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Abstract 7 

Near-surface air temperature is one of the most widely studied hydroclimatic variables, as both its 8 

regular and extremal behaviors are of paramount importance to human life. Following the global 9 

warming observed in the past decades and the advent of the anthropogenic climate change debate, 10 

interest in temperature’s variability and extremes has been rising. It has since become clear that it is 11 

imperative not only to identify the exact shape of the temperature’s distribution tails, but also to 12 

understand their temporal evolution. Here, we investigate the stochastic behavior of near-surface air 13 

temperature using the newly developed estimation tool of Knowable (K-)moments. K-moments, 14 

because of their property to substitute higher-order deviations from the mean with the distribution 15 

function, enable reliable estimation and an effective alternative to order statistics and, particularly for 16 

the outliers-prone distribution tails. We compile a large set of daily timeseries (30 to 200 years) of 17 

average, maximum and minimum air temperature, which we standardize with respect to the monthly 18 

variability of each record. Our focus is placed on the maximum and minimum temperatures, because 19 

they are more reliably measured than the average, yet very rarely analyzed in the literature. We 20 

examine segments of each timeseries using consecutive rolling 30-year periods, from which we extract 21 

extreme values corresponding to specific return period levels. Results suggest that the average and 22 

minimum temperature tend to increase, while overall the maximum temperature is slightly 23 

decreasing. Furthermore, we model the temperature timeseries as a filtered Hurst-Kolmogorov 24 

process and use Monte Carlo simulation to produce synthetic records with similar stochastic 25 

properties through the explicit Symmetric Moving Average scheme. We subsequently evaluate how 26 

the patterns observed in the longest records can be reproduced by the synthetic series. 27 

Key words: Stochastics; near-surface air temperature; Extreme temperature; Symmetric Moving 28 

Average; Hurst-Kolmogorov dynamics; Monte-Carlo simulation.  29 



 

 

1. Introduction 30 

Air temperature is one of the most important hydroclimatic variables and, together with precipitation, 31 

it can characterize the climate conditions in a region (e.g., Köppen-Geiger climate classification 32 

system, Rubel and Kottek, 2010). During the last decades, global warming, its possible anthropogenic 33 

origin and its effects on the environment have been recognized as matters of great political, economic 34 

and scientific importance. It has been asserted that, due to the vulnerability of infrastructure, the 35 

ecosystem and the entire system of food and energy harvesting, slight disturbances in the very 36 

delicate climatic conditions can cause significant problems (Handmer et al., 2012). For this reason, it 37 

is imperative to understand, not only the evolution of the average near-surface air temperature, but 38 

the changes in its maximum and minimum values as well. These are less studied than the average, yet 39 

they are more reliably estimated. 40 

The understanding of the temporal evolution of near-surface air temperature, in terms of the spatial 41 

distribution, is also helpful in our effort to recognize the basic drivers of climatic processes, and if and 42 

how we can mitigate their negative effects. There are many climatic factors, both internal and 43 

external. The internal variability of the Earth’s climate includes factors such as the ocean-atmosphere 44 

variability (Brown et al., 2015; Hasselmann, 1976), as well as the effects of the biosphere, through the 45 

carbon and water cycles. In the external factors we consider drivers such as greenhouse gases (Cronin, 46 

2009), orbital variations, solar activity and volcanic activity. The identification of the exact near-surface 47 

air temperature changes, within an interdisciplinary approach, may facilitate the quest of deciphering 48 

of the Earth’s climate mechanisms. 49 

The aim of the present paper is to identify, based on observations, the temporal evolution of the 50 

extremes of near-surface air temperature, i.e., the upper and lower tails of the average temperature, 51 

the upper tail of the maximum temperature and the lower tail of the minimum  temperature, and to 52 

stochastically evaluate the magnitude of the observed changes. To this aim, we study changes of near-53 

surface air temperature both in past and present, and investigate whether these changes fall into the 54 

expected range of the formulated stochastic framework of global climatic variations. 55 

Multiple scientific studies have shown that the global average air temperature has increased 56 

substantially during the twentieth century (Trenberth et al., 2007; Jones et al., 2012; Sun et al., 2017; 57 

Masson-Delmotte et al., 2018). According to the Summary for Policymakers of the Fifth Assessment 58 

Report of IPCC (Masson-Delmotte et al., 2018), the 2009-2018 decade was warmer by 0.93 ± 0.07 °C, 59 

compared to the pre-industrial baseline (1850-1900). Despite observing a slight deviation between 60 

the urban and rural meteorological records (Peterson et al., 1999), the general air temperature trend 61 

seems to be increasing, as presented in Figure 1 from data of the Climate Research Unit. 62 



 

 

 63 

Figure 1: Global annual air temperature anomalies (°C) for the period 1850-2015, relative to the 1961–1990 climatology 64 

mean | Source: Jones et al. (2016) 65 

It has been observed that the daily minimum air temperature tends to increase at a faster rate than 66 

that of the maximum air temperature (Braganza et al., 2004). As a result of this differential trend 67 

behavior, the diurnal temperature range decreases in most areas of the world. According to Easterling 68 

et al. (1997) the diurnal temperature range decreases at a rate of about 0.1 °C/decade. 69 

However, several studies of the global near-surface air temperature omit to include into their 70 

premises the inherent region-specific seasonal variability of the air temperature. In the present paper, 71 

we account for seasonal variability by standardizing the daily air temperature records with respect to 72 

each month in order to assess the degree of global variability taking into account the local behavior. 73 

Consequently, persistent, yet statistically expected, record entries at certain climatic regions do not 74 

skew the general trend significantly. 75 

In addition, we use the Knowable (K)-moments, a variant of probability weighted moments, which are 76 

particularly robust, especially in the study of extremes (Koutsoyiannis, 2019a). One of the most 77 

important benefits that their use guarantees is that they are knowable even for very high orders, with 78 

unbiased estimators. Specifically, their estimation uncertainty is smaller by orders of magnitude 79 

(compared to the classical moments) enabling more accurate estimation. Furthermore, the estimators 80 

can take into account any existing dependence structure, while, in addition, we can instantly assign 81 

return periods to them, as with the use of order-statistics. 82 

In the following section, we introduce the basic tools and theory behind our research. After that, we 83 

present the data used and the methodology we follow. Finally, we conclude our findings and discuss 84 

how these can be expected from the stochastic viewpoint. 85 
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2. Basic tools 86 

2.1 Climacogram 87 

A widely used metric for estimating the second-order properties, including persistence of a stochastic 88 

process is the quantification and visualization of the variance of the averaged process vs. scale, else 89 

called the climacogram (Koutsoyiannis, 2010). The averaged stochastic process z is expressed as: 90 

 𝑧𝑖
(𝑘)

