
1. INTRODUCTION
One would assume that after Baldo Bacchi’s seminal contributions to the stochastics of hydrological extremes
(Bacchi et al., 1992, 1994; Bacchi and Ranzi, 1996; Balistrocchi and Bacchi, 2011), there must have been several
steps forward. Interestingly, however, the steps backward have prevailed. Specifically, there has been a cataclysm
of hydrological studies prophesizing future extremes based on climate model projections, as if the latter were
credible. However, the fact is that they do not pass reality tests (Koutsoyiannis et al. 2008, 2011;
Anagnostopoulos et al., 2010; Tsaknias et al., 2016; Tyralis and Koutsoyiannis, 2017). Hence, their use in
hydrological studies is not justified. A single example is depicted in Figure 1, reproduced from the study by
Tsaknias et al. (2016), who tested the reproduction of extