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Problem setting

 Due to their negligible storage capacity, small hydroelectric plants (SHPs) cannot 
offer regulation of flows, thus making the prediction of energy production a very 
difficult task, even for small time horizons. 

 Further uncertainties arise due to the limited hydrological information, in terms of 
upstream inflow data, since usually the sole available measurements refer to the 
power production, which is a nonlinear transformation of the river discharge.

 This transformation comprises several uncertain elements, including the estimation 
of energy losses by using empirically-derived efficiency curves.

 The retrieval of flows from energy data may be referred to as the inverse problem 
of hydropower, which is the focus of this research.

 The inverse modelling problem involves three flow ranges:

◼ Low flows, below the minimum operational discharge of turbines;

◼ Intermediate flows, which are directly estimated on the basis of observed 
hydropower data.

◼ High flows, exceeding the nominal discharge of turbines;

 In all cases, the model error is expressed in stochastic terms, which allows for 
embedding uncertainties within calculations (Efstratiadis et al., 2015).

 These uncertainties are next transferred to energy predictions that are based on 
imperfect past flow data.
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The forward problem: from discharge to power 

 Given data for small hydroelectric plants (SHPs) :

◼ Streamflow upstream of the intake, q;

◼ Gross head, h (practically constant);

◼ Power plant efficiency, η, expressed as function of discharge;

◼ Maximum discharge that can pass from the turbines (nominal flow), 𝑞𝑚𝑎𝑥

◼ Minimum discharge for energy production, 𝑞𝑚𝑖𝑛 (typically, 10-30% of 𝑞𝑚𝑎𝑥)

 Flow passing through the turbines:

𝑞𝑇 = 𝑚𝑖𝑛(𝑞, 𝑞𝑚𝑎𝑥)

 Power produced for 𝑞𝑇 > 𝑞𝑚𝑖𝑛:

𝑃 = γ η 𝑞𝑇 ℎ𝑛

where γ is the specific weight of water (9.81 KN/m3) and ℎ𝑛 is the net head, i.e. 
the gross head, h, after subtracting hydraulic losses, ℎ𝐿.

 Hydraulic losses include friction and local ones, which are function of discharge and 
the penstock properties (roughness, length, diameter, geometrical transitions).

 Large hydroelectric reservoirs allow for controlling outflows, thus their turbines are 
normally working with the nominal flow (which maximizes η). In contrast, SHPs are 
operating with any flow conditions, thus η is strongly varying across the feasible 
flow range (𝑞𝑚𝑖𝑛, 𝑞𝑚𝑎𝑥). 
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The inverse problem: from power to discharge 

 Inverse formula, for a given power production P:

𝑞𝑇 =
𝑃

γ η(𝑞𝑇) ℎ𝑛(𝑞𝑇)

 The unknown flow, 𝑞𝑇 , that passes through the turbines can be estimated through 
an iterative numerical scheme, accounting for nonlinearities induced by efficiency 
and net head formulas, η(𝑞𝑇) and ℎ𝑛(𝑞𝑇), respectively.

 Since 𝑞𝑚𝑖𝑛 ≤ 𝑞𝑇 ≤ 𝑞𝑚𝑎𝑥, this approach only allows for estimating the intermediate 
part of an inflow time series, thus:

◼ If the power production is zero, then 𝑞 ≤ 𝑞𝑚𝑖𝑛;

◼ If the system produces its power capacity (thus operating with its nominal 
discharge, which also ensures maximization of efficiency), then 𝑞 ≥ 𝑞𝑚𝑎𝑥;

 Measurement errors and uncertainties within any element of the governing formula 
𝑞𝑇 = 𝑓(𝑃) are transferred to discharge estimations, while low and high flows 
remain by definition unknown.

