uncertainty increases slightly  
(±50 mm, if 
compared to 
that without 
conditioning on 
models). 

General 
conclusion: 

Climate model 
predictions (or 
projections) can 
hardly justify a 
reason to be 
incorporated in 
studies of real 
world processes.  
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Stochastic forecast-oriented estimation 
The process mean is a neutral predictor of the future (zero efficiency) but in most cases is better 
than climate model predictions (negative efficiency). 

However, because in real world processes there is dependence in time, a local mean (of a few recent 
values) can be a better predictor than the global (or the true) mean, as well as than trend models 
(Iliopoulou and Koutsoyiannis, 2019). 

In particular, for the FHK-C model (with 
climacogram 𝛾(𝜅) = 𝜆(1 + 𝜅/𝛼)2𝛨−2), if we 
wish to predict a future time window of 
length κ, then the optimal value ν of the 
number of past terms, forming the local 
mean, is (Koutsoyiannis, 2020):  

𝜈 ≈ max (1,
𝜅 − 2.3(𝛼 + 1)𝐻2 − 1

(max(0,2.5𝐻 − 1.5))2.5
) 

It can be seen in the graph on the right that 
there are cases (for large H and α) that the 
optimal ν can be as small as 1; this means 
that the present value of the process, rather 
than the mean of the past, should be used as 
the predictor of the future (even though the 
process is stationary).  
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Conclusions 
 Trend following may mean taking steps back. Therefore: better classic than trendy 

(cf. Iliopoulou and Koutsoyiannis, 2019). 

 In a non-trendy (meaning stationary and ergodic) framework, the newly introduced 
knowable moments (K-moments) are powerful tools that unify other statistical 
moments (classical, L-, probability weighted) and order statistics, offering several 
advantages. 

 In particular, they offer a sound basis for distribution fitting with emphasis on 
extremes. 

 For independent identically distributed variables, K-moments offer unbiased, 
reliable and workable estimators for low and high orders p, up to order equal to the 
sample size n. 

 Time dependence influences the estimates, yet K-moments offer a basis to assess 
that influence and properly adapt the estimates.  

 Rainfall extremes can be effectively modelled by a rather simple ombrian model, 
which, in addition to modelling extremes, provides a good representation the 
climacogram of the rainfall process and its intermittence. 

 For temperature extremes further research is required. 
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