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Abstract: Centralized urban water management currently faces multiple challenges, both at the supply
side and the demand side. These challenges underpin the need to progress to the decentralization
of urban water, where multiple distributed technologies (water-aware appliances, rainwater
harvesting, greywater recycling, sustainable urban drainage) are applied in an integrated
fashion and as a supplement to centralized systems to design more resilient neighborhoods.
However, the methods and tools to assess the performance of these distributed solutions and provide
management support for integrated projects are still few and mostly untested in real, combined cases.
This study presents a simulation-based framework for the quantitative performance assessment of
decentralized systems at a neighborhood scale, where different technologies can be linked together to
provide beneficial effects across multiple urban water cycle domains. This framework links an urban
water cycle model, which provides a scenario-based simulation testbed for the response of the whole
system, with key performance indicators that evaluate the performance of integrated decentralized
solutions at a neighborhood scale. The demonstrated framework is applied to provide an ex ante
evaluation of SUPERLOCAL, a newly developed area in Limburg, the Netherlands, designed
as a circular, water-wise neighborhood where multiple decentralized technologies are combined.

Keywords: circular water; decentralized systems; distributed solutions; greywater recycling;
key performance indicators; rainwater harvesting; smart neighborhoods; urban water

1. Introduction

The conventional, centralized model of urban water management that delivers ‘big pipes in’ from
multiple water sources to urban areas and drives ‘big pipes out’ to dispose urban wastewater
has generated (and will likely continue to deliver) significant benefits to cities. Through this
‘hard path’ of water, cities worldwide enjoy reliable, constant clean water supply, improved health
services, efficient disposal of their wastewater and simple operational and management structures.
However, this path also faces multiple challenges and comes at a high cost of ecological degradation,
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social intrusion and capital intensity [1]. Challenges arise at the supply side, linked to aging—and
progressively more susceptible to failures—large infrastructure, weak governance structures, limited
investment opportunities for new infrastructure projects, but also a rapidly changing setting of water
availability, driven by climate change and its impact on different water source types [2–4]. At the same
time, the demand side also poses threats linked to rapid urbanization, demographic shifts and changing
client behaviors that are often not met by adaptive policy changes [5–7].

Given this context, cities are becoming increasingly aware that there is a need to reconsider
traditional water management models and substantially redesign the way freshwater resources
are utilized [8]. A new, circular path of water is envisioned as an alternative to the conventional
linear management model [1,9,10], which supplements large central infrastructure with an array of
decentralized water options that are applied at different spatial scales within the city [11]. Water-aware
appliances are envisioned to be used at a household level, in order to lessen demands at a household
level, paired with neighborhood-scale decentralized measures, that aim to add local sources such
as rainwater or groundwater to the distribution network, as well as recycle wastewater to cover part
of the urban demands. This decentralized paradigm in water management aims at creating smart,
water-aware units within the city, where multiple distributed technology options are integrated to
provide a circular urban water management model that reduces-reuses-recycles, instead of the one that
merely extracts, transports and disposes. The paradigm shift that is envisioned bears a close resemblance
to broader socio-economic transitions that aim at reaching sustainability, such as the progression
towards a model of circular economy [12,13].

This envisioned decentralization of urban water, however, will not come easily, as it
brings a higher degree of system complexity and requires sectoral bodies, water utilities,
communities and entrepreneurs to collaborate and co-design efficient implementation and uptake
models [14,15]. Likewise, decision support systems that are designed based on the premise of central,
externally provided water infrastructure now need to include the elaborate interplay between diverse
decentralized technologies at multiple scales and across multiple urban water cycle domains, such
as drinking water, wastewater and stormwater [16]. While numerous decision support frameworks of
the metabolism type that target multiple urban water cycle streams exist, there are few applications in
an integrated context that are able to include multiple decentralized options in a combined manner,
let alone explore the underlying drivers of change such as future climates and social factors [17,18].
Studying the interplay between different technologies at different scales across multiple urban water
cycle streams (drinking water, wastewater and stormwater), as well as finding a consistent way to
translate this interplay into easily interpretable information for decision-making, remains a topic
of ongoing research. The transition to new, circular urban water management models needs to be
accompanied by holistic frameworks that are able to look into multiple water cycle domains, across
many externalities (i.e., encompassing social, environmental, financial and technological factors)
and can also quantify and visualize the advantages and disadvantages of decentralized systems in
an efficient way.

Aiming to contribute to this body of research, this study presents a simulation-based framework
suitable for the design and evaluation of integrated decentralized systems at a neighborhood
scale. The framework is able to model distributed technologies, deployed at different spatial scales,
such as household measures (e.g., water-saving appliances) as well as more upscaled interventions
(e.g., neighborhood-scale rainwater harvesting designs) and provides quantitative insight into different
aspects of the urban water cycle, related to all water streams (drinking water (DW), wastewater
(WW) and rainwater-runoff (RW)). The quantitative insight is provided by linking together an urban
water cycle model, which provides a scenario-based simulation testbed for the response of the whole
system, with key performance indicators that evaluate the performance of combined solutions
at neighborhood scale with regards to water quantity and can be easily communicated to stakeholders
and decision-makers. The framework is applied for an ex ante evaluation of SUPERLOCAL, a circular
water neighborhood that is designed in the area of Limburg, in the Netherlands, in order to draw
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conclusions on the performance of different integrated system designs that combine rainwater
harvesting (RWH) with greywater recycling (GWR), among other circular water interventions.

2. Materials and Methods

2.1. A Simulation-Based Approach Towards (Re-)designing Circular Water Neighborhoods

Evidently, introducing decentralized options at the city is not a trivial management task.
Decentralized options can be introduced in a combined manner at multiple spatial scales [19], for
instance when designing a new blue-green large recreational area [20] or at smaller spatial units, such
as the neighborhood or household level. Regardless of scale, the introduction of multiple decentralized
technologies in an integrated fashion leads to effects on multiple urban water cycle domains that are
commonly not evaluated or managed together. There is reduction in the clean, freshwater requested
from central, DW services. Local freshwater sources, such as rainwater, are captured and used locally,
while the introduction of a RWH scheme has an effect on stormwater retention that leads to an altered
(slower and lower) runoff response at the outlet. Part of the generated WW in the neighborhood is treated
locally and reused, thus reducing the quantity of WW propagated downstream, e.g., to centralized sewer
services. These multi-domain effects need to be part of an integrated performance assessment to allow
for a multi-faceted evaluation of the system of interest to all stakeholders. Moreover, such an integrated
framework needs ideally to reach beyond the urban water cycle and explore external driving factors,
such as climate change, behavioral client shifts, demographic changes, capital and operational costs etc.,
in order to account for the strong uncertainties seen in urban water management [21]. Research questions
therefore arise, asking for integrated frameworks able to assess the performance and impact of a combined
decentralized system that: (a) takes into account the aforementioned effects on multiple urban water
cycle domains, (b) that can be expanded to account for multiple dimensions (e.g., social, technological,
environmental and financial), which can be then considered drivers of change in the system.

In light of these questions, the contribution of this study is towards the development of
a quantitative assessment framework, able to support decisions by evaluating the performance
of the combined decentralized system in a way that can be easily interpreted by stakeholders.
The demonstrated assessment framework links an urban water cycle model able to run predefined
scenarios—which is the way to gain quantitative insights on the whole system performance—with a set
of Key Performance Indicators (KPIs) that transform raw model output to scalar quantities that
can be easily communicated to stakeholder groups. To apply this framework, the spatial unit of
a neighborhood has been chosen, as it combines a wider array of applicable technologies and economy
of scale over the household level [22], as well as a relatively small extent that allows replicability in
multiple sites within a city or a set of similar cities. Within this context, the re-design of neighborhoods
to include integrated decentralized systems can be defined as transitioning towards circular water
neighborhoods, as an analogue to the transition towards circular cities [23].

The framework relies on urban water cycle model simulation [24] as a technique to mimic
the response of the whole system ex ante and utilizes the Urban Water Optioneering Tool
(UWOT) as a simulation testbed. UWOT is an urban water cycle model following the metabolism
modelling type, able to simulate the complete urban water cycle by modelling individual water uses
and technologies/options for managing them, starting from the household level and aggregating to
a neighborhood or whole city scale [25,26]. UWOT simulates both urban water flows, i.e., potable water,
wastewater and runoff, as well as their integration in terms of harvesting, reuse and recycling at different
scales (from the household and neighborhood up to the city scale). UWOT has been developed and tested
in previous urban water cycle modeling applications that include neighborhood-scale blue-green
area design [20], whole city cycle modeling [26] and analyses of distributed neighborhood options
under scenarios of urban growth [27], so it is in principle readily able to simulate integrated systems.
This ability is demonstrated in a combined neighborhood-scale decentralized system in this study,
building from experience in previous applications that have concentrated on one specific type of
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interventions [20], neighborhood-scale cases that feature either RWH or GWR but not a combined
system [27] and a study of a simplified combined RWH and GWR system at a single household [28].

To model urban water flows, UWOT follows the so-called ‘signal language’: a signal-based systems
analysis approach that starts from individual components (i.e., in-house appliances, units that use
water and generate wastewater or runoff), and proceeds to the generation, transmission, aggregation
and transformation of water demand signals that start from the household level and propagate towards
the source of water demands, i.e., the central drinking water network [29]. UWOT then proceeds to
match these demands with supply from different source types [26] and logs time steps when failure
occurs, i.e., the demand cannot be met by provided supply. This demand-oriented conceptualization,
seen in the right panel of Figure 1, places household and neighborhood demands as the starting point
of every study and enables UWOT to simulate the whole urban water system tracing water demands
from tap to source [26], as opposed to water supply flowing from source to tap (left panel of Figure 1).
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2.2. The Case Study: The Circular Water Neighborhood of SUPERLOCAL

The case study to demonstrate the framework is the project of SUPERLOCAL, a joint venture of
four local partners with distinct roles in the urban water cycle (Table 1), aiming at closing the water loop
in the newly developed area of Parkstad Limburg in the Netherlands (Figure 2). This project comprises
the redesign of an urban district, where one large flat becomes renovated and several housing units are
planned to be built on the terrain of three older, demolished flats. In order to shift from the traditional,
linear urban water management model to a circular, water-wise alternative, the four local partners
have collaborated to install, operate and monitor a set of decentralized technologies that include:

• Installing water-saving household devices that have a reduced water footprint and lead to
lower demands at a tap (household) level. A portfolio of technologies such as vacuum toilets,
water-saving showers and recirculation showers are planned to be installed in different household
types (Table 2).