 Potential sources of uncertainty:

◼ Power data per se (observational errors);

◼ Hydraulic calculations (become less important, as the gross head increases);

◼ Flow-efficiency relationship;



Some remarks on turbine efficiency

 The efficiency curve for specific turbine dimensions (e.g., diameter runner) is 
usually expressed by means of nomographs, as percentage of rated flow, 𝑞𝑇/𝑞𝑚𝑎𝑥

(Anagnostopoulos & Papantonis, 2007).

 Nomographs are provided by the turbine manufacturer and they are obtained by 
data extrapolation from a reduced scale model. Since it is not possible to exactly 
preserve dynamical, geometrical, and kinematical similarity between the model 
and the prototype, it is also not possible to precisely estimate the efficiency.

 Although empirical corrections are employed to better reflect the prototype 
performance, actual efficiency is unknown, since it also depends on constructive 
and operational characteristics of the
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 In general, efficiency increases with 
scale, i.e. discharge and turbine size.

 Pelton, Crossflow and Kaplan machines 
retain high efficiency even when running 
below their design flow; in contrast the 
efficiency of Francis turbines falls away 
sharply if run at below half its normal flow.

power plant, as well as changes due to 
deterioration, damage and aging of the 
equipment over time (Paish, 2002).



 The efficiency-discharge relationship can be well-approximated by the following 
analytical formula, inspired by the Kumaraswamy distribution model:

𝜂 = 𝜂𝑚𝑖𝑛 + 1 − 1 −
𝑞−𝑞𝑚𝑖𝑛

𝑞𝑚𝑎𝑥−𝑞𝑚𝑖𝑛

𝑎 𝑏

𝜂𝑚𝑎𝑥 − 𝜂𝑚𝑖𝑛

 The efficiency formula uses a dimensionless expression of discharge, based on 𝑞𝑚𝑖𝑛

and 𝑞𝑚𝑎𝑥, two efficiency limits, 𝜂𝑚𝑖𝑛 and 𝜂𝑚𝑎𝑥, and two shape parameters, a and b.

 We remark that the efficiency curve has in fact four free parameters, since for a 
given power capacity P we get:

𝑞𝑚𝑎𝑥 =
𝑃

γ 𝜂𝑚𝑎𝑥 ℎ𝑛(𝑞𝑚𝑎𝑥)

𝑞𝑚𝑖𝑛 =
𝑃

γ 𝜂𝑚𝑖𝑛 ℎ𝑛(𝑞𝑚𝑖𝑛)

 By tuning these parameters we can fit the model to any empirically-derived curve, 
and we can also establish a calibration framework, to extract efficiency curves 
from given power and turbine flow data (cf. Hidalgo et al., 2014).

 Another major advantage is the opportunity for expressing efficiency under 
uncertainty, by considering the four model parameters as random variables that 
follow a known distribution function.
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Analytical formula for turbine efficiency
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Discharge retrieval from hydropower data

1. Computation of turbine flows for time 
steps 𝑡 = 1,… , 𝑛, by using the 
(deterministic) inverse formula:

𝑞𝑡 = 𝑓(𝑃𝑡)

2. Estimation of model residuals, by 
comparing with real discharge data:

𝑤𝑡 = 𝑞𝑇,𝑡 − 𝑞𝑜𝑏𝑠,𝑡

3. Formulation of stochastic model for 
residuals, accounting for their 
marginal and dependence properties.

4. Generation of m synthetic error 
realizations (“ensembles”) and 
associated discharge scenarios for 
each ensemble 𝑗 = 1,… ,𝑚:

𝑞𝑡,𝑗 = 𝑓 𝑃𝑡 +𝑤𝑡,𝑗

5. Empirical estimation of confidence 
intervals for each time step t, using 
the sample of synthetic flow data, 𝑞𝑡,𝑗 .  

Deterministic approach

Stochastic approach
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Stochastic modelling of errors

 The representation and synthesis of model residuals 𝑤𝑡 is employed through a 
first order autoregressive model, AR(1), i.e.:

𝑤𝑡 = 𝜑 𝑤𝑡−1 + 𝑧𝑡

where 𝑤𝑡 is the error process, with mean μ, standard deviation σ, skewness γ, and 
lag-1 autocorrelation coefficient ρ; 𝜑 = ρ is the first order autoregression 
coefficient; and 𝑧𝑡 is i.i.d. white noise with mean 𝜇𝑧, standard deviation 𝜎𝑧 and 
skewness coefficient 𝛾𝑧.