=
1

𝑘
∑ 𝑧𝑗

𝑖𝑘

𝑗=(𝑖−1)𝑘+1

 (1) 

where 𝑧𝑖
(𝑘)

 is ith element of the averaged stochastic process at scale k. 91 

A widely used climacogram estimator, based on the second central moment, can be expressed as: 92 

 𝛾(𝑘) =
1

⌊𝑛/𝑘⌋ − 1
∑ (𝑧𝑖

(𝑘)
− 𝑧)

2
⌊𝑛/𝑘⌋

𝑖=1

 (2) 

where n is the length of the timeseries, ⌊𝑛/𝑘⌋ is the integer of n/k, and 𝑧 = ∑ 𝑧𝑙
𝑛
𝑙=1 /𝑛 the unbiased 93 

estimator of the mean, 𝜇, of the process. 94 

The quantification of the persistence of a process (or else long-range dependence or long-range 95 

change or clustering) can be quantified through the Hurst parameter, H, which equals the half of the 96 

log-log slope of the climacogram, as scale tends to infinity, plus 1. Depending of the value of the Hurst 97 

parameter, a behavioral pattern can be attributed to the studied process. For sufficiently large scales, 98 

if 0 ≤ 𝐻 ≤ 0.5 then the process can be characterized as anti-correlated, and if 0.5 ≤ 𝐻 ≤ 1, then the 99 

process is positively correlated, which is the most common behavior in geophysical processes, while 100 

for 𝐻 = 0.5, the process is purely random (i.e. zero autocorrelation; hence white noise behavior). 101 

A stochastic Gaussian process with persistent behavior is known as Fractional Gaussian noise (fGn; 102 

Mandelbrot and Van Ness, 1968) or ARIMA (e.g. Montanari et al., 1997). Specifically, fGn can be 103 

defined in discrete time, which is the scope here, in a manner similar to that used in continuous time. 104 

It can be defined as a Gaussian process satisfying the condition between the average processes at two 105 

scales k and l: 106 

 (𝑧𝑖
(𝑘)

− 𝜇) = (
𝑘

𝑙
)

𝐻−1

(𝑧𝑗
(𝑙)

− 𝜇) (3) 

which is applicable only in (finite-dimensional joint) distribution. 107 

By setting 𝑖 = 𝑗 = 𝑙 = 1 in equation (3), it can be obtained (e.g. Koutsoyiannis, 2002): 108 

 𝛾(𝑘) = 𝑘2−2𝐻𝛾(1) (4) 



 

 

This simple equation serves as the basis for estimating the Hurst parameter, since the variance of the 109 

average stochastic process at scale k is a power law of 𝑘 with exponent 2 − 2𝐻. 110 

The climacogram presents several advantages, as a stochastic metric, in the identification of both the 111 

short-term and the long-term persistent behaviour of a process, as compared to the autocovariance 112 

and the power-spectrum, largely because of its simplicity, link to entropy, and statistically more robust 113 

estimation properties including bias (Dimitriadis and Koutsoyiannis, 2015; 2019). The latter is of great 114 

importance in model identification and fitting from data, which is one of the purposes of this work. 115 

2.2 Hurst-Kolmogorov dynamics 116 

This long-term persistent behavior is also known as the Hurst phenomenon, and is a much-studied 117 

subject in engineering and mathematics. Hurst (1951) was the first to identify long-term persistence 118 

in natural processes, and specifically in the maximum annual stage of the river Nile. Kolmogorov (1940) 119 

was the first who mathematically described it a few years earlier, while working on self-similar 120 

processes of turbulent fields (Koutsoyiannis, 2011). To include both contributions this behaviour is 121 

also known as Hurst-Kolmogorov (HK) behaviour (Koutsoyiannis, 2010), and it has been expanded to 122 

include both the short-term fractal behaviour (Gneiting and Schlather, 2004) and the intermediate-123 

scale behaviour (Koutsoyiannis, 2020), and thus, to express a generalized multi-scale behaviour of the 124 

second-order dependence structure. HK dynamics have been observed in various global-scale 125 

hydrometeorological and high-resolution turbulent processes (e.g. for a review see O’Connell et al., 126 

2016 and for global-scale applications see Dimitriadis, 2017), including extremes (e.g. Iliopoulou and 127 

Koutsoyiannis, 2019), as well as in alternate fields, e.g. rock formations (Dimitriadis et al., 2019), 128 

landscapes (Sargentis et al., 2019) and art (Sargentis et al., 2020). 129 

The observation of the empirical climacogram constructed from temperature records in fine scales 130 

(e.g. hourly or daily), brought to the surface a considerable divergence from the large scales in the 131 

area of small scales (Koutsoyiannis et al., 2018). Hence, a more generalized model of the Filtered 132 

Hurst-Kolmogorov (FHK) process is used here, which also is shown to maximize entropy production 133 

both at small- and large-time scales. The equation of the Filtered Hurst-Kolmogorov (FHK) model 134 

(mixed Cauchy-Dagum type) is (Koutsoyiannis, 2017): 135 

 𝛾(𝑘) = 𝜆1 (1 + (𝑘
𝑎1

⁄ )
2

)
𝐻−1

+ 𝜆2 (1 − (1 + (𝑘
𝑎2

⁄ )
−2

)
−𝑀

) (5) 

where 𝛾(𝑘) is now the variance of the average process instead of the standard deviation. 137 

The parameter 𝑀 (in honor of Mandelbrot) is called the smoothness (or fractal) parameter, while 𝐻 is 138 

the Hurst parameter. Both parameters 𝐻 and 𝑀 are dimensionless parameters, bounded between 139 

zero and one inclusively, while 𝛼 and 𝜆 are scale parameters, with dimensions [𝑡] and [𝑥2]. This form 140 



 

 

of the modeled climacogram has the advantage of determining the persistence of the process through 141 

the first additive term, as well as its smoothness through the second additive term. 142 

2.3 Return period estimation through K-moments 143 

As mentioned in the introduction, K-moments are a fundamental part of metrics we apply in this work. 144 

We present basic information about K-moments in this section, while providing extensive background 145 

in the relevant appendix. 146 

Let 𝑥 be a stochastic variable and 𝑥1, 𝑥2, … , 𝑥𝑝 be copies of it, independent and identically distributed, 147 

forming a sample, while 𝐹(𝑥) is the distribution function of 𝑥. 148 

According to Koutsoyiannis (2020), if we denote the estimator of ((𝐹(𝑥))
𝑝−1

 from a random sample 159 

of size 𝑛 as 𝑏𝑖𝑛𝑝 (i is the index ranging from 1 to p) then an estimator of the noncentral moment 𝐾′𝑝𝑞 160 

will be: 161 

 �̂�′𝑝𝑞 = ∑ 𝑏𝑖,𝑛,𝑝−𝑞+1𝑥(𝑖)
𝑞

𝑛

𝑖=1

 (6) 

where 𝑥(𝑖) is the ith element of a sample of 𝑥 of size 𝑛, sorted in ascending order; it is stressed that 162 

the ordering of the sample is meant in terms of 𝑥 and not 𝑥𝑞. More precisely, 𝑥(𝑖)
𝑞