• A rainwater harvesting (RWH) scheme at the neighborhood scale that collects water from
household roofs and public (impervious) areas, purifies it and uses it to cover drinking water (DW)
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needs. Excess rainwater that is not captured is directed to a ‘water square’, a large infiltration
basin designed to absorb rainwater through percolation. This measure constitutes a sustainable
urban drainage system (SUDS) [30,31], aiming at capturing rainwater locally and not allowing it
to reach the outlet of the neighborhood.

• A greywater recycling (GWR) scheme at the neighborhood scale that collects wastewater (WW)
from selected uses such as the shower and handbasin, purifies it through a nature-based helophyte
filter and redirects it in the urban water cycle, for instance to be used in certain common uses such
as a shared laundry unit and car wash facility.

• A secondary (black water BW) sewage system processing water from vacuum toilets and food
grinders in order to purify and reclaim resources and energy in a digester. This is an implementation
of the ‘new sanitation’ concept, using the idea of separation of waste water at the source [32].
The inclusion of different sewage treatment options per (GW/BW) stream introduces a dual,
parallel system that results in a higher GW quality and thus potential of reuse, as well as higher
potential for energy and resource recovery in the BW stream rich in organic material. This concept
requires the use of vacuum toilets (against other water-aware solutions), in order to maximize
nutrient concentration in the BW stream and enable recovery.

Table 1. Main actors and responsibilities involved in the case study.

Organization Conventional Responsibilities Decentralized Responsibilities (SUPERLOCAL)

Municipality
(Kerkrade)

Rainwater management (incl. capturing,
transport and discharge),

sewage network (in cities)

Rainwater management (incl. capturing, transport
and storage), public area development in regards

rainwater harvesting, water square
and infiltration services

Operations: Vacuum station, sewage system
(black and grey), and rainwater buffers

Drinking water company
(WML)

Water extraction, production
and distribution

Water extraction, production and distribution on
a local scale

Operations: connection between rainwater buffers
and drinking water production (optimization)

Social housing corporation
(HEEMwonen)

Installation of household technologies
and inhouse piping

Installation of household technologies, inhouse
piping and a second (vacuum) sewage system

Operations: Common launderette, food grinders
and car wash

Waste water company
(WBL)

Sewage transport between
municipalities and WWTP, and waste

water treatment

Helophyte filter and buffers, and BW digestor
Operations: pruning of helophyte filter,

and residues transport

These interventions are combined together in a set of proposed, integrated designs, in order to
provide high-quality residential services that at the same time aim lead to: (a) less water use, which is
the consequence of using appliances with a lower water footprint (i.e., water consumed per use)
at a household level, (b) a slower runoff response, modified by the capacity of the system to store
and absorb water and (c) an efficient water use policy at the local scale, where water remains locally for
a longer time and is reused. This localization is based on employing neighborhood-scale harvesting,
recycling and energy & material recovery technologies.

As part of the proposed designs, two options are being considered as potential operational systems
for SUPERLOCAL. In the first design option, greywater is treated locally and is then used to cover
specific shared water demands, such as a common laundry and car wash facility, while rainwater is
captured and treated locally to cover the rest of the DW demands. This is the most likely case to be
implemented in SUPERLOCAL, with two distinct local treatment systems (RWH and GWR) targeting
different water uses. The second option that is considered extends GW reusability by considering
treated GW as having the same quality characteristics as rainwater following a natural filtering step,
thus being able to be mixed together with RW in a shared buffer and thus target all domestic water
uses. This option combines the two local treatment systems and is a more integrated experimental
alternative that will be considered only if the treated GW quality of the project pilot is found to be
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high enough. Both design options are complemented with the same use of water-saving appliances
on a household scale, with the exact mixture of appliances being dependent on the household type
(Table 2).

Water 2019, 11, x FOR PEER REVIEW 6 of 26 

 

longer time and is reused. This localization is based on employing neighborhood-scale harvesting, 
recycling and energy & material recovery technologies.  

As part of the proposed designs, two options are being considered as potential operational 
systems for SUPERLOCAL. In the first design option, greywater is treated locally and is then used to 
cover specific shared water demands, such as a common laundry and car wash facility, while 
rainwater is captured and treated locally to cover the rest of the DW demands. This is the most likely 
case to be implemented in SUPERLOCAL, with two distinct local treatment systems (RWH and 
GWR) targeting different water uses. The second option that is considered extends GW reusability 
by considering treated GW as having the same quality characteristics as rainwater following a natural 
filtering step, thus being able to be mixed together with RW in a shared buffer and thus target all 
domestic water uses. This option combines the two local treatment systems and is a more integrated 
experimental alternative that will be considered only if the treated GW quality of the project pilot is 
found to be high enough. Both design options are complemented with the same use of water-saving 
appliances on a household scale, with the exact mixture of appliances being dependent on the 
household type (Table 2). 

 
Figure 2. Overview of the case study and household types of SUPERLOCAL. 

Table 2. The case study and household types of SUPERLOCAL. 

Unit Houses 
Experimental 

Houses Apartments Total 

Abbreviation 
(Figure 2) (a) (b) (c)  

Number of dwellings 13 3 113 129 

Persons/dwelling 
(persons) 

2.2 (29) 1.8 (5) 2.0 (226) 260 

Type of toilet  
(n)  

Silent 
vacuum (13) 

Standard 
vacuum (3) 

Silent vacuum (113) 129 

Figure 2. Overview of the case study and household types of SUPERLOCAL.

Table 2. The case study and household types of SUPERLOCAL.

Unit Houses Experimental Houses Apartments Total

Abbreviation (Figure 2) (a) (b) (c)

Number of dwellings 13 3 113 129

Persons/dwelling (persons) 2.2 (29) 1.8 (5) 2.0 (226) 260

Type of toilet (n)

Water 2019, 11, x FOR PEER REVIEW 6 of 26 

 

longer time and is reused. This localization is based on employing neighborhood-scale harvesting, 
recycling and energy & material recovery technologies.  

As part of the proposed designs, two options are being considered as potential operational 
systems for SUPERLOCAL. In the first design option, greywater is treated locally and is then used to 
cover specific shared water demands, such as a common laundry and car wash facility, while 
rainwater is captured and treated locally to cover the rest of the DW demands. This is the most likely 
case to be implemented in SUPERLOCAL, with two distinct local treatment systems (RWH and 
GWR) targeting different water uses. The second option that is considered extends GW reusability 
by considering treated GW as having the same quality characteristics as rainwater following a natural 
filtering step, thus being able to be mixed together with RW in a shared buffer and thus target all 
domestic water uses. This option combines the two local treatment systems and is a more integrated 
experimental alternative that will be considered only if the treated GW quality of the project pilot is 
found to be high enough. Both design options are complemented with the same use of water-saving 
appliances on a household scale, with the exact mixture of appliances being dependent on the 
household type (Table 2). 

 
Figure 2. Overview of the case study and household types of SUPERLOCAL. 

Table 2. The case study and household types of SUPERLOCAL. 

Unit Houses 
Experimental 

Houses Apartments Total 

Abbreviation 
(Figure 2) (a) (b) (c)  

Number of dwellings 13 3 113 129 

Persons/dwelling 
(persons) 

2.2 (29) 1.8 (5) 2.0 (226) 260 

Type of toilet  
(n)  

Silent 
vacuum (13) 

Standard 
vacuum (3) 

Silent vacuum (113) 129 Silent vacuum (13) Standard vacuum (3) Silent vacuum (113) 129

Type of shower (n)

Water 2019, 11, x FOR PEER REVIEW 7 of 26 

 

Type of shower (n)  
Water 

saving (13) Recirculation (3) Water saving (113) 129 

Type washing 
machine (n)  Regular (13)  Regular (3)  

50% regular (56); 50% use 
shared launderette (5) 77 

Food grinder  
(n)  

Water 
saving (13) Water saving (3) Large shared water saving 

on each level (9) 25 

Tap(s) (n)  Regular (39) Regular (6) Regular (226) 271 

Outdoor tap (n)  Regular (13) Regular (3) - (0) 16 

Waste streams: = BW sewage,  = GW sewage,  = In soil 

2.3. Formulating the Performance Assessment Chain for Decentralized Urban Water Systems 

Using a simulation testbed such as UWOT provides a detailed picture of the whole system 
response—in terms of requested DW, produced WW and simulated runoff—for a given design 
option that encompasses all selected technologies on a household and neighborhood scale. This 
design option could be considered a scenario in the neighborhood, encompassing assumptions on 
the mixture, usage and design attributes of technologies, but also implicitly including assumptions 
on climate (through the use of rainfall data to generate runoff) and client behavior (by assuming a set 
occupancy and frequency of use). Likewise, a neighborhood that features the same spatial and 
occupancy characteristics but no water-saving or decentralized measures, i.e., a unit of linear water 
management that requests DW from the central networks and quickly disposes WW and runoff to 
corresponding central services, could be considered another scenario able to be modeled with UWOT. 
It becomes thus evident that UWOT is able to model different ‘realms’ in the form of scenarios that 
represent management choices, climate characteristics and social behaviors through its required 
inputs and component topology (i.e., house types, RWH and/or GWR treatment unit). A basis for a 
simulation-based assessment framework could then start with the following conceptualization: “One 
could assess the performance of a decentralized system by comparing the ‘decentralized’ scenario 
with the current reality, i.e., baseline scenario, that reflects linear management and relies on 
centralized networks.”  

This conceptualization, however, has a caveat: performance assessment is directly dependent on 
the output of the model, which generates a wealth of data on daily time steps. There needs to be a 
higher level of abstraction from (complex) data produced by the model to the (lean) data needed to 
evaluate performance and reach decisions. This abstraction can be reached by introducing a number 
of key performance indicators (KPIs), which represent characteristic performance metrics of the 
system.  

The use of KPIs to convey information is considered important, as they can be viewed as a crucial 
link between assessment frameworks and the decision-making process, since they distil the—often 
complex—information of assessment methodologies such as modeling-based frameworks in simple 
quantities, able to be interpreted efficiently and quickly by non-experts such as management units 
and stakeholders [33]. Identifying efficient KPIs for each decision-making domain is no trivial task 
and is the subject of extensive research in multiple fields [34,35], including urban water [36–39]. The 
non-trivial nature of forming KPIs comes from the interaction of multiple factors that affect design, 
such as: (a) the project aim and stakeholder target groups, (b) the assessment framework and model 
capabilities, as the KPIs need to be derived from the data output generated by the model, (c) the needs 
of decision-makers, as the KPIs need to include multiple system aspects that affect decision-making, 
be understandable and, to the greatest possible extent, co-designed with the interested end-users. 
With regards to this consideration, the simulation-based assessment framework conceptualization 
can be rephrased as follows: “One may assess the performance of a decentralized system by 
comparing the ‘decentralized’ scenario with the baseline scenario (current reality) that reflects linear 
management and relies on centralized technologies via a number of Key Performance Indicators.”  