 The statistical characteristics of the white noise 𝑧𝑡 are related with those of 𝑤𝑡 by:

𝜇𝑧 = 𝜇𝑤 (1 − 𝜑) 𝜎𝑧 = 𝜎𝑤 1 − 𝜑2 𝛾𝑧 = 𝛾𝑤
1 − 𝜑3

(1 − 𝜑2)3/2

 We assume that 𝑧𝑡 follows a three-parameter gamma distribution:

𝑓𝑥 𝑥 =
𝜆𝜅

Γ 𝜅
(𝑥 − 𝑐)𝜅−1𝑒−𝜆 𝑥−𝑐

where κ, λ and c are shape, scale and location parameters, respectively, which in this 
case are estimated by the method of moments as follows:

𝜆 =
𝜅

𝜎𝑧
𝜅 =

4

𝛾𝑧
2

𝑐 = 𝜇𝑧 − 𝜅/𝜆
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Extrapolation for high flows

 Hydrograph extrapolation for 
𝑞 > 𝑞𝑚𝑎𝑥, indicating periods 
that the turbines operate in 
their maximum capacity, 
thus the flow passing is 𝑞𝑚𝑎𝑥.

 Linear extrapolation for the 
rising limb, by linking forward 
the last two known discharge 
values; slope is adjusted to 
ensure that all estimated 
discharge values exceed 𝑞𝑚𝑎𝑥. 

 Exponential extrapolation 
for the falling limb, by linking 
backward the first two known 
discharge values, which 
ensures a recession rate that 
is representative of the flood 
propagation over the basin.

 Peak flow appears in their 
intersection.

Manually 

set to 𝑞𝑚𝑎𝑥

Linear 

model 

Exponential 

model 

Estimated 

peak flow



Sakki et al., Stochastic modelling of hydropower generation from small hydropower plants under limited data availability 10

Extrapolation for low flows

 Hydrograph extrapolation 
for 𝑞 < 𝑞𝑚𝑖𝑛, indicating 
periods that the turbines do 
not operate, thus the power 
production is zero.

 Exponential extrapolation 
for the falling limb, based 
on the last two known 
discharge values.

 Linear extrapolation for the 
rising limb, by linking 
backwards the first two 
known discharge values.

 Adjustment to ensure that 
all estimated discharge 
values do not exceed 𝑞𝑚𝑖𝑛.

 Important hint: Different 
error models are 
established for low, high 
and intermediate flows.

Manually 

set to 𝑞𝑚𝑖𝑛
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Theoretical example

 Hypothetical small hydroelectric plant, with known daily inflows (10 year data), 
comprising a single turbine of 10.8 MW power capacity.

 Net head is considered constant, i.e. ℎ𝑛 = 260 m.

 Two alternative turbines are considered, i.e., Pelton or Francis, operating at low flow 
limits 10 and 20%, respectively, and having different efficiency curves that are 
expressed through the four-parametric analytical function.

 Forward problem: estimation of daily energy data generated by each turbine type

 Inverse problem: retrieval of daily flows by assigning two artificial error 
expressions:

◼ random perturbation of energy generation data, by assigning an additive error 
term to simulated energy that follows either a normal or a skewed (Gamma) 
distribution, thus accounting for observation errors;

◼ extraction of discharge data by using a set of 100 randomly generated efficiency 
curves around the actual ones, to represent the inherent uncertainties of the 
modelling procedure (parameter errors).