∶= (𝑥(𝑖))
𝑞

 which 163 

can be different from (𝑥𝑞)
(𝑖)

. The estimator in (18) is unbiased if we choose: 164 

 𝑏𝑖𝑛𝑝 = {

0, 𝑖 < 𝑝
𝑝

𝑛

𝛤(𝑛 − 𝑝 + 1)

𝛤(𝑛)

𝛤(𝑖)

𝛤(𝑖 − 𝑝 + 1)
, 𝑖 ≥ 𝑝 ≥ 0

 (7) 

where 𝑝 can be any positive number (usually, but not necessarily, integer). It is easy to verify that: 165 

 ∑ 𝑏𝑖𝑛𝑝

𝑛

𝑖=1

= 1 (8) 

which is a necessary condition for unbiasedness (Koutsoyiannis, 2020). 166 

K-moments constitute an important statistical tool, as does the notion of return period. The return 167 

period refers to a time span in which an event (e.g. an extreme one) is expected to happen, and in 168 

that way, it is used to associate event occurrences to the likeliness of them happening. 169 

As it can be easily understood, order statistics have a substantial advantage over other statistics in the 170 

context of return periods, as we can assign a distinct value of the distribution function to each one of 171 

them, hence pair them with the equivalent return period. This turns out to be the case with K-172 

moments as well, since they are closely related to order statistics. Intuitively, we anticipate that the 173 

return period corresponding to the non-central K-moment of orders (𝑝, 1), the value 𝑥 = 𝐾′𝑝1 will 174 



 

 

correspond to a return period of about 2𝑝. This is accurate for a symmetric distribution and for 𝑝 = 1, 175 

as 𝐾′11 is the mean value, which has return period 2, and as explained by Koutsoyiannis (2019a), it 176 

cannot be much lower than 2𝑝 for any 𝑝 and for any distribution. 177 

Generally, the return period can be expressed by the relationship: 178 

 
𝑇(𝐾′

𝑝1)

𝐷
= 𝛬𝑝𝑝 (9) 

where 𝐷 is a time reference for the specification of return period and 𝛬𝑝 is a coefficient generally 179 

depending on the distribution function and the order 𝑝. 180 

The precise definition of 𝛬𝑝 is (Koutsoyiannis, 2019a): 181 

 𝛬𝑝 ∶=
1

𝑝(1 − 𝐹(𝐾′
𝑝1))

 (10) 

For given 𝑝 and distribution function 𝐹(𝑥), 𝐾′𝑝1 is analytically or numerically determined from its 182 

definition. Then 𝑇(𝐾′𝑝1) and 𝛬𝑝 are determined from their definitions. 183 

In absence of an analytical solution, an exact relationship between 𝑝 and 𝑇 has been established by 184 

doing numerical calculations for several 𝑝. The slight variation of 𝛬𝑝 with 𝑝 can be very well 185 

approximated if first the specific values 𝛬1 and 𝛬∞ are accurately determined. The value of 𝛬1 is easily 186 

determined, as practically is equal to the return period of the mean: 187 

 𝛬1 =
1

1 − 𝐹(𝜇)
=

𝛵(𝜇)

𝐷
 (11) 

Developed within extreme value theory, the Generalized Extreme Value distribution is a family of 188 

continuous probability distributions, that includes the Extreme Value Type 1 distribution. In a number 189 

of customary distributions, specifically those belonging to the domain of the Extreme Value Type 1 190 

distribution, 𝛬∞ has a constant value, independent of the distribution. As shown by Koutsoyiannis 191 

(2019a), this value is: 192 

 𝛬∞ = 𝑒𝛾 = 1.781 (12) 

where 𝛾 is the Euler–Mascheroni constant. 193 

For the approximation of 𝛬𝑝, the following simple relationship is used, which is satisfactory for several 194 

distributions: 195 

 𝛬𝑝 ≈ 𝛬∞ + (𝛬1 − 𝛬∞)
1

𝑝
 (13) 

This yields a linear relationship between the return period 𝑇 and 𝑝: 196 



 

 

 
𝑇(𝐾′

𝑝1)

𝐷
= 𝑝𝛬𝑝 ≈ 𝛬∞𝑝 + (𝛬1 − 𝛬∞) (14) 

For the Normal distribution, which most closely resembles the real distribution of the surface 197 

temperature, the approximated values of 𝛬1 and 𝛬∞ are: 𝛬1 = 2 and 𝛬∞ = 𝑒
1

2⁄ = 1.649. 198 

3. Data 199 

The data used as part of this study were retrieved from the GHCN-D database. GHCN (Global Historical 200 

Climatology Network)-Daily is a database of the National Oceanic and Atmospheric Administration of 201 

the United States that addresses the critical need for historical daily temperature, precipitation, and 202 

snow records over global land areas. GHCN-Daily is a composite of climate records from numerous 203 

sources that were merged and then subjected to a suite of quality assurance reviews. It contains 204 

temperature records from 106 283 stations in 180 countries and territories (Menne et al., 2012; e.g., 205 

see fig. 2). Both the record length and period of record vary by station and cover intervals that extend 206 

to more than 200 years. 207 

GHCN-D database has been used in multiple scientific studies of the near-surface air temperature in 208 

the past. Studies of both global and regional focus, such as those of Portmann et al. (2009), Cavanaugh 209 

and Shen (2014), Dittus et al. (2015), have examined the trends of either the first four moments of the 210 

air temperature distribution or just the mean, in the context of statistical significance. In this study, 211 

we make use of the same records in the context of the stochastic nature of the air temperature, and 212 

how it explains changes in the tails of its distribution. 213 

The stations analyzed, are subjected to multiple quality tests, both from the National Oceanic and 214 

Atmospheric Administration, which maintains the database, and the authors. The automated quality 215 

tests performed by NOAA resulted in the flagging of faulty data entries. For the purposes of this paper, 216 

we utilize only records with no quality flags, thus we dismiss all non-blank quality flagged values from 217 

the first stage of data gathering and processing. We isolate, and implemented, timeseries with a first 218 

entry prior to 1935, as this limitation enabled the extraction of more than 50 consecutive rolling 30-219 

year periods. Despite the obvious narrowing of the pool of utilizable timeseries by this procedure, it 220 

enables us to identify shared large-scale persistence patterns among the stations. This would not have 221 

been possible, had we used a constantly changing sample of short-lived timeseries. 222 

From this screening procedure, the number of records that are finally investigated is different for each 223 

aspect of temperature. For the study of behavior of the average near-surface air temperature we use 224 

245 stations, while for the study of behavior of the maximum and minimum near-surface air 225 

temperature we use 5 006 stations for each one. 226 



 

 