Water saving (13) Recirculation (3) Water saving (113) 129

Type washing machine (n)

Water 2019, 11, x FOR PEER REVIEW 7 of 26 

 

Type of shower (n)  
Water 

saving (13) Recirculation (3) Water saving (113) 129 

Type washing 
machine (n)  Regular (13)  Regular (3)  

50% regular (56); 50% use 
shared launderette (5) 77 

Food grinder  
(n)  

Water 
saving (13) Water saving (3) Large shared water saving 

on each level (9) 25 

Tap(s) (n)  Regular (39) Regular (6) Regular (226) 271 

Outdoor tap (n)  Regular (13) Regular (3) - (0) 16 

Waste streams: = BW sewage,  = GW sewage,  = In soil 

2.3. Formulating the Performance Assessment Chain for Decentralized Urban Water Systems 

Using a simulation testbed such as UWOT provides a detailed picture of the whole system 
response—in terms of requested DW, produced WW and simulated runoff—for a given design 
option that encompasses all selected technologies on a household and neighborhood scale. This 
design option could be considered a scenario in the neighborhood, encompassing assumptions on 
the mixture, usage and design attributes of technologies, but also implicitly including assumptions 
on climate (through the use of rainfall data to generate runoff) and client behavior (by assuming a set 
occupancy and frequency of use). Likewise, a neighborhood that features the same spatial and 
occupancy characteristics but no water-saving or decentralized measures, i.e., a unit of linear water 
management that requests DW from the central networks and quickly disposes WW and runoff to 
corresponding central services, could be considered another scenario able to be modeled with UWOT. 
It becomes thus evident that UWOT is able to model different ‘realms’ in the form of scenarios that 
represent management choices, climate characteristics and social behaviors through its required 
inputs and component topology (i.e., house types, RWH and/or GWR treatment unit). A basis for a 
simulation-based assessment framework could then start with the following conceptualization: “One 
could assess the performance of a decentralized system by comparing the ‘decentralized’ scenario 
with the current reality, i.e., baseline scenario, that reflects linear management and relies on 
centralized networks.”  

This conceptualization, however, has a caveat: performance assessment is directly dependent on 
the output of the model, which generates a wealth of data on daily time steps. There needs to be a 
higher level of abstraction from (complex) data produced by the model to the (lean) data needed to 
evaluate performance and reach decisions. This abstraction can be reached by introducing a number 
of key performance indicators (KPIs), which represent characteristic performance metrics of the 
system.  

The use of KPIs to convey information is considered important, as they can be viewed as a crucial 
link between assessment frameworks and the decision-making process, since they distil the—often 
complex—information of assessment methodologies such as modeling-based frameworks in simple 
quantities, able to be interpreted efficiently and quickly by non-experts such as management units 
and stakeholders [33]. Identifying efficient KPIs for each decision-making domain is no trivial task 
and is the subject of extensive research in multiple fields [34,35], including urban water [36–39]. The 
non-trivial nature of forming KPIs comes from the interaction of multiple factors that affect design, 
such as: (a) the project aim and stakeholder target groups, (b) the assessment framework and model 
capabilities, as the KPIs need to be derived from the data output generated by the model, (c) the needs 
of decision-makers, as the KPIs need to include multiple system aspects that affect decision-making, 
be understandable and, to the greatest possible extent, co-designed with the interested end-users. 
With regards to this consideration, the simulation-based assessment framework conceptualization 
can be rephrased as follows: “One may assess the performance of a decentralized system by 
comparing the ‘decentralized’ scenario with the baseline scenario (current reality) that reflects linear 
management and relies on centralized technologies via a number of Key Performance Indicators.”  

Regular (13) Regular (3) 50% regular (56); 50% use
shared launderette (5) 77

Food grinder (n)

Water 2019, 11, x FOR PEER REVIEW 6 of 26 

 

longer time and is reused. This localization is based on employing neighborhood-scale harvesting, 
recycling and energy & material recovery technologies.  

As part of the proposed designs, two options are being considered as potential operational 
systems for SUPERLOCAL. In the first design option, greywater is treated locally and is then used to 
cover specific shared water demands, such as a common laundry and car wash facility, while 
rainwater is captured and treated locally to cover the rest of the DW demands. This is the most likely 
case to be implemented in SUPERLOCAL, with two distinct local treatment systems (RWH and 
GWR) targeting different water uses. The second option that is considered extends GW reusability 
by considering treated GW as having the same quality characteristics as rainwater following a natural 
filtering step, thus being able to be mixed together with RW in a shared buffer and thus target all 
domestic water uses. This option combines the two local treatment systems and is a more integrated 
experimental alternative that will be considered only if the treated GW quality of the project pilot is 
found to be high enough. Both design options are complemented with the same use of water-saving 
appliances on a household scale, with the exact mixture of appliances being dependent on the 
household type (Table 2). 

 
Figure 2. Overview of the case study and household types of SUPERLOCAL. 

Table 2. The case study and household types of SUPERLOCAL. 

Unit Houses 
Experimental 

Houses Apartments Total 

Abbreviation 
(Figure 2) (a) (b) (c)  

Number of dwellings 13 3 113 129 

Persons/dwelling 
(persons) 

2.2 (29) 1.8 (5) 2.0 (226) 260 

Type of toilet  
(n)  

Silent 
vacuum (13) 

Standard 
vacuum (3) 

Silent vacuum (113) 129 Water saving (13) Water saving (3) Large shared water saving
on each level (9) 25

Tap(s) (n)

Water 2019, 11, x FOR PEER REVIEW 7 of 26 

 

Type of shower (n)  
Water 

saving (13) Recirculation (3) Water saving (113) 129 

Type washing 
machine (n)  Regular (13)  Regular (3)  

50% regular (56); 50% use 
shared launderette (5) 77 

Food grinder  
(n)  

Water 
saving (13) Water saving (3) Large shared water saving 

on each level (9) 25 

Tap(s) (n)  Regular (39) Regular (6) Regular (226) 271 

Outdoor tap (n)  Regular (13) Regular (3) - (0) 16 

Waste streams: = BW sewage,  = GW sewage,  = In soil 

2.3. Formulating the Performance Assessment Chain for Decentralized Urban Water Systems 

Using a simulation testbed such as UWOT provides a detailed picture of the whole system 
response—in terms of requested DW, produced WW and simulated runoff—for a given design 
option that encompasses all selected technologies on a household and neighborhood scale. This 
design option could be considered a scenario in the neighborhood, encompassing assumptions on 
the mixture, usage and design attributes of technologies, but also implicitly including assumptions 
on climate (through the use of rainfall data to generate runoff) and client behavior (by assuming a set 
occupancy and frequency of use). Likewise, a neighborhood that features the same spatial and 
occupancy characteristics but no water-saving or decentralized measures, i.e., a unit of linear water 
management that requests DW from the central networks and quickly disposes WW and runoff to 
corresponding central services, could be considered another scenario able to be modeled with UWOT. 
It becomes thus evident that UWOT is able to model different ‘realms’ in the form of scenarios that 
represent management choices, climate characteristics and social behaviors through its required 
inputs and component topology (i.e., house types, RWH and/or GWR treatment unit). A basis for a 
simulation-based assessment framework could then start with the following conceptualization: “One 
could assess the performance of a decentralized system by comparing the ‘decentralized’ scenario 
with the current reality, i.e., baseline scenario, that reflects linear management and relies on 
centralized networks.”  

This conceptualization, however, has a caveat: performance assessment is directly dependent on 
the output of the model, which generates a wealth of data on daily time steps. There needs to be a 
higher level of abstraction from (complex) data produced by the model to the (lean) data needed to 
evaluate performance and reach decisions. This abstraction can be reached by introducing a number 
of key performance indicators (KPIs), which represent characteristic performance metrics of the 
system.  

The use of KPIs to convey information is considered important, as they can be viewed as a crucial 
link between assessment frameworks and the decision-making process, since they distil the—often 
complex—information of assessment methodologies such as modeling-based frameworks in simple 
quantities, able to be interpreted efficiently and quickly by non-experts such as management units 
and stakeholders [33]. Identifying efficient KPIs for each decision-making domain is no trivial task 
and is the subject of extensive research in multiple fields [34,35], including urban water [36–39]. The 
non-trivial nature of forming KPIs comes from the interaction of multiple factors that affect design, 
such as: (a) the project aim and stakeholder target groups, (b) the assessment framework and model 
capabilities, as the KPIs need to be derived from the data output generated by the model, (c) the needs 
of decision-makers, as the KPIs need to include multiple system aspects that affect decision-making, 
be understandable and, to the greatest possible extent, co-designed with the interested end-users. 
With regards to this consideration, the simulation-based assessment framework conceptualization 
can be rephrased as follows: “One may assess the performance of a decentralized system by 
comparing the ‘decentralized’ scenario with the baseline scenario (current reality) that reflects linear 
management and relies on centralized technologies via a number of Key Performance Indicators.”  

Regular (39) Regular (6) Regular (226) 271

Outdoor tap (n)

Water 2019, 11, x FOR PEER REVIEW 7 of 26 

 

Type of shower (n)  
Water 

saving (13) Recirculation (3) Water saving (113) 129 

Type washing 
machine (n)  Regular (13)  Regular (3)  

50% regular (56); 50% use 
shared launderette (5) 77 

Food grinder  
(n)  

Water 
saving (13) Water saving (3) Large shared water saving 

on each level (9) 25 

Tap(s) (n)  Regular (39) Regular (6) Regular (226) 271 

Outdoor tap (n)  Regular (13) Regular (3) - (0) 16 

Waste streams: = BW sewage,  = GW sewage,  = In soil 

2.3. Formulating the Performance Assessment Chain for Decentralized Urban Water Systems 

Using a simulation testbed such as UWOT provides a detailed picture of the whole system 
response—in terms of requested DW, produced WW and simulated runoff—for a given design 
option that encompasses all selected technologies on a household and neighborhood scale. This 
design option could be considered a scenario in the neighborhood, encompassing assumptions on 
the mixture, usage and design attributes of technologies, but also implicitly including assumptions 
on climate (through the use of rainfall data to generate runoff) and client behavior (by assuming a set 
occupancy and frequency of use). Likewise, a neighborhood that features the same spatial and 
occupancy characteristics but no water-saving or decentralized measures, i.e., a unit of linear water 
management that requests DW from the central networks and quickly disposes WW and runoff to 
corresponding central services, could be considered another scenario able to be modeled with UWOT. 
It becomes thus evident that UWOT is able to model different ‘realms’ in the form of scenarios that 
represent management choices, climate characteristics and social behaviors through its required 
inputs and component topology (i.e., house types, RWH and/or GWR treatment unit). A basis for a 
simulation-based assessment framework could then start with the following conceptualization: “One 
could assess the performance of a decentralized system by comparing the ‘decentralized’ scenario 
with the current reality, i.e., baseline scenario, that reflects linear management and relies on 
centralized networks.”  

This conceptualization, however, has a caveat: performance assessment is directly dependent on 
the output of the model, which generates a wealth of data on daily time steps. There needs to be a 
higher level of abstraction from (complex) data produced by the model to the (lean) data needed to 
evaluate performance and reach decisions. This abstraction can be reached by introducing a number 
of key performance indicators (KPIs), which represent characteristic performance metrics of the 
system.  

The use of KPIs to convey information is considered important, as they can be viewed as a crucial 
link between assessment frameworks and the decision-making process, since they distil the—often 
complex—information of assessment methodologies such as modeling-based frameworks in simple 
quantities, able to be interpreted efficiently and quickly by non-experts such as management units 
and stakeholders [33]. Identifying efficient KPIs for each decision-making domain is no trivial task 
and is the subject of extensive research in multiple fields [34,35], including urban water [36–39]. The 
non-trivial nature of forming KPIs comes from the interaction of multiple factors that affect design, 
such as: (a) the project aim and stakeholder target groups, (b) the assessment framework and model 
capabilities, as the KPIs need to be derived from the data output generated by the model, (c) the needs 
of decision-makers, as the KPIs need to include multiple system aspects that affect decision-making, 
be understandable and, to the greatest possible extent, co-designed with the interested end-users. 
With regards to this consideration, the simulation-based assessment framework conceptualization 
can be rephrased as follows: “One may assess the performance of a decentralized system by 
comparing the ‘decentralized’ scenario with the baseline scenario (current reality) that reflects linear 
management and relies on centralized technologies via a number of Key Performance Indicators.”  

Regular (13) Regular (3) - (0) 16

Waste streams:

Water 2019, 11, x FOR PEER REVIEW 6 of 26 

 

longer time and is reused. This localization is based on employing neighborhood-scale harvesting, 
recycling and energy & material recovery technologies.  

As part of the proposed designs, two options are being considered as potential operational 
systems for SUPERLOCAL. In the first design option, greywater is treated locally and is then used to 
cover specific shared water demands, such as a common laundry and car wash facility, while 
rainwater is captured and treated locally to cover the rest of the DW demands. This is the most likely 
case to be implemented in SUPERLOCAL, with two distinct local treatment systems (RWH and 
GWR) targeting different water uses. The second option that is considered extends GW reusability 
by considering treated GW as having the same quality characteristics as rainwater following a natural 
filtering step, thus being able to be mixed together with RW in a shared buffer and thus target all 
domestic water uses. This option combines the two local treatment systems and is a more integrated 
experimental alternative that will be considered only if the treated GW quality of the project pilot is 
found to be high enough. Both design options are complemented with the same use of water-saving 
appliances on a household scale, with the exact mixture of appliances being dependent on the 
household type (Table 2). 

 
Figure 2. Overview of the case study and household types of SUPERLOCAL. 

Table 2. The case study and household types of SUPERLOCAL. 

Unit Houses 
Experimental 

Houses Apartments Total 

Abbreviation 
(Figure 2) (a) (b) (c)  

Number of dwellings 13 3 113 129 

Persons/dwelling 
(persons) 

2.2 (29) 1.8 (5) 2.0 (226) 260 

Type of toilet  
(n)  

Silent 
vacuum (13) 

Standard 
vacuum (3) 

Silent vacuum (113) 129 
= BW sewage,

Water 2019, 11, x FOR PEER REVIEW 7 of 26 

 

Type of shower (n)  
Water 

saving (13) Recirculation (3) Water saving (113) 129 

Type washing 
machine (n)  Regular (13)  Regular (3)  

50% regular (56); 50% use 
shared launderette (5) 77 

Food grinder  
(n)  

Water 
saving (13) Water saving (3) Large shared water saving 

on each level (9) 25 

Tap(s) (n)  Regular (39) Regular (6) Regular (226) 271 

Outdoor tap (n)  Regular (13) Regular (3) - (0) 16 

Waste streams: = BW sewage,  = GW sewage,  = In soil 

2.3. Formulating the Performance Assessment Chain for Decentralized Urban Water Systems 

Using a simulation testbed such as UWOT provides a detailed picture of the whole system 
response—in terms of requested DW, produced WW and simulated runoff—for a given design 
option that encompasses all selected technologies on a household and neighborhood scale. This 
design option could be considered a scenario in the neighborhood, encompassing assumptions on 
the mixture, usage and design attributes of technologies, but also implicitly including assumptions 
on climate (through the use of rainfall data to generate runoff) and client behavior (by assuming a set 
occupancy and frequency of use). Likewise, a neighborhood that features the same spatial and 
occupancy characteristics but no water-saving or decentralized measures, i.e., a unit of linear water 
management that requests DW from the central networks and quickly disposes WW and runoff to 
corresponding central services, could be considered another scenario able to be modeled with UWOT. 
It becomes thus evident that UWOT is able to model different ‘realms’ in the form of scenarios that 
represent management choices, climate characteristics and social behaviors through its required 
inputs and component topology (i.e., house types, RWH and/or GWR treatment unit). A basis for a 
simulation-based assessment framework could then start with the following conceptualization: “One 
could assess the performance of a decentralized system by comparing the ‘decentralized’ scenario 
with the current reality, i.e., baseline scenario, that reflects linear management and relies on 
centralized networks.”  

This conceptualization, however, has a caveat: performance assessment is directly dependent on 
the output of the model, which generates a wealth of data on daily time steps. There needs to be a 
higher level of abstraction from (complex) data produced by the model to the (lean) data needed to 
evaluate performance and reach decisions. This abstraction can be reached by introducing a number 
of key performance indicators (KPIs), which represent characteristic performance metrics of the 
system.  

The use of KPIs to convey information is considered important, as they can be viewed as a crucial 
link between assessment frameworks and the decision-making process, since they distil the—often 
complex—information of assessment methodologies such as modeling-based frameworks in simple 
quantities, able to be interpreted efficiently and quickly by non-experts such as management units 
and stakeholders [33]. Identifying efficient KPIs for each decision-making domain is no trivial task 
and is the subject of extensive research in multiple fields [34,35], including urban water [36–39]. The 
non-trivial nature of forming KPIs comes from the interaction of multiple factors that affect design, 
such as: (a) the project aim and stakeholder target groups, (b) the assessment framework and model 
capabilities, as the KPIs need to be derived from the data output generated by the model, (c) the needs 
of decision-makers, as the KPIs need to include multiple system aspects that affect decision-making, 
be understandable and, to the greatest possible extent, co-designed with the interested end-users. 
With regards to this consideration, the simulation-based assessment framework conceptualization 
can be rephrased as follows: “One may assess the performance of a decentralized system by 
comparing the ‘decentralized’ scenario with the baseline scenario (current reality) that reflects linear 
management and relies on centralized technologies via a number of Key Performance Indicators.”  

= GW sewage,

Water 2019, 11, x FOR PEER REVIEW 7 of 26 

 

Type of shower (n)  
Water 

saving (13) Recirculation (3) Water saving (113) 129 

Type washing 
machine (n)  Regular (13)  Regular (3)  

50% regular (56); 50% use 
shared launderette (5) 77 

Food grinder  
(n)  

Water 
saving (13) Water saving (3) Large shared water saving 

on each level (9) 25 

Tap(s) (n)  Regular (39) Regular (6) Regular (226) 271 

Outdoor tap (n)  Regular (13) Regular (3) - (0) 16 

Waste streams: = BW sewage,  = GW sewage,  = In soil 

2.3. Formulating the Performance Assessment Chain for Decentralized Urban Water Systems 

Using a simulation testbed such as UWOT provides a detailed picture of the whole system 
response—in terms of requested DW, produced WW and simulated runoff—for a given design 
option that encompasses all selected technologies on a household and neighborhood scale. This 
design option could be considered a scenario in the neighborhood, encompassing assumptions on 
the mixture, usage and design attributes of technologies, but also implicitly including assumptions 
on climate (through the use of rainfall data to generate runoff) and client behavior (by assuming a set 
occupancy and frequency of use). Likewise, a neighborhood that features the same spatial and 
occupancy characteristics but no water-saving or decentralized measures, i.e., a unit of linear water 
management that requests DW from the central networks and quickly disposes WW and runoff to 
corresponding central services, could be considered another scenario able to be modeled with UWOT. 
It becomes thus evident that UWOT is able to model different ‘realms’ in the form of scenarios that 
represent management choices, climate characteristics and social behaviors through its required 
inputs and component topology (i.e., house types, RWH and/or GWR treatment unit). A basis for a 
simulation-based assessment framework could then start with the following conceptualization: “One 
could assess the performance of a decentralized system by comparing the ‘decentralized’ scenario 
with the current reality, i.e., baseline scenario, that reflects linear management and relies on 
centralized networks.”  

This conceptualization, however, has a caveat: performance assessment is directly dependent on 
the output of the model, which generates a wealth of data on daily time steps. There needs to be a 
higher level of abstraction from (complex) data produced by the model to the (lean) data needed to 
evaluate performance and reach decisions. This abstraction can be reached by introducing a number 
of key performance indicators (KPIs), which represent characteristic performance metrics of the 
system.  

The use of KPIs to convey information is considered important, as they can be viewed as a crucial 
link between assessment frameworks and the decision-making process, since they distil the—often 
complex—information of assessment methodologies such as modeling-based frameworks in simple 
quantities, able to be interpreted efficiently and quickly by non-experts such as management units 
and stakeholders [33]. Identifying efficient KPIs for each decision-making domain is no trivial task 
and is the subject of extensive research in multiple fields [34,35], including urban water [36–39]. The 
non-trivial nature of forming KPIs comes from the interaction of multiple factors that affect design, 
such as: (a) the project aim and stakeholder target groups, (b) the assessment framework and model 
capabilities, as the KPIs need to be derived from the data output generated by the model, (c) the needs 
of decision-makers, as the KPIs need to include multiple system aspects that affect decision-making, 
be understandable and, to the greatest possible extent, co-designed with the interested end-users. 
With regards to this consideration, the simulation-based assessment framework conceptualization 
can be rephrased as follows: “One may assess the performance of a decentralized system by 
comparing the ‘decentralized’ scenario with the baseline scenario (current reality) that reflects linear 
management and relies on centralized technologies via a number of Key Performance Indicators.”  