 In the first setting, the uncertain discharge data are represented in stochastic terms, 
i.e. by employing the AR(1) model to residuals, while in the second setting the 
ensembles are directly obtained by solving the inverse problem for each uncertain 
efficiency curve.
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Artificial error added to simulated energy

Error ~N(0,σ=1%*S)

Error ~N(0,σ=10%*S)

 Uncertain energy production is expressed 
by adding to the actual data 𝑒𝑡 𝑞𝑡 , which 
is obtained from known inflows 𝑞𝑡, the 
error term Δ𝑒𝑡, as follows:

𝑒𝑡
∗ = 𝑒𝑡 𝑞𝑡 + Δ𝑒𝑡

 Δ𝑒𝑡 is expressed by means of unbiased 
noise, either normal 𝑁(0, 𝜎𝑒) or gamma-
type, with skewness 𝛾𝑒 .

 𝜎𝑒 is expressed as percentage of the 
standard deviation of simulated energy 
production, i.e. 1%, 5% and 10%.

 The uncertainty of the inflows that are 
retrieved by the inverse procedure is 
quantified in terms of key statistical 
characteristics of residuals:

◼ mean, variance, skewness

◼ lag-one autocorrelations

◼ cross-correlations with actual flow 
data (heteroscedasticity?)
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Transforming a priori errors (assigned to energy) 
to a posteriori errors of simulated discharge 

Pelton Francis Pelton Francis Pelton Francis

mean 0.037 -0.112 0.044 -0.115 0.049 -0.088

stdev 0.065 0.193 0.100 0.196 0.139 0.118

skewness 1.411 1.213 1.968 1.225 1.154 -0.441

autocorrelation 0.619 0.769 0.243 0.736 0.125 0.703

cross-correlation 0.777 0.965 0.398 0.947 0.310 0.826

1% 5% 10%

Statistical characteristics of simulated discharge errors, after adding a normal error term to 
actual energy data (zero bias, standard deviation 1, 5 and 10% of energy standard deviation)

Statistical characteristics of simulated discharge errors, after adding a gamma-distributed error 
to actual energy data (zero bias, standard deviation 1% of energy, skewness coefficients 0.3, 1, 5)

Pelton Francis Pelton Francis Pelton Francis
mean 0.037 -0.117 0.037 -0.116 0.036 -0.116

stdev 0.064 0.179 0.064 0.180 0.060 0.179

skewness 1.442 0.674 1.174 0.683 0.573 0.680

autocorrelation 0.600 0.794 0.633 0.795 0.723 0.796

cross-correlation 0.773 0.968 0.780 0.968 0.862 0.968

0.3 1 5
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Inverse problem under uncertain efficiency

 Deterministic approach: extraction of flow data from energy, considering a Francis 
turbine with known efficiency curve (given in analytical form);

 Stochastic approach: Generation of 100 synthetic efficiency curves around the 
known one (red line; left figure), by generating random parameter values, and 
inverse modeling approach, to extract ensembles of stochastic flow series.

Synthetic efficiency curves (six out of 100) 
around the “true” one (red line) Flow data for a 100-day period
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Real-world study: Glafkos power plant

 Glafkos (Greek: Γλαύκος, Latin: Glaucus) is a small river in thd city of Patras, Greece, 
flowing into the Gulf of Patras (Ionian Sea), south of the city centre.

 The hydroelectric power plant was built in 1927 and fully renovated in 1997.

 It is a typical run-of-river scheme, comprising:

◼ a small diversion dam, receiving a mean annual inflow of ~39 hm3; 

◼ a diversion tunnel, conveying ~31 hm3 to the forebay tank; 

◼ a penstock of 1695 m length, taking advantage of a head of 150 m;

◼ two turbines, Francis (2.3 MW) and Pelton (1.4 MW).

Glafkos basin upstream of diversion 
dam (Langousis & Kaleris, 2013)

 The mean annual energy production 
is 10.4 GWh (capacity factor 31%).