Figure 2: Spatial distribution of GHCN-D stations 

 227 

 228 

It is apparent from the map of Figure 2 that the utilized temperature records originate from weather 229 

stations unevenly distributed across the earth surface. There is significant density of the studied 230 

stations in the Northern hemisphere, with the notable exception of a large cluster of Australian 231 

stations. This spatial limitation is considered inadvertent, since these areas host stations with 232 

temperature records of adequate time length. 233 

Table 1: Temporal evolution of air temperature records used 234 

Period Average Temperature Maximum Temperature Minimum Temperature 

1880-1899 90 2150 2191 

1900-1919 142 4053 4076 

1920-1939 245 4942 4943 

1940-1959 245 4885 4886 

1960-1979 245 4399 4396 

1980-1999 245 3705 3705 

2000-2018 240 3184 3184 

  235 



 

 

Figure 3: Methodology Layout 

4. Methodology 236 

An overview of the stages followed in the study of the behavior of near-surface air temperature in 237 

global scale is presented in Figure 3. It is worth mentioning, that the procedure outlined in Figure 3 is 238 

repeated for each of the three variables of air temperature that are studied; i.e., average, maximum 239 

and minimum temperature. 240 

 241 

 242 
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 247 

 248 

 249 

 250 

4.1 Initial data analysis 251 

At the first stage, we download the daily average, maximum and minimum temperature daily records 252 

from the GHCN-D database, remove the flagged values and short length timeseries, and standardize 253 

the remaining utilizable timeseries. The standardization of the timeseries is performed in order for the 254 

input data, as well the results, to be comparable. Since multiple studies conclude that the distribution 255 

of the near-surface air temperature closely resembles the Gaussian, it was determined to standardize 256 

the timeseries according to the Gaussian distribution.  257 

Moreover, since the study is focused on the behavior of the temperature on global scale, it is deemed 258 

reasonable to proceed with the standardization in a multi-year time frame. This is because of the fact 259 

that many weather stations around the world are located in climate zones with great variance of 260 

temperature among the different seasons. 261 

Spatial variability plays a very important role when examining temperature dynamics, as the climatic 262 

conditions can affect to a great degree the persistence of extremes. For purposes of justifying the 263 

unified treatment of all the timeseries independently of the climatic conditions, we conduct a 264 
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preliminary examination of the geographical homogeneity or heterogeneity of the climacograms of 265 

the timeseries for the different Köppen-Geiger climatic zones. Specifically, we estimate the mean 266 

climacogram for each of the three temperature metrics (average, maximum and minimum) and for 267 

each of the five (i.e., A, B, C, D, E) major climatic zones as defined by the Köppen-Geiger classification 268 

system (Geiger, 1954). 269 

 270 

Figure 4: Climacograms of observed timeseries of the average near-surface air temperature for different climatic zones. 271 

 272 

Figure 5: Climacograms of observed timeseries of the maximum near-surface air temperature for different climatic zones. 273 
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 274 

Figure 6: Climacograms of observed timeseries of the minimum near-surface air temperature for different climatic zones. 275 

As can be seen in the Figures 4- 6, the differences of the standardized climacograms of the observed 276 

timeseries are minimal among the different climatic zones. This means that, if the seasonal variations 277 

of each climatic zone are removed (in terms of the first two moments), the resulting standardized 278 

timeseries behave similarly in terms of the dependence structure, irrespective of their location. 279 

Therefore, it is a reasonable choice to treat the ensemble of the standardized timeseries as a whole, 280 

even though in a further study more options of sub-setting based on geographical location could be 281 

explored.  282 

4.2 Rolling 30-year periods 283 

At the next stage, we use the rolling 30-year periods (see figure 7), as separate timeseries, from which 284 

specific extreme values corresponding to pre-selected return periods are extracted. We determine 285 

that the time length of each sub-series should be 30-years long, since three decades is an adequate 286 

time period to characterize the climate regime of an area. Moreover, 30 years is a time span that is 287 

equivalent to a human generation interval; hence, it is important to identify changes in such time 288 

scales. Longer time frames (e.g., 50 years) would significantly minimize the number of available rolling 289 

periods that could be extracted from each primary timeseries. Shorter time frames (e.g. 10 years) 290 

would inhibit the extraction of valuable extreme values occurring at larger time intervals, which are 291 

the ones most of interest. 292 
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 293 

Figure 7: Example of consecutive 30-year periods 294 

4.3 K-moments 295 

After each 30-year long timeseries section is standardized, in relation to corresponding months, we 296 

apply the K-moments framework as follows. For the study of the upper tail, we sort the timeseries in 297 

ascending order, while for the study of the lower tail, we sort the timeseries in descending order. At 298 

this point, we calculate the return periods, in terms of days (not years) following the resolution of the 299 

temperature available data. For computational efficiency, the K-moments are extracted from the 300 

maxima of the 3, 10, 20 and 30-year periods, as shown in Table 2. However, since the exact definition 301 

of the return period T yields a linear relationship with the coefficient ΛP, which depends on the 302 

distribution function (assumed Gaussian), the theoretical return period for the number of selected 303 

days is different, as described in Equation (14). Hence, the studied return periods are shown in 304 

columns three and four in Table 2. 305 

For the day intervals (shown in the third column of Table 2) corresponding to these return periods, we 306 

use an iterative procedure to calculate both the fixed and added terms of each K-moment. The fixed 307 

terms depend only on p and the length of the sample, while the added terms depend on the index 308 

(see equations 6 and 7). 309 

After we calculate the K-moments for the entirety of the suitable time-series and for all the 30-year 310 

periods of their time span, we perform a basic statistical analysis to summarize the information. For 311 

illustration, it is decided to isolate the distribution of each return period and each 30-year time-frame, 312 

and extract the values corresponding to the 25th, 50th (median) and 75th percentiles.  313 
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Table 2: The studied return periods of maximum or minimum observations in a time window defined in terms of day and 314 
yearly intervals assuming a Gaussian distribution. 315 

Notation Time window 

(years) 

Time window 

(days) 

Return period (years 

for Gaussian 

distribution) 

T1 3 1096 5.30 

T2 10 3653 16.84 

T3 20 7305 33.33 

T4 30 10958 49.82 

 316 

4.4 Climacogram structure 317 

For all the standardized timeseries we estimate the climacogram, for scales 1 to n/10, as suggested as 318 

a rule of thumb for the robust estimation of the long-term persistent parameter H (Dimitriadis and 319 