= In soil

2.3. Formulating the Performance Assessment Chain for Decentralized Urban Water Systems

Using a simulation testbed such as UWOT provides a detailed picture of the whole system
response—in terms of requested DW, produced WW and simulated runoff—for a given design option
that encompasses all selected technologies on a household and neighborhood scale. This design
option could be considered a scenario in the neighborhood, encompassing assumptions on the mixture,
usage and design attributes of technologies, but also implicitly including assumptions on climate
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(through the use of rainfall data to generate runoff) and client behavior (by assuming a set occupancy
and frequency of use). Likewise, a neighborhood that features the same spatial and occupancy
characteristics but no water-saving or decentralized measures, i.e., a unit of linear water management
that requests DW from the central networks and quickly disposes WW and runoff to corresponding
central services, could be considered another scenario able to be modeled with UWOT. It becomes thus
evident that UWOT is able to model different ‘realms’ in the form of scenarios that represent management
choices, climate characteristics and social behaviors through its required inputs and component topology
(i.e., house types, RWH and/or GWR treatment unit). A basis for a simulation-based assessment
framework could then start with the following conceptualization: “One could assess the performance of
a decentralized system by comparing the ‘decentralized’ scenario with the current reality, i.e., baseline
scenario, that reflects linear management and relies on centralized networks.”

This conceptualization, however, has a caveat: performance assessment is directly dependent
on the output of the model, which generates a wealth of data on daily time steps. There needs to be
a higher level of abstraction from (complex) data produced by the model to the (lean) data needed to
evaluate performance and reach decisions. This abstraction can be reached by introducing a number of
key performance indicators (KPIs), which represent characteristic performance metrics of the system.

The use of KPIs to convey information is considered important, as they can be viewed
as a crucial link between assessment frameworks and the decision-making process, since they distil
the—often complex—information of assessment methodologies such as modeling-based frameworks
in simple quantities, able to be interpreted efficiently and quickly by non-experts such as management
units and stakeholders [33]. Identifying efficient KPIs for each decision-making domain is no trivial
task and is the subject of extensive research in multiple fields [34,35], including urban water [36–39].
The non-trivial nature of forming KPIs comes from the interaction of multiple factors that affect design,
such as: (a) the project aim and stakeholder target groups, (b) the assessment framework and model
capabilities, as the KPIs need to be derived from the data output generated by the model, (c) the needs
of decision-makers, as the KPIs need to include multiple system aspects that affect decision-making,
be understandable and, to the greatest possible extent, co-designed with the interested end-users.
With regards to this consideration, the simulation-based assessment framework conceptualization can
be rephrased as follows: “One may assess the performance of a decentralized system by comparing
the ‘decentralized’ scenario with the baseline scenario (current reality) that reflects linear management
and relies on centralized technologies via a number of Key Performance Indicators.”

Accounting for the aforementioned remarks, the simulation-based assessment framework
developed in this study is seen in Figure 3, which depicts it in a form of an assessment chain,
i.e., a sequence of steps that link scenario development (i.e., the formulation or alternative modeling
‘realities’), model simulation and end-user performance evaluation assisted by the formulation of
suitable KPIs. The framework comprises the following steps, also mapped in Figure 3:

1. Define the scenario (i.e., modeling reality) by deciding on climate, technological and social
dimensions that affect model inputs.

2. Convert this modeling reality to model input that comes in the form of n scalars or time-series Xi

that define the n-dimensional input space
→

X:

→

X = {X1, X2, . . . , Xn} (1)

In the case of UWOT and as aforementioned, assumptions on climate affect the rainfall time-series
needed to calculate runoff, while assumptions on technology affect the choice of interventions
at a neighborhood scale (household appliances, RWH, GWR).

3. Define the design attributes of the given scenario. These attributes reflect design and operational
characteristics for a given technological reality, such as the treatment capacity and buffer storage
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of a RWH/GWR design option, and come in the form of an m-dimensional model parameter
space

→
µ with m parameters µi:

→
µ = {µ1,µ2, . . . ,µm} (2)

4. Perform model simulation using the input space
→

X and parameter space
→
µ , in order to extract

the system response in the form of time-series Yi in the k-dimensional output space
→

Y:

→

Y = {Y1, Y2, . . . , Yk} (3)

In the case of UWOT, the output space includes water cycle streams that come as time-series of
demands (i.e., requested DW), produced WW, simulated runoff etc.

5. Reduce the complexity of output data by transforming model outputs to KPIs. This step can be

also viewed as a statistical transformation process f (
→

Y) of the output time-series
→

Y to scalars
that represent system performance. Since KPIs aim to compare baseline with decentralized

system performance, they can be considered a statistical transformation process f (
→

Ya,
→

Yb) across

the output vectors
→

Ya and
→

Yb of two scenarios (a) and (b), where (a) is typically the baseline
scenario and (b) is the decentralized scenario.

6. Use the calculated KPIs to evaluate the performance of the system.
7. In case the performance is not deemed adequate, two feedback options are possible—to return

back to step (3) and try another design attribute (in order to increase the efficiency of the defined
proposed decentralized system), or change the mixture of interventions altogether and try another
scenario, thus going back to step (1).
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2.4. Definition of KPIs for Decentralized Urban Water Systems

Evidently, the fifth step in the assessment chain is based the definition of suitable KPIs which,
as aforementioned, have to take into account the decision-maker needs as well as modeling limitations.
Following communication with the project partners for SUPERLOCAL, five quantitative KPIs are
defined in this study that relate to all major urban water cycle streams (DW, WW and runoff).
The KPIs are formed from the comparison of the centralized, business-as-usual scenario against
the decentralized scenario and are normalized to a common orientation in [0,1], indicating 0 for poor
performance (i.e., no improvement) and 1 for ideal performance and perfect improvement compared
to the centralized system. This normalization allows them to be dimensionless, directly comparable
and able to be visualized together in the form of radar charts [40]. The five KPIs developed for
decentralized systems as part of this study are:
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• The achieved reduction in household consumption RHC (or otherwise % household demand
reduction):

RHC =

∣∣∣Dh
decentral −Dh

central

∣∣∣
Dh

central

(4)

with Dh denoting household DW demands averaged over time. This is DW KPI that can be
viewed as a tap-level water demand management metric, describing the reduction in water
requested at the household level before any upscaled measures such as RWH and GWR operate.
The reduction at this household scale is caused by water-saving appliances, which reduce the water
usage per appliance d.

• The achieved reduction in clean DW (RDW) requested from the external, central service
(or otherwise % reduction in the demand requested from central water utility):

RDW =

∣∣∣Dn
decentral −Dn

central

∣∣∣
Dn

central
(5)

with Dn denoting neighborhood DW demands averaged over time. This is a DW KPI that can be
viewed as a more representative measure of the system autonomy, dependent on all decentralized
technologies in place. Speaking the ‘signal language’ of UWOT, it represents the demand signal
that cannot be covered by local (harvested or reused) DW supply and has to be met by the central
utility through the connection to the mains.

• The achieved reduction in WW (RWW) that leaves the system (or otherwise % reduction of WW
pushed to outlet):

RWW =

∣∣∣QWW
decentral −QWW

central

∣∣∣
QWW

central

(6)

with QWW denoting the volume of wastewater that leaves the neighborhood averaged over time.
This is a WW KPI that constitutes another measure of neighborhood autonomy, now regarding
the produced WW that cannot be stored or treated locally and is propagated externally (e.g., through
the centralized sewer network).

• The achieved runoff reduction RAR (or otherwise % reduction of runoff):

RAR =

∣∣∣∣Qruno f f
decentral −Qruno f f

central

∣∣∣∣
Qruno f f

central

(7)

where Qruno f f is the volume of runoff leaving the neighborhood, averaged annually or over
the entire simulation time. This is a KPI related to runoff that measures the efficiency of
the decentralized system to retain water in the long term.

• The achieved flood event reduction RER (or otherwise average % reduction of peak event runoff):

RER = E


∣∣∣∣Qevent runo f f

decentral −Qevent runo f f
central

∣∣∣∣
Qevent runo f f

central

 (8)

which is the mean value of the runoff reduction observed at the event level, with Qevent runo f f

denoting the peak runoff observed during a simulated flood event. This is a runoff-related KPI
that is measured at a smaller timescale (i.e., on a per-event basis) and depicts the efficiency of
the decentralized system in mitigating floods.
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• The reliability of decentralized system design REL, which is defined in a simulation-based
framework as the % of time steps that the system operated well. Reliability is a probabilistic
concept with strong links to simulation modeling [41–43] generally defined as:

REL = 1− P
(
Y f

)
= 1−

nY f

ntotal
(9)

with P
(
Y f

)
being the probability of either system failure or inefficiency. It is computed as the relative

frequency of time steps with failure or inefficiency nY f /ntotal and with Y f being a logical condition

targeting the output space
→

Y that is used to distinguish failed or inefficient time states from normal
operational conditions during simulation. In this study, the focus is on the operational inefficiency
for storage treatment systems, i.e., measured as the count of time steps during simulation when
the storage capacity of these systems is full, the treatment capacity is inadequate and the incoming
untreated water overflows from the treatment unit.

The defined KPIs are summarized in Table 3. Unlike the first five KPIs that focus on volume
reduction (Equations (4) to (8)), the reliability of decentralized system design (Equation (9)) is a measure
describing how reliable different elements of a specific design option are. It thus helps evaluate whether
the selected design attributes of the integrated decentralized system, i.e., the storage volume of a buffer,
treatment capacity of a unit etc., are well-selected and suitable to the hydrological regime of the area,
i.e., the simulated runoff. It thus provides guidance to potential changes in the design (the feedback
loop back to step (3) described in Figure 3) and can be applied in elements of the integrated system
that feature a storage and/or treatment unit, such as the RWH, GWR or SUDS unit in SUPERLOCAL.

Table 3. The KPIs defined as part of the framework.