Source: Efstratiadis et al., 2020
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 Available data from 2008 to 2018:

◼ Daily water volume diverted from 
the dam to the power plant;

◼ Hourly energy from each turbine;

Inverse modeling procedure applied to Glafkos

 Computational procedure:

◼ Retrieval of hourly flow data from 
hourly energy (inverse problem);

◼ Extraction of error series by 
contrasting the aggregated daily 
flows to the actual ones;

◼ Statistical analysis of errors and 
generation of long error data 
through an AR(1) model;

◼ Synthesis of 100 ensembles of 
stochastic daily flow data, by adding 
synthetic errors to simulated data;

◼ Empirical estimation of three 
characteristic quantiles (5, 50 and 
95%), contrasted to observed flows;

Simulation from May to November 2017 
(continuous operation of Pelton turbine)

Scatter plot of errors vs. 
simulated daily flows 

Mean 0.001

Standard Deviation 0.041

Skewness 1.782

Correlation 0.184
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Impacts of uncertain efficiency curves

 Application of inverse modelling 
procedure to energy data provided by 
the Francis turbine, by applying two 
alternative efficiency curves:

◼ Typical empirical curve for 
specific speed 𝑛𝑠 = 100 rpm;

◼ Analytical curve, with 𝜂𝑚𝑖𝑛 = 0.70, 
𝜂𝑚𝑎𝑥 = 0.95, a =0.59 and b = 3.95.

 Multiplied by 0.95, to account for 
additional energy losses in the 
generator and the transformer.

Empirical curve

Analytical curve

Εmpirical, adapted 

from Papantonis

(2004, p. 231)

Analytical 

formula 

(slide 6)



From post-analysis to forecasting
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1. Modelling of the falling limb of the 
hydrograph via the linear reservoir 
recession model (Risva et al., 2018):

𝑞 𝑡 = 𝑞0 exp(−𝑘 𝑡)

2. Analysis of historic discharge data to 
estimate recession coefficients, k
(different for floods and dry periods);

3. Fitting a statistical model of k, also 
accounting for dependencies with 𝑞0.

4. For given 𝑞0, generation of stochastic 
forecasting ensembles of discharge 
(random samples of k) and estimation 
of their confidence intervals.

5. Generation of ensemble forecasts 
accounting for combined uncertainty 
of initial flow, 𝑞0 (derived from the 
inverse problem) and k.

 Forecasting of future inflows: during the 
dry period (long–term) and the runoff 
response in rainfall events (short-term)

Scatter plot of 
k vs. 𝒒𝟎 → 

uncorrelated



Example: 5-day forecasts during flood recession
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Uncertain k

Uncertain 𝒒𝟎

Uncertain 
k and 𝒒𝟎

Uncertain 
power

Power capacity 

while 𝑞 > 𝑞𝑚𝑎𝑥

Induced by 

the inverse 

problem

Induced by 

catchment 

behavior

Forecasts with 

average k

Observed 𝑞0



Conclusions
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 The retrieval of flows from energy data, here called the inverse problem of 
hydroelectricity, revealed many challenges, since the computational procedure 
exhibits multiple uncertainties.

 The stochastic paradigm – as the unique means for consistent quantification of 
uncertainty – can be easily applied to this problem, thus allowing to express the 
overall uncertainties in typical statistical terms (e.g. marginal statistics and 
confidence intervals);

 Here we focused on two key uncertain issues, i.e. the observed output (energy 
production) and the efficiency curve of turbines. Our analyses indicated that 
efficiency is the major source of uncertainty, particularly for the case of Francis 
machines, in which efficiency drops rapidly as discharge decreases. 

 The extrapolation of high and low flows, outside of the range of operation of 
SHPs, is employed by combining empirical hydrological rules for representing the 
rising and falling limbs with stochastic approaches.

 The hydrological behavior of the catchment, as reflected in the recession 
parameter of falling limbs, plays important role in flow forecasting, both in short-
term (flood recession) and in the long run (dry-period baseflow). 

 Preliminary results showed that the nonlinear transformation of flow to energy 
seems resulting to slightly smoothed uncertainties, in terms of power predictions.
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