Koutsoyiannis, 2015), where n is the length of each timeseries. Then, we sum the values of the 320 

respective scales of the climacograms, so as to produce the arithmetic mean (average) of the 321 

climacogram for each scale. As a common maximum scale of the ensemble of the timeseries, we select 322 

the arithmetic mean of the lengths ni of all timeseries. The estimated climacogram are juxtaposed with 323 

the theoretical expected values of the climacogram for a timeseries of a theoretical length, equal to 324 

the average of the lengths ni of all timeseries. 325 

The theoretical values of the climacogram for a Filtered Hurst-Kolmogorov process can be derived 326 

from equation (5). We fit equation (5) to the climacogram of the observed timeseries by estimating 327 

the parameters H, M, α1, α2, λ1 and λ2, through the minimization of the root mean square error (ERMS), 328 

which equals to: 329 

 ERMS = √∑ (𝑋o − 𝑋m)2𝑛
𝑖=1

𝑛⁄  (15) 

where 𝑋o is the observed value of the climacogram, 𝑋m is its theoretical (modeled) value, and 𝑛 is the 330 

total number of scales. 331 

The optimization problem of minimizing the value of the ERMS is handled by a combination of the 332 

Generalized Reduced Gradient (GRG2) algorithm and the Evolutionary algorithm. We use the GRG 333 

method to quickly identify the global minimum of the domain, while the Evolutionary algorithm is 334 

used, so as to improve even further the margin of error (limiting the number of iterations to 100,000). 335 

From the above optimization, the H and M parameters are estimated for the average, maximum and 336 

minimum climacograms of the three air-temperature processes (Table 3). We observe that all 337 



 

 

processes exhibit a long-term persistent behaviour (H > 0.5), with an average value of the Hurst 338 

parameter equal to Have = 0.783. 339 

Table 3: Hurst and Mandelbrot coefficients of optimized air temperature Climacograms 340 

Air Temperature H M 

Average 0.745 0.180 

Maximum 0.766 0.077 

Minimum 0.839 0.024 

 341 

4.5 Stochastic synthesis 342 

A rigorous and parsimonious method to produce synthetic timeseries for a physical process, like 343 

temperature, is by preserving its marginal and second-order dependence structures through the 344 

symmetric-moving average (SMA) scheme introduced by Koutsoyiannis (2000), further improved by 345 

Koutsoyiannis (2016) and implemented within the Castalia computer package (Efstratiadis et al., 346 

2014). The SMA algorithm has the advantage of fully preserving in an exact way any second-order 347 

structure of a process and, simultaneously, the complete multivariate distribution function. As 348 

extended by Dimitriadis and Koutsoyiannis (2018), the SMA generation scheme can simulate a 349 

stochastic process by preserving explicitly its second-order dependence structure and its marginal 350 

structure through the first four central moments, which is found to be sufficient for various 351 

distributions applied in geophysical processes. 352 

As explained in Dimitriadis and Koutsoyiannis (2018), high-order moments are extremely hard to 353 

calculate reliably from data, while the non-Gaussian distributions can be easily substantiated 354 

empirically, as well as derived in theory (Koutsoyiannis, 2014). One way to simulate the effect of the 355 

second-order dependence structure on the marginal structure is by explicitly preserving the high-356 

order moments, as estimated from the distribution model and not from data. In most situations, the 357 

preservation of just four moments is a sufficient approximation of the distribution function. The fourth 358 

moment, in particular, has been deemed very important for some applications, e.g., in turbulence 359 

intermittency (Batchelor and Townsend, 1949). 360 

In the SMA scheme, the simulated process is represented as the sum of products of coefficients 𝑎𝑗 361 

and white noise terms 𝑣𝑖, (Koutsoyiannis, 2000): 362 

 𝑥𝑖 = ∑ 𝑎|𝑗|𝑣𝑖+𝑗

𝑙

𝑗=−𝑙

 (16) 



 

 

where, for simplicity and without losing generality, it is assumed that E[𝑥] = E[𝑣] = 0 and E[𝑣2] =363 

Var[𝑣] = 1, where index 𝑗 ranges from 0 to infinity. 364 

The SMA generation scheme can be employed for the stochastic generation of any type of second 365 

order structure, as represented through the climacogram, and this is pivotal in its selection in the 366 

present study of the near-surface air temperature. This scheme presents several advantages over 367 

other models, such as the backwards moving average (BMA). Particularly, for 𝑙 → ∞ or 𝑙 finite, the 368 

coefficients can be analytically calculated through the Fourrier transform of the discrete power 369 

spectrum of the coefficients, which is directly related to the analytically expressed discrete power 370 

spectrum of the process (Koutsoyiannis, 2000): 371 

 𝑠𝑎d
(𝜔) = √2𝑠d(𝜔) (17) 

where 𝑠𝑎d
 and 𝑠d are the SMA coefficients and process power spectra in discrete time, respectively. 372 

For instance, for an HK process with 𝐻 > 0.5, the SMA coefficients can be easily estimated from the 373 

expression (Koutsoyiannis, 2016): 374 

 

𝑎𝑗 =
1

2
√2𝛤(2𝛨 + 1) sin(π𝛨) 𝛾𝛥𝛤2(2𝛨 + 1)(1 + sin(π𝛨))  × 

(|𝑗 + 1|𝐻+
1
2 + |𝑗 − 1|𝐻+

1
2 − 2|𝑗|𝐻+

1
2) 

(18) 

The algorithm to produce timeseries with the SMA scheme, developed in Dimitriadis and 375 

Koutsoyiannis (2018), requires the first four central moments, the climacogram model for each 376 

process (average, maximum and minimum temperature), and the length of the synthetic timeseries. 377 

Therefore, for each observed timeseries that passed the multiple quality checks, we calculate the first 378 

four central moments, and the climacogram model parameters. 379 

Since the generation of a synthetic timeseries may be time-consuming for very large lengths, we 380 

produce for each of the three processes (average, maximum and minimum temperature) only a fixed 381 

number of synthetic timeseries. This number of produced timeseries is equal to the least observed, 382 

yet utilizable, timeseries for each of the three temperature processes. The number of observed 383 

timeseries for the average process of the air-temperature is 245, while for the maximum and minimum 384 

processes is 5 006. Thus, 245 synthetic timeseries are created for each process. For the synthetic 385 

timeseries, we follow the same methodology as in the analysis of the observed timeseries. The 386 

synthetic data are first standardized, then separated into rolling 30-year periods, from which the K-387 

moments of the selected return period levels were extracted. 388 



 

 

4.6 Longest individual records 389 

As part of the study of the behavior of air temperature, we compare the aggregate behavior of all the 390 

available timeseries, with the behavior of the longest timeseries, to identify possible similarities of the 391 

variability among them. Τhe longest air temperature records for each aspect of near-surface air 392 

temperature are shown in Table 4. For the study of these records, we apply a similar methodology as 393 

the one with the sum of observed records. 394 

Table 4: Longest recording individual stations 395 

Air Temperature Station ID Location Record Length 

Average RSM00026063 St. Petersburg, Russia 136 years 

Maximum ITE00100554 Milan, Italy 246 years 

Minimum ITE00100554 Milan, Italy 246 years 

  396 



 

 

5. Results and Discussion 397 

 398 

Figure 9: Lower tail of the standardized average air temperature (Ts) over time  

Figure 8: Upper tail of the standardized average air temperature (Ts) over time 
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 399 