KPI Unit Description Stream
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3. Analysis and Results

3.1. Bringing SUPERLOCAL to the UWOT Modeling Domain

In order to model a case at a neighborhood scale at its native daily simulation time step,
UWOT requires data on the ‘tap’ side, as well as information on the design attributes of either
option. Required data on the ‘tap’ side include the house types of the neighborhood, water usage d
(e.g., in L/use/day) of the appliances installed in each household and the occupancy occt of each household.
This dataset is provided by the project venture and can be seen in Appendix A, as a supplement to Table 2.
UWOT then models the demand requests for clean water at an appliance level as Qdem, t = d× ft × occt,
where ft is the daily frequency of use of each appliance. Appliance demands can then be aggregated,
through corresponding multipliers, to the neighborhood scale based on the number of households
for each type. Frequency data is also provided by the venture partners based on past observations,
seen in Appendix A. UWOT further requires core design attributes of RWH and GWR systems, such
as the average daily treatment capacity (e.g., in m3/day) and design storage for each buffer unit (e.g., in m3).
These attributes are seen in Table 4. Finally, UWOT includes a rainfall-runoff module to simulate generated
stormwater based on point rainfall data [20], as well as information on the soil infiltration capacity of
pervious areas. Daily rainfall time-series from a gauge in proximity to SUPERLOCAL are provided
(KNMI precipitation station Roermond), covering a range of 31 years (1986–2016) and comprising a total
of 11,324 time steps, along with properties of pervious and impervious areas seen in Table 4.

Table 4. Design attributes of SUPERLOCAL.

Overview
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Surfaces Area (m2) Other Relevant Quantities 

Public and private 
pervious 

8000 Soil infiltration rate estimated at 0.10–0.15 
m/day in all pervious areas 

Roof 1543  

Public impervious (a) 8942  

Buffers Storage (m3) Other Relevant Quantities 

RWH buffers (b) 300 Roof- 60 m3, non-roof- 190 m3, and mixed 
buffer 50 m3 

Potable water (DW) 
buffer 50  

Water square 450 
Area 1000 m2, depth of 0.45 m, infiltration 

capacity 0.10–0.15 m/day 

GW buffer 27  

Filtered GW buffer 20  

BW buffer 40  

Surfaces Area (m2) Other Relevant Quantities

Public and private pervious 8000
Soil infiltration rate estimated

at 0.10–0.15 m/day in all pervious
areas

Roof 1543
Public impervious (a) 8942

Buffers Storage (m3) Other Relevant Quantities

RWH buffers (b) 300 Roof- 60 m3, non-roof- 190 m3,
and mixed buffer 50 m3

Potable water (DW) buffer 50

Water square 450 Area 1000 m2, depth of 0.45 m,
infiltration capacity 0.10–0.15 m/day

GW buffer 27
Filtered GW buffer 20

BW buffer 40

Purification Treatment Cap (m3/day) Other Relevant Quantities

DW purification (c) 30 (mean)/180 (max)

Helophyte filter (vertical) (d) 14.4 Surface area of 400 m2 or smaller
when aeration is added

Vacuum pump 2.2
GW purification 7.2 (mean)/15 (max)



Water 2019, 11, 1227 12 of 25

A second step needed is to conceptualize the entire array of technologies seen in the integrated
decentralized system of SUPERLOCAL in the ‘signal language’ used by UWOT, which consists of demand
and wastewater/runoff signals. This conceptualization can be seen in Figure 4, which summarizes
the main components seen in SUPERLOCAL, including the household appliances, RWH treatment unit,
GWR unit and SUDS. UWOT is able to include all of the aforementioned technologies; however, its
architecture focuses on water flows and is unable to capture nutrient transport and recovery; given this
limitation (which is further discussed in Section 4), the recovery properties of the BW stream seen in
Figure 4 are not simulated, with the results focusing on treated water quantities for all streams instead.
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3.2. Application of the framework in SUPERLOCAL

The developed performance assessment framework along with the six identified KPIs is applied
in the case of SUPERLOCAL, with the aim of evaluating the two design options of the combined RWH
and GWR system. Following the first step of the methodology, three alternative scenarios are modeled
in UWOT:

1. The first baseline scenario corresponds to neighborhood equivalent to SUPERLOCAL (i.e., having
the same household types, occupancy and spatial characteristics) that however features no
decentralized technologies. This reality reflects a neighborhood that follows the centralized model
of linear water management, where runoff and WW are propagated downstream (to the outlet
and central stormwater or wastewater services), DW is requested from the central mains
and conventional appliances are used in all house types. This reality serves as the baseline for
comparison and has the abbreviation of business-as-usual (BAU).

2. The second scenario is a neighborhood that features distinct recycling systems (RWH and GWR)
that target different water uses. Treated RW covers all domestic uses, while treated GW
covers common facilities, including a laundry and car wash. This decentralized reality has
the abbreviation SCEN_A or “RWH|GWR”, to underline the distinct role of RWH and GWR.

3. The third scenario is a neighborhood where GWR usability is extended; in that case, treated GW
acts as light RW and is directed to the same buffer unit as RW, in order to create a common
pool that targets all water uses. This reality has the abbreviation SCEN_B or “RWH + GWR”,
to underline the combined role of RWH and GWR.

All aforementioned scenarios are modeled with the present climate (i.e., historical rainfall data
captured by the gauge) and with the social dimension defined by WML, following local client
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behavior [44]. The UWOT model for scenario SCEN_A (RWH|GWR) can be seen in the upper panel of
Figure 5, while the UWOT model for SCEN_B (RWH + GWR) can be seen in the lower panel of Figure 5.
Based on the results of the model runs, the six defined KPIs are calculated for SCEN_A and SCEN_B;
in the case of reliability, the KPI is applied on two design elements that are of interest to SUPERLOCAL
partners: the treated water storage unit that holds harvested (and reclaimed, in SCEN_B) water
and returns it back to households, as well as the “water square”, i.e., the infiltration basin that receives
runoff from pervious areas as well as overflow from RWH.
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3.3. Model Validation

Prior to demonstrating the results of the comparative performance assessment, it is important to
validate modeling results against real data. This is possible for the scenario of BAU in SUPERLOCAL,
as it represents the conventional reality that can be checked against data from actual households
and neighborhoods. On the demand side, UWOT output from the BAU simulation can be
compared—in terms of simulated daily aggregate household or neighborhood demands—to the real
demands seen in Dutch drinking water networks, which are obtained from the high-resolution data
provided by WML (see Appendix A), as well as a third external data source describing national average
per capita water consumption [45] that is not used to build the model. The results, seen in Figure 6
for the household (panel (a)) as well as the whole neighborhood scale (panel (b)), show a deviation
between UWOT BAU demand outputs and WML data that is in all cases less than 2%. This indicates
that the translation of high-resolution data from the DW utility to the UWOT topologies has been
performed well. Moreover, the deviation between UWOT model outputs and external data [45] falls in
the range of 5–8%. This deviation is deemed reasonable, considering that the external source describes
a national average instead of regional specifics, so provincial deviations apply.

With regards to runoff, validation against real data is not possible as the area of SUPERLOCAL
does not have a runoff gauge. However, insight on the expected runoff of the area can be obtained by
comparing the UWOT BAU results with the results of another widely used rainfall-runoff conceptual
model, such as the rational method [46], which links outlet runoff (discharge) Q with point (station)
rainfall intensity i through the formula Q = C × i × A , where A is the catchment area and C is
the so-called runoff coefficient, the single calibration parameter of the model. Depending on the time
scale the rational method is used, C is typically referred to in literature either as event-based or annual
runoff coefficient [47,48], which leads to an estimation of Q as the peak discharge (in m3/s) of an event
or (mean) annual discharge (e.g., in m3/year), respectively, as a fraction of the total water received
through precipitation i × A . Due to the wide application of the rational method for preliminary
studies in catchments, value ranges of C for catchments with different spatial and soil properties exist,
making this method easily applicable for rough estimations of runoff in case of ungauged catchments.
To obtain a general, event-independent overview of the runoff response, the annual time scale has
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been applied for UWOT validation. The results show that runoff produced by UWOT (which is
on average 7032 m3/year) falls within the results obtained with the rational method for a range of
C = 0.45–0.55 (panel (c) of Figure 6). This range is deemed reasonable compared to values in engineering
literature [49], given that the area of SUPERLOCAL features low density residential use and an almost
equal mixture of pervious and impervious areas, as seen in panel (d) of Figure 6.Water 2019, 11, x FOR PEER REVIEW 15 of 26 
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3.4. Performance Assessment of SUPERLOCAL Decentralized Design Options

The results of the framework application in SUPERLOCAL are summarized in Figure 7 in the form
of a dashboard focusing on results at a KPI level for the two design options (SCEN_A and SCEN_B),
readily understandable by non-expert groups. Regarding the reduction in household consumption,
seen in panel (a) of Figure 7, a reduction of demands in the range of 32–58% is achievable for
the neighborhood of SUPERLOCAL, depending on the mixture of water-saving appliances (and thus
the household type), with the experimental housing units that focus on more intensive water-aware
appliances having the strongest effect. The effect is the same in the two design options (SCEN_A vs.
SCEN_B), as the mixture of appliances per household type does not change. The effect of each design
option is, however, different when one looks at the water asked from—and returned to—the central
DW/WW utility (panel (b) of Figure 7). The average daily central DW demand of SUPERLOCAL,
estimated at 35.6 m3/day in the BAU scenario, can be reduced to 8.4 m3/day for SCEN_A (RWH|GWR,
distinct) and even reduced further to less than 1 m3/day for SCEN_B (RWH + GWR, combined).
The reduction in the first case is by approx. 76.5%, while the reduction in the second case reaches
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97.5%, achieving near complete autonomy from Drinking Water services with a combined RWH/GWR
system that recycles most water uses. Likewise, significant reduction are possible for the WW that
propagates to the outlet: the generated WW that is estimated at 35.52 m3/day for the BAU case gets
reduced to 20.62 m3/day (a reduction of approx. 42%) for SCEN_A and further reduced to 7.25 m3/day
for SCEN_B, with a reduction of 79.6%. As expected, SCEN_B makes more efficient use of treated GW
by expanding its reusability and this has an impact on both reliance on central (external) DW, as well
as propagation of WW to the outlet.
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This performance of these design options is reversed when one looks at the achieved % of runoff

reduction at an annual scale (panel (d) of Figure 7). SCEN_B now achieves a moderate annual average
runoff reduction of 32%, while SCEN_A performs significantly better and reaches a reduction of
60%. The reduction rate is affected by the dryness of each year; for instance, SCEN_A achieves
a rate of 66.1–69.6% in the five driest years, while runoff reduction rate falls within the range of
52.6–54.7% for the five wettest years. Likewise, SCEN_B has a rate of 35.0–38.6% for the five driest
years and 24.2–28.1% for the five wettest years. The achieved % of event-based runoff reduction reveals
a similar picture: SCEN_A reduces peak runoff during rainfall events significantly by 84% on average,
against a moderate average reduction of 66% achieved by SCEN_B. These results are reasonable, as in
the case of the combined design option (SCEN_B, RWH + GWR) treated GW and treated RW compete to
cover the same demand needs and use a limited treated water storage space, thus leaving less available
storage for upcoming runoff events. Similar findings can be seen when one looks at the reliability of
both systems in terms of treated storage buffer (panel (c) of Figure 7); SCEN_B combines both local
treatment units at a cost of reliability on available treated water storage, which falls from 87.5% to
82.5%. Both reliability levels are reasonable and in the range of high values for RWH schemes [50].
The reliability of the infiltration basin (“water square”) is found to be very high in both scenarios
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(>99%), with its design capacity being exceeded only in three out of the 11,324 total simulation time
steps. This finding is in line with the design requirements in SUPERLOCAL, which aim at capturing
all rainwater locally, rather than use infiltration to reduce flows from frequent events only.

The aforementioned KPIs can be pooled together in a form of a radar plot (panel (e) of Figure 7)
that captures all dimensions of the improvements in urban water cycle services towards circularity that
are achievable with these two design options. What is evident in this figure is the tradeoff between
autonomy (i.e., water asked from and pushed to centralized networks) and flood-proofing; SCEN_B
combines RWH and GWR together and leads to a more autonomous decentralized system, but at a cost
of flood retaining capacity, which is higher in case RWH and GWR are distinct.

3.5. Downscaling KPIs to Fit the Needs of Decision Support

The results seen in Figure 7 provide a lean-data snapshot at the level of abstraction needed
to communicate information for different circular neighborhood designs to non-expert groups.
However, the use of simulation at a daily scale gives the developed framework flexibility and allows
stakeholders to dig deeper in the response and efficiency of decentralized water systems. KPIs can be
downscaled to a specific year, season, month or even at the native daily scale via their corresponding

output time series Υi ∈
→

Y to provide more detailed insight in the interplay between different urban
water streams, as well as the dependence of decentralized systems on inherently uncertain local sources
such as rainwater.

For instance, a more in-depth look in system reliability can be obtained by looking at how different
elements within the system respond and when they reach failure states. Figure 8 shows the results from
the last year of simulation in SCEN_A, where one can see the system response in runoff that surpasses
RWH (panel (b)), in runoff stored in the infiltration basin (panel (c)), as well as runoff that escapes both
of these retention schemes and manages to overflow at the outlet (panel (d) of Figure 8). Infiltration
capacity of the unit is exceeded twice, with both events occurring from heavy precipitation events
occurring on May and June 2016. In the second case, the storage of 400 m3 is enough to absorb this
capacity exceedance; in the first case, the storage limit is surpassed, leading to a single overflow event
that is marked as an inefficiency of the infiltration system Y f . Likewise, other KPIs can be downscaled
to a daily scale to observe system response in detail. Having for example autonomy in mind, Figure 9
shows the percentage of total DW demand asked from the central DW service over time for the last
year of simulation, with a value of zero indicating that the system covered all of its demand locally
during that day. Both topologies achieve autonomy from the central services which is in principle
dependent on the rainfall that the area receives, seen in the upper panel of Figure 9. The dependence
on wet and dry spells is evident, with SCEN_A showing higher sensitivity, while SCEN_B showing
better autonomy and robustness, as rainwater is supplemented with another steady source of water
(treated GW).

Insights can be also obtained for the runoff reduction KPI by downscaling results to an event scale,
i.e., to the peak runoff observed during a precipitation event [47]. Since UWOT is forced by the same
time series in all topologies, a reduction in runoff peaks is observed for the same events over time among
these different realities; runoff peaks can be then compared between the conventional (BAU) topology
that has no active RWH interventions and the SUPERLOCAL scenarios (SCEN_A and SCEN_B).
This has been implicitly done when the KPI of event-based runoff reduction was introduced, but this
provided a single (average) quantity at a finer scale, instead of richer information on event-based
reduction. To demonstrate a more detailed approach, runoff time-series generated by UWOT are
analysed on an event scale and plotted in a comparative scatter plot (panel (a) of Figure 10), where
daily runoff of the current reality (BAU neighborhood) is plotted against daily runoff of an alternative
reality which has one of the SUPERLOCAL design options (SCEN_A and SCEN_B). The results are
plotted in a double logarithmic scale in order to capture the runoff value range including rare events
and plotted against line x = y which represents the case where runoff from a SUPERLOCAL reality
QSCEN is equal to runoff in BAU QBAU, there is no change in the peak runoff response of the catchment).
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The results of a comparative analysis between a SUPERLOCAL reality and BAU come in the form of
a cloud of data points (QBAU, QSCEN); the further they lie from x = y, the more efficient RWH was for
that particular event.
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The results of Figure 10 offer high-resolution insight on the interaction between design details of
the combined RWH and GWR system and the hydrological regime. In every case, the cloud of data
points follows a bell-shaped figure that asymptotically leads to x = y for very large runoff volumes
(very rare events). Lower runoff volumes are considerably reduced and, for many events, absorbed up
to the maximum possible reduction by the SUPERLOCAL system, as indicated by the set of lowest
points in area (see numbered area (1) of panel (a)). A plateau of points indicating an upper threshold
in reduction is also evident (numbered area (2) of panel (a)); upon closer inspection, this equals to
y = QSCEN = k −D, where k is the treatment capacity of the RWH unit and D is the daily flux
of abstracted water demands from the treated storage unit, equal to 20.3 m3/day in SUPERLOCAL.
These points reflect events happening at a time where water can be treated but cannot be stored in
the system—i.e., there is no storage in the potable water buffer left. In that case, part of the treated
water covers the daily demands for that day and the rest overflows from the RWH unit. Besides these
flat plateaus, an asymptotic envelope of maximum distance from the curve can be seen in area (3) of
panel (a) in Figure 10; this corresponds to points of maximum efficiency for the RWH system, i.e., where
storage tanks are empty and able to absorb the maximum amount of runoff. A mirrored envelope
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also exists closer to line x = y (numbered area (4) in panel (a)) that can be perceived as the analogue
of minimum efficiency for the decentralized RWH system. A comparison of SCEN_A (RWH|GWR,
distinct) and SCEN_B (RWH + GWR, combined), seen in panel (b) of Figure 10, offers high-resolution
results that are in line with Figure 7: SCEN_A offers a more consistent picture of runoff reduction, with
a maximum efficiency curve further from x = y and a lower spread of points between the maximum
and minimum efficiency curves.
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4. Discussion

The previous section has shown key results from the application of the developed framework
in the combined RWH and GWR system of SUPERLOCAL. Arguably, the focus was on comparing
scenarios of ‘technological realities’ with different design options against the linear, centralized system
(BAU); the present climate conditions that drive rainfall remain unchanged (i.e., historical rainfall
data were used as-is), while the assumptions on client behavior (occupancy patterns and frequency
of use) were the same for each run. However, the developed framework is broader and allows
the formulation of different scenarios where climate and society also changes (Figure 3). This will impact
the performance of the decentralized system, thus leading to a different result picture at both coarse
and fine level. A common question regarding change, for instance, is whether integrated decentralized
technologies such as SUPERLOCAL have the capacity to future-proof neighborhoods against flooding.
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To demonstrate this through the simulation-based framework, let us hypothesize a possible future that
has higher rainfall, based on a relevant KNMI report on climate adaptation [51]. To study the effect
of these future rainfall patterns to the SUPERLOCAL integrated system, we can formulate three
future scenarios, with and without decentralized technologies (BAU, SCEN_A and SCEN_B) where
the climate has changed and plot runoff reduction results at an event scale. The results, plotted in
Figure 11 against the corresponding present BAU scenario (excluding small runoff events in [0.1,10]
for clarity) reveal that while the future holds multiple more intense runoff for BAU (i.e., points above
the x = y line), this increased runoff intensity is mitigated when integrated decentralized systems are
used: both solutions (SCEN_A and SCEN_B) lead to a picture of reduced runoff, with SCEN_A giving
a more consistent picture that, despite the worsening hydrological regime, leads to lower runoff values
than the present BAU response (Figure 11). Similar results can be obtained in case of less rainfall
(a drier future), but also in case social behavior scenarios need to be taken into account as well.
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Besides (re-)forming scenarios, decision-makers can return back to step (3) of Figure 3 to refine
the design of their chosen decentralized system and see the difference in the results. Design attributes
such as the treatment capacity and storage of RWH or GWR units can be changed, with these changes
being reflected on the coarse or fine scale of the results. To demonstrate this, a number of different
treatment options (25 m3/day, 180 m3/day) are simulated for SCEN_A along with the default design
of 48 m3/day, with the runoff reduction of each corresponding design being plotted at an event scale
(see panels [c] and [d] of Figure 10). Evidently, higher treatment options lead to a more potent
event-based runoff response with higher operational plateaus (numbered area (2) of panel (a)) and less
spread, even though the very large treatment option (180 m3/day) has reduced maximum efficiency, as it
is perhaps disproportionally large compared to the (constant) storage volume of 50 m3. The ability to

recalculate KPIs f (
→

Y) for an array of different parametersµi ∈
→
µ points to an optimization problem, with

f (
→

Y) being the objective function and
→
µ being the control variable space. It would be thus interesting

for future research to expand the ability of the framework to (re-)design attributes for a given reality
and expand the rationale to a combined simulation-optimization framework [52–54] by automating
the return to step (3) of Figure 3, in order to address the optimal design of decentralized systems.

In spite of the flexibility, the demonstrated framework doesn’t come without limitations. As seen
in studies with metabolism models [39,55], KPIs rely on the model used and are thus bound to its
limitations. For instance, the inclusion of water quality indicators is more challenging in UWOT,
as water quality modeling functions are limited and need external data on the treatment units. This also
applies for other concepts important to circular water, such as energy consumption and nutrient
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reclamation; the latter is also of particular value to SUPERLOCAL, as seen with the local BW stream
treatment (Figure 4) and could thus form the focal point of future research and model improvements.
Moreover, the financial dimension (i.e., capital and operational costs) is not included as a scenario
dimension in Figure 3, but can be considered in future iterations of the model. These limitations spark
ideas for future research towards an integrated framework that will explore more externalities, but also
include the interplay between water and energy or water and nutrients. Another point of consideration
is that the current application cannot give probabilistic results with high confidence, as it is based on
a relatively small dataset of rainfall (31 years); this can be methodologically improved by running
UWOT with an ensemble of synthetic rainfall events, generated with the use of a suitable stochastic
model [56]. One has to also consider that the results seen in Figure 7 are based on an idealized picture of
a given decentralized system design—operational aspects such as maintenance frequency, downtime,
accidents, variable sub-daily treatment rates etc. are not considered. However, some of these aspects
can be modeled by altering the UWOT topologies [57], provided that data exist to supplement the added
structural complexity. In case they are not modeled, the results can be considered as an idealized
‘upper limit’ of efficiency and autonomy that can be achieved for a proposed decentralized system
architecture. Finally, the demonstrated framework is limited to the neighborhood scale in order to be
applied to SUPERLOCAL, but can be also applied to larger scales, for instance to large blue-green
area design [20], or even to a whole city level [21], possibly with changes to the KPIs to fit the scope of
the application.