Figure 10: Upper tail of the standardized maximum air temperature (Ts) over time  

Figure 11: Lower tail of the standardized minimum air temperature (Ts) over time  
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The study of the near-surface air temperature records brought interesting facts to light. All three air 400 

temperature metrics (namely average, maximum and minimum) show an unstable behavior, with 401 

prominent fluctuations at the climatic scale throughout the years. Most noticeable changes include 402 

the fattening and thinning of the tails. Fattening can be witnessed as an increase of the standardized 403 

air temperature for the upper tails and decrease of the standardized air temperature for the lower 404 

tails. Thinning corresponds to exactly the opposite changes; i.e., decrease of the standardized air 405 

temperature for the upper tails and increase of the standardized air temperature for the lower tails. 406 

The average near-surface air temperature exhibits the most coherent behavior with a progressive 407 

warming evident in both tails. The upper tail tends towards becoming thicker (witnessed by increasing 408 

Ts), whereas the lower tail appears to become thinner (increasing Ts) as time progresses (Figures 8 409 

and 9). This confirms the expectation that the global average air temperature increases, a result that 410 

may have important social and environmental effects. Yet in terms of the lower tail of the average 411 

temperature, this increase takes place from the start of the 20th century, whereas in terms of the 412 

upper tail it concerns only the past 30 years.  413 

Maximum and minimum air temperature present an even more complex behavior. An interesting and 414 

somehow unexpected finding is the thinning (decreasing Ts) of the upper tail of the maximum near-415 

surface air temperature. Contrary to our expectations, we find that the behavior of the maximum 416 

temperature diverges from that of the average one, suggesting that temperature is a more complex 417 

climatic variable than previously thought. Average temperature is by definition calculated as the mean 418 

of multiple observations within a certain time-span, which obviously includes the maximum and 419 

minimum as well. Even though, the maximum recorded temperature is an integral part of the set of 420 

data from which the average temperature is derived, it appears that its effect on the average is not so 421 

intelligible.  422 

As for the lower tail of the minimum near-surface air temperature, it is shown that despite the 423 

increasing trend of the average air temperature (even of its lower values), it remains surprisingly 424 

steady, at all return period levels, and only in the last 10-20 years presents an increasing trend. This 425 

shows that the temperature changes are not consistent throughout the range of its variability, and a 426 

form of asynchronicity is present among the different temperature metrics. Thus, climate dynamics is 427 

characterized by a sort of “stamina” and is probably able to mitigate, to some extent, changes in the 428 

atmosphere. The fact that the upward trend is almost equally evident in all the return period levels of 429 

the lower tail, suggests that it is more probable that the resulting change stems from a change in the 430 

average of the distribution rather than a change in its standard deviation, assuming that the minimum 431 

temperature presents a nearly-Gaussian distribution. 432 



 

 

The average near-surface air temperature synthetic records produced present an ambiguous behavior 433 

with respect to the two tails. On the one hand, the upper tail presents a similar pattern to the observed 434 

data up to 2000, but when the beginning of the 21st century is included in the analysis, a divergence 435 

of the observed and synthetic records is evident. The variance of the trend, as expressed through the 436 

interquartile range in each return period level, is almost the same, which suggests that the synthetic 437 

series reproduce well the variability range. On the other hand, the lower tail of the synthetic series, 438 

despite having the same variance at all the return period levels, is much thinner than in reality, while 439 

it does not reproduce the thinning trend of the past century. This means that the extreme cold waves, 440 

affecting the lower tail of the average temperature, are much more common than anticipated by the 441 

reproduction of the observed stochastic behavior, although this trend tends to reverse as time 442 

progresses (Figure 9).  443 

Despite having a uniquely fitted Filtered Hurst-Kolmogorov process to estimate the persistence of the 444 

average air temperature, it seems inadequate, at first glance, to decipher, and consequently 445 

reproduce, the complex temporal behavior of the average air temperature in terms of both its tails. 446 

However, that is not really the case if one considers the very strict percentile margins we have 447 

depicted. Namely, the depicted 25th and 75th percentile range contains only half (i.e., 50%) of the range 448 

standardized air temperature fluctuates, meaning that the other half of the ensemble is outside of 449 

these margins. 450 

Concerning the synthetic records that reproduce the maximum near-surface air temperature, the 451 

variance of the trend, expressed through the interquartile range at each return period level, is greater 452 

than that of the observed data; hence, proving that any upward trend of the upper tail is within the 453 

stochastically expected boundaries. Furthermore, the slightly increasing trend of the upper 75th 454 

percentile of the interquartile range, which is present at higher return periods, is completely the 455 

opposite from the limit performance of the observed data (Figure 10). 456 

The minimum near-surface air temperature synthetic records produced (see Figure 11), present many 457 

comparative similarities with the maximum air temperature. Specifically, the size of the interquartile 458 

range is greater than the one derived from the observed data, and in fact, overspreads it. This means 459 

that any changes present in the observed timeseries can be explained, and thus anticipated, through 460 

the study of their statistical behavior. Moreover, the slightly increasing trend of the extreme values of 461 

the lower tail may suggest a return to stability and not a spiraling towards global overheating. 462 

Individual records though may present a markedly different behavior, from the average of the 463 

ensemble of observed records. Specifically, both the average temperature records of Saint Petersburg, 464 

and the maximum and minimum temperature records of Milan show substantial warming. At some 465 



 

 

return period levels this warming is a multiple of the warming present on all the other records. One 466 

possible reason for this divergence of results is the location of these weather stations in relation to 467 

the urban agglomerations (see also the similar work of Sigourou et al., 2018) and the increasing 468 

scarcity of green, open spaces that mitigate the urban heat island effect (see the works of Bernatzky, 469 

1982 and Aram et al., 2019). According to the coordinates obtained from the GHCN-D station directory 470 

(Menne et al., 2012), both Milan and Saint Petersburg stations are deep within the center of the urban 471 

areas, meaning that the urban heat island effect has profound implications on the temperature 472 

measurement. 473 

As shown in Figure 12, a similar study undertaken by Koutsoyiannis (2019b) reveals that the weather 474 

station in the city center of Milan presents a different behavior than that of the suburban weather 475 

stations of Monte Cimone and Paganella, which are both in the vicinity of Milan. In more detail, while 476 

the weather records of Monte Cimone and Paganella show a relatively steady level of the maximum 477 

air temperature, the Milan station presents a clearly warming trend, even though it refers to the same 478 

return period as the other two weather stations. This strongly supports the assumption of the great 479 

impact that the heat island effect may have on the Milan temperature. 480 

 481 

Figure 12: Comparison of Lombardy temperature extremes (Koutsoyiannis, 2019b) 482 