5. Conclusions

A framework for the ex ante evaluation of integrated decentralized systems at a neighborhood
scale, based on the simulation testbed of an urban water cycle model, has been demonstrated in
this study. The framework is applicable to integrated neighborhood projects that include an array
of distributed options, including water-saving appliances, household or neighborhood-scale RWH
and/or GWR as well as sustainable drainage options (SUDS), while being able to simulate the whole
system response and convey performance information at both coarse (KPI) and fine scale. The use
of this framework aims at providing quantitative insight on multiple urban water cycle domains
which can be used to support decisions on circular water options in neighborhoods. The framework
is applied in the case of SUPERLOCAL, a circular neighborhood designed in Limburg, in order to
assess and compare the performance of two different design options: an integrated decentralized
system featuring distinct RWH and GWR units (SCEN_A), as well as a system that features the same
design attributes but combines these systems together to target the same household water demands
(SCEN_B). 31 years of daily rainfall data are used to generate results at both high abstraction level
(Figure 7) as well as in more detail (Figure 10), depending on decision-making needs. The results
of the application show that SUPERLOCAL has the potential of being a smart, autonomous water
neighborhood solution, achieving a reduction of 32.1–58.2% in household water demand, depending
on the appliance technologies used at each household type. Moreover, it will lessen the dependence to
drinking water provided by centralized services to at most 1

4 of the water requested in a conventional
neighborhood. A significant reduction in annual runoff can be expected as well, amounting to
approx. 60% for the split RWH/GWR system (SCEN_A) and 32% for the combined RWH/GWR scheme
(SCEN_B), compared to the case without any RWH scheme (BAU).

The results fall in line with the findings of other studies of RWH and GWR systems; for instance,
other studies report an efficiency of residential RWH systems in the range of 5.6–55.0% in terms of
water savings [58–61], depending on regional climate and harvesting scale, with lower values in drier
climates and smaller rooftop areas and higher values (33.8–52.5%) in humid climates [59]; the latter
are similar to the climate type of SUPERLOCAL. Studies on combined RWH-GWR systems report
an efficiency on potable water savings in the range of 36.7–42.0% [62], with systems relying only on
GWR being more efficient. Likewise, the reliability levels estimated in this study are on par with past
literature [50].
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As a general remark, the results indicate a tradeoff between system autonomy (i.e., water asked
from and pushed to centralized networks) and rainwater retention/runoff reduction that is evident
when the two solutions (SCEN_A and SCEN_B) are compared (panel (e) of Figure 7). Split systems with
distinct RW/GW streams, such as the one seen in SCEN_A, are efficient in flood-proofing neighborhoods
and keeping runoff locally but are less efficient at providing a constant stream of reused water to fit local
needs; they have been also found more sensitive, in terms of their water reuse efficiency, to dry spells.
Combined systems, such as the one seen in SCEN_B, are more consistent in their water reuse and thus
autonomy from central networks, but offer less available storage for high-intensity events and reduced
climate-proofing capability. To reach the efficiency in runoff reduction of SCEN_A, a neighborhood
focusing on SCEN_B needs to invest in largest storage for treated water, which comes at a higher cost.

Beyond the application in SUPERLOCAL, it is argued that this framework is readily applicable for
the strategic evaluation of circular neighborhood designs with different architectures and at different
scales and climates. Building on the expertise of past studies, the framework can be upscaled for
the strategic evaluation of circular city designs as well, in order to be part of a resilience assessment
toolbox for cities, as envisioned in Nikolopoulos et al. [21] and Makropoulos et al. [57]. This type of
study is envisaged to provide, along with supplementary tools on the strategic, tactical and operational
scale, a solid base for the design and strategic evaluation of integrated decentralized systems as parts of
a broader circular water management strategy, thus enabling the transition towards a circular and more
sustainable future for urban water.
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Table A1. Water usage and per capita consumption on SUPERLOCAL appliances.

Technology Drinking Water Usage Discharge

Water Usage d
(L/use/day)

Frequency
of Use f t

(uses/day)

Per Capita
Demand Request

(L/person/day)
GW
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Using a simulation testbed such as UWOT provides a detailed picture of the whole system 
response—in terms of requested DW, produced WW and simulated runoff—for a given design 
option that encompasses all selected technologies on a household and neighborhood scale. This 
design option could be considered a scenario in the neighborhood, encompassing assumptions on 
the mixture, usage and design attributes of technologies, but also implicitly including assumptions 
on climate (through the use of rainfall data to generate runoff) and client behavior (by assuming a set 
occupancy and frequency of use). Likewise, a neighborhood that features the same spatial and 
occupancy characteristics but no water-saving or decentralized measures, i.e., a unit of linear water 
management that requests DW from the central networks and quickly disposes WW and runoff to 
corresponding central services, could be considered another scenario able to be modeled with UWOT. 
It becomes thus evident that UWOT is able to model different ‘realms’ in the form of scenarios that 
represent management choices, climate characteristics and social behaviors through its required 
inputs and component topology (i.e., house types, RWH and/or GWR treatment unit). A basis for a 
simulation-based assessment framework could then start with the following conceptualization: “One 
could assess the performance of a decentralized system by comparing the ‘decentralized’ scenario 
with the current reality, i.e., baseline scenario, that reflects linear management and relies on 
centralized networks.”  

This conceptualization, however, has a caveat: performance assessment is directly dependent on 
the output of the model, which generates a wealth of data on daily time steps. There needs to be a 
higher level of abstraction from (complex) data produced by the model to the (lean) data needed to 
evaluate performance and reach decisions. This abstraction can be reached by introducing a number 
of key performance indicators (KPIs), which represent characteristic performance metrics of the 
system.  

The use of KPIs to convey information is considered important, as they can be viewed as a crucial 
link between assessment frameworks and the decision-making process, since they distil the—often 
complex—information of assessment methodologies such as modeling-based frameworks in simple 
quantities, able to be interpreted efficiently and quickly by non-experts such as management units 
and stakeholders [33]. Identifying efficient KPIs for each decision-making domain is no trivial task 
and is the subject of extensive research in multiple fields [34,35], including urban water [36–39]. The 
non-trivial nature of forming KPIs comes from the interaction of multiple factors that affect design, 
such as: (a) the project aim and stakeholder target groups, (b) the assessment framework and model 
capabilities, as the KPIs need to be derived from the data output generated by the model, (c) the needs 
of decision-makers, as the KPIs need to include multiple system aspects that affect decision-making, 
be understandable and, to the greatest possible extent, co-designed with the interested end-users. 
With regards to this consideration, the simulation-based assessment framework conceptualization 
can be rephrased as follows: “One may assess the performance of a decentralized system by 
comparing the ‘decentralized’ scenario with the baseline scenario (current reality) that reflects linear 
management and relies on centralized technologies via a number of Key Performance Indicators.”  
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Bathroom

Conventional shower 8.7 8.1 70.5 100% 0% 0%
Watersaving shower 6.9 8.1 55.9 100% 0% 0%
Recirculation shower 2.5 8.1 20.3 100% 0% 0%

Sink 2 2.5 5.0 100% 0% 0%

Toilet

Toilet 6 6 36.0 100% 0% 0%
Vacuum toilet (silent and standard) 1 6 6.0 0% 100% 0%
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occupancy and frequency of use). Likewise, a neighborhood that features the same spatial and 
occupancy characteristics but no water-saving or decentralized measures, i.e., a unit of linear water 
management that requests DW from the central networks and quickly disposes WW and runoff to 
corresponding central services, could be considered another scenario able to be modeled with UWOT. 
It becomes thus evident that UWOT is able to model different ‘realms’ in the form of scenarios that 
represent management choices, climate characteristics and social behaviors through its required 
inputs and component topology (i.e., house types, RWH and/or GWR treatment unit). A basis for a 
simulation-based assessment framework could then start with the following conceptualization: “One 
could assess the performance of a decentralized system by comparing the ‘decentralized’ scenario 
with the current reality, i.e., baseline scenario, that reflects linear management and relies on 
centralized networks.”  

This conceptualization, however, has a caveat: performance assessment is directly dependent on 
the output of the model, which generates a wealth of data on daily time steps. There needs to be a 
higher level of abstraction from (complex) data produced by the model to the (lean) data needed to 
evaluate performance and reach decisions. This abstraction can be reached by introducing a number 
of key performance indicators (KPIs), which represent characteristic performance metrics of the 
system.  

The use of KPIs to convey information is considered important, as they can be viewed as a crucial 
link between assessment frameworks and the decision-making process, since they distil the—often 
complex—information of assessment methodologies such as modeling-based frameworks in simple 
quantities, able to be interpreted efficiently and quickly by non-experts such as management units 
and stakeholders [33]. Identifying efficient KPIs for each decision-making domain is no trivial task 
and is the subject of extensive research in multiple fields [34,35], including urban water [36–39]. The 
non-trivial nature of forming KPIs comes from the interaction of multiple factors that affect design, 
such as: (a) the project aim and stakeholder target groups, (b) the assessment framework and model 
capabilities, as the KPIs need to be derived from the data output generated by the model, (c) the needs 
of decision-makers, as the KPIs need to include multiple system aspects that affect decision-making, 
be understandable and, to the greatest possible extent, co-designed with the interested end-users. 
With regards to this consideration, the simulation-based assessment framework conceptualization 
can be rephrased as follows: “One may assess the performance of a decentralized system by 
comparing the ‘decentralized’ scenario with the baseline scenario (current reality) that reflects linear 
management and relies on centralized technologies via a number of Key Performance Indicators.”  

Kitchen

Food grinder 3 0.33 1.0 0% 100% 0%
Cooking 1 1.4 1.4 100% 0% 0%

Dishwashing by hand 9.1 0.4 3.6 100% 0% 0%
Dishwasher 17.4 0.3 5.2 100% 0% 0%

Household equipment

Washing machine (in house) 52.9 0.29 15.3 100% 0% 0%
Washing machine

(common launderette) 50 0.25 12.5 100% 0% 0%

Car wash 1 m3/day for the whole neighborhood Sewer Sewer Sewer

Garden

Outdoor tap 50 0.1 5 0% 0% 100%
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