Another potent reason is the location bias of the longest individual records, in comparison with the 483 

great scattering of the ensemble of air temperature records. Since both Milan and Saint Petersburg 484 

are in the European continent (and even close to the sea front), their warming behavior could be a 485 
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characteristic of coastal or near-coastal regions that is not shared with all the other temperature 486 

records. However, it is intuitively important to compare them with the rest of the shorter-length 487 

records as a point of reference. 488 

Last, but not least, it is clearly visible in Figures 6 and 8, that there are significant drops (i.e., fattening 489 

of the lower tail of the minimum temperature) in the individual records of Saint Petersburg and Milan 490 

respectively during the latter half of the 20th century. These drops correspond to cold weather 491 

extremes, which in terms of our methodology, are the absolute minima for a period of 30-years (see 492 

Section 4.2). The winter of 1962/63 was one of the harshest for Western Europe, where Milan is, with 493 

recorded temperatures up to -5 degrees Celsius below the expected average for the season (Hirschi 494 

and Sinha, 2007). As far as the Saint Petersburg drop is concerned, it corresponds to the extremely 495 

cold winter of 1978/79 that affected European Russia (Khasanov, 2013). 496 

6. Conclusions 497 

This work performs a global stochastic investigation of the extremes of near-surface air temperature, 498 

employing a set of advanced stochastic tools, i.e., the climacogram and the K-moments for the 499 

estimation thereof. From this worldwide survey on the near-surface air temperature extremes, it is 500 

revealed that the air temperature presents a counter-intuitive and much more complex behavior than 501 

usually modeled by classical statistics. It particularly exhibits temporal changes in magnitude, in 502 

variability and in shape of the tail distribution. A divergence between observed and synthetic series 503 

was noted in some cases, which can possibly be explained by the preservation of solely the first four 504 

moments. Nevertheless, this simple stochastic model is still able to adequately reproduce the 505 

observed variability range. Also, the assumption of a common worldwide behavior is justified based 506 

on the similarities of the different climate zones.  507 

Yet what was less expected is the fact that the observed temporal changes in the average, maximum 508 

and minimum temperatures are neither synchronous nor consistent to each other. In particular, the 509 

lower tail of the distribution of average shows a prominent increasing trend in the first half of the 20th 510 

century, whereas, on the contrary, the upper tail of the distribution of average and the upper extremes 511 

exhibit notable stability over the same period. On the other hand, the increase in the average and 512 

minimum temperature over the past 20-30 years is not followed by an increase in the maximum 513 

temperature, but rather by a decrease. These observed peculiarities among the different indices of air 514 

temperature (namely average, maximum and minimum) can be, in part, attributed to the deviation of 515 

the air temperature distribution from Gaussianity, but should be mostly regarded as evidence of the 516 

pronounced inherent variability.  517 



 

 

Overall, the observed changes of the air-temperature behavior correspond to a probability 518 

distribution whose upper tail (i.e., high temperature extremes) tends to become slightly thinner 519 

whereas its lower tail (i.e., the low temperature extremes) tends to become even more thinner. 520 

Hence, the high and low temperature extremes tend to become, more or less, scarcer than in the past, 521 

especially the ones of the lower tail. The average temperature, however, which corresponds to the 522 

main body of the distribution, increases substantially. All these in combination, according to the 523 

authors’ perception, create a shift towards a temperature distribution with seemingly smaller variance 524 

but with a higher average (see Figure 13). 525 

 526 

This conclusion may seem counter-intuitive and inconsistent with previous research (e.g., Coumou 527 

and Rahmstorf, 2012 and IPCC, 2014). However, this shifted and altered distribution should not be 528 

misconstrued as directly leading to less weather extremes, since the relationship between 529 

temperature and weather extreme phenomena is much more complex. In droughts for instance, a 530 

major factor of their occurrence is a prolonged period of higher than usual temperatures coupled with 531 

less, or none at all, precipitation. This may very well be linked to higher average temperatures, as 532 

found to be the result of the present study. 533 

Furthermore, when comparing the aforementioned results’ divergence, one has to consider that a 534 

major differentiation point of the current study in comparison to previous studies has been the use of 535 

K-moments in estimating the past and present extremes of the temperature’s tails. The very powerful 536 

statistical properties of K-moments (see Appendix 1) and their supreme performance in reducing the 537 

estimation bias (see Koutsoyiannis, 2020) may be the reason for the difference in the results. Overall, 538 

it is the authors’ aspiration that the results of this study will shed some light into the complicated near-539 

surface temperature extremes changes over time, in order to facilitate future research on 540 

temperature dynamics. 541 

Figure 13: One possible historical evolution of the air temperature probability density function. 
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Appendix 1 695 

To facilitate the understanding of the theory behind K-moments, we explain some basic notions of 696 

statistics in this appendix. 697 

Let 𝑥 be a stochastic variable and 𝑥1, 𝑥2, … , 𝑥𝑝 be copies of it, independent and identically distributed, 698 

forming a sample. The maximum of all, which is identical to the 𝑝th order stochastic, is by definition: 699 

 𝑥(𝑝) ∶= max (𝑥1, 𝑥2, … , 𝑥𝑝) (19) 

It is readily obtained that if 𝐹(𝑥) is the distribution function of 𝑥 and 𝑓(𝑥) its probability density 700 

function, then those of 𝑥(𝑝) are distributed by: 701 

 𝐹(𝑝)(𝑥) = (𝐹(𝑥))𝑝, 𝑓(𝑝)(𝑥) = 𝑝𝑓(𝑥)(𝐹(𝑥))
𝑝−1

 (20) 

where the former is the product of 𝑝 instances of 𝐹(𝑥) (justified by the independent and identically 702 

distributed assumption), while the latter is the derivative of 𝐹(𝑝)(𝑥) with respect to 𝑥. The expected 703 

maximum order of 𝑝 of 𝑥, i.e. the expected value of 𝑥(𝑝), is therefore: 704 

 E[𝑥(𝑝)] = E[max(𝑥1, 𝑥2, … , 𝑥𝑝)] = 𝑝E [(𝐹(𝑥))
𝑝−1

𝑥] (21) 

It is worth to stress that the variables 𝑥1, 𝑥2, … , 𝑥𝑝 considered here, are not meant in temporal 705 

succession and, in this respect, do not form a stochastic process, but are rather regarded to be an 706 

ensemble of copies of 𝑥. In other words, the possible dependence in time of a stochastic process is 707 

not considered to be prerequisite for the application. 708 

In geophysical processes, it is justifiable to assume that the variance 𝜇2 ≡ 𝜎2 is finite, because an 709 

infinite variance would translate to an infinite amount of energy to materialize, which is absurd. 710 

However, high-order classical moments 𝜇𝑝 diverge to infinity beyond a certain 𝑝 (i.e., in heavy-tailed 711 

distributions). That is not the case for the K-moments, where a significant part of the moment is 712 

calculated using the always finite distribution function (Koutsoyiannis, 2019a), which is the reason 713 

from which their knowability stems. 714 

To derive knowable moments for high orders 𝑝, in the expectation defining the 𝑝th moment, we raise 715 

(𝑥 − 𝜇) to a low power 𝑞 < 𝑝 and for the remaining (𝑝 − 𝑞) multiplicative terms, we replace (𝑥 − 𝜇) 716 

with (2𝐹(𝑥) − 1), where 𝐹(𝑥) is the distribution function. This leads to the following definition of 717 

central K-moment of order (𝑝, 𝑞) (Koutsoyiannis, 2019a): 718 

 𝐾𝑝𝑞 ≔ (𝑝 − 𝑞 + 1)E[(2𝐹(𝑥) − 1)
𝑝−𝑞

(𝑥 − 𝜇)
𝑞

], 𝑝 ≥ 𝑞 (22) 

Likewise, the non-central K-moment of order (𝑝, 𝑞) is defined (Koutsoyiannis, 2019a): 719 



 

 

 𝐾′𝑝𝑞 ≔ (𝑝 − 𝑞 + 1)E [(𝐹(𝑥))
𝑝−𝑞

𝑥𝑞] , 𝑝 ≥ 𝑞 (23) 

The quantities (𝐹(𝑥))
𝑝−𝑞

 and (2𝐹(𝑥) − 1)
𝑝−𝑞

 are estimated from a sample, without the use of 720 

powers of 𝑥, thus making the estimation more reliable. Specifically, for the 𝑖th element of a sample 721 

𝑥(𝑖) of size 𝑛, sorted in ascending order, 𝐹(𝑥(𝑖)) and (2𝐹(𝑥(𝑖)) − 1) are estimated as: 722 

 �̂�(𝑥(𝑖)) =
𝑖−1

𝑛−1
 ,  2�̂�(𝑥(𝑖)) − 1 =

2𝑖−𝑛−1

𝑛−1
 (24) 

taking values in [0,1] and [-1,1], respectively, irrespective of the values 𝑥(𝑖). Hence, the estimators of 723 

K-moments are: 724 

 �̂�′𝑝𝑞 =
𝑝 − 𝑞 + 1

𝑛
∑ (

𝑖 − 1

𝑛 − 1
)

𝑝−𝑞

𝑥(𝑖)
𝑞

𝑛

𝑖=1

 (25) 

 �̂�𝑝𝑞 =
𝑝 − 𝑞 + 1

𝑛
∑ (

2𝑖 − 𝑛 − 1

𝑛 − 1
)

𝑝−𝑞

(𝑥(𝑖)

𝑛

𝑖=1

− �̂�)𝑞 (26) 

The rationale of the definition is relatively easy to grasp. Assuming that the distribution mean is close 725 

to the median, so that 𝐹(𝜇) ≈ 1
2⁄  (this is precisely true for a symmetric distribution), the quantity 726 

whose expectation is taken from the definition of the central K-moment of order (𝑝, 𝑞) is: 𝐴(𝑥)727 

∶= (2𝐹(𝑥) − 1)𝑝−𝑞(𝑥 − 𝜇)𝑞 and its Taylor expansion is: 728 

 
𝐴(𝑥) = (2𝑓(𝜇))𝑝−𝑞(𝑥 − 𝜇)𝑝 + (𝑝 − 𝑞)(2𝑓(𝜇))

𝑝−𝑞−1
𝑓′(𝜇)(𝑥 − 𝜇)

𝑝+1

+ 𝑂((𝑥 − 𝜇)
𝑝+2

) 
(27) 

where 𝑓(𝑥) is the probability density function of 𝑥. Clearly then, 𝐾𝑝𝑞 depends on 𝜇𝑝 as well as on 729 

classical moments of 𝑥 of order higher than 𝑝. The independence of 𝐾𝑝𝑞 from classical moments of 730 

order smaller than 𝑝 is the reason why it is a competent surrogate of the unknowable 𝜇𝑝. 731 

In addition, as 𝑝  becomes large, by virtue of the multiplicative term (𝑝 − 𝑞 + 1) in the definition of 732 

K-moments, 𝐾𝑝𝑞 shares similar asymptotic properties with �̂�𝑝

𝑞
𝑝⁄  (the estimate, not the true 𝜇𝑝

𝑞
𝑝⁄ ). 733 

To illustrate this for 𝑞 = 1 and for independent variables 𝑥𝑖, we consider the variable 𝑧𝑝734 

∶= max1≤𝑖≤𝑝𝑥𝑖 and denote 𝑓( ) and ℎ( ) the probability densities of 𝑥𝑖 and 𝑧𝑖  respectively. Then 735 

(Papoulis, 1990): 736 

 ℎ(𝑧) = 𝑝𝑓(𝑧)((𝐹(𝑧))
𝑝−1

 (28) 

and thus, by virtue of the definition of non-central K-moment of order (𝑝, 𝑞): 737 

 Ε[𝑧𝑝] = 𝑝E [((𝐹(𝑥))
𝑝−1

𝑥] = 𝐾′𝑝1 (29) 

On the other hand, for positive 𝑥 and large 𝑝 → 𝑛, 738 



 

 

 
(E [𝜇′̂𝑃])

1
𝑝⁄

= (E [(
1

𝑛
∑ 𝑥𝑖

𝑝
𝑛

𝑖=1
)])

1
𝑝⁄

≈ (E [(
1

𝑛
max1≤𝑖≤𝑛(𝑥𝑖

𝑝
))])

1
𝑝⁄

≈ 𝑛−1
𝑝⁄ E[max1≤𝑖≤𝑛(𝑥𝑖)] ≈ E[𝑧𝑛] 

(30) 

It is also worth noting that the multiplicative term (𝑝 − 𝑞 + 1) in the definitions of central and non-739 

central 𝐾𝑝𝑞 and 𝐾′𝑝𝑞 makes K-moments generally increasing functions of 𝑝. 740 

Appendix 2 741 

The Climacograms of the three parameters of the near-surface air temperature (average, maximum 742 

and minimum) are presented in the following figures. Note that the climacogram derived from the 743 

empirical data is depicted in blue color, while the climacogram of the synthetic data is in green color 744 

respectively. Solid lines represent the mean of each dataset (empirical and synthetic), while dashed 745 

lines represent the 5th and 95th percentile (90% confidence levels) of the respective distributions. The 746 

climacogram derived from the optimally fitted theoretical model is depicted in red colored solid line. 747 

 748 

Figure 14: Climacogram of the average air temperature 749 
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 750 

Figure 15: Climacogram of the maximum air temperature 751 

 752 

Figure 16: Climacogram of the minimum air temperature 753 

It is worth noting that the range between the 5th and 95th percentiles of the synthetic data in each of 754 

the three climacograms is narrower than the expected one from the respective empirical data. This is 755 

probably caused by the use of the same model (imposed by the same Hurst and Mandelbrot 756 

parameters) in the production of the synthetic timeseries for each of the three parameters of near-757 

surface air temperature (Figures 14, 15, 16). 758 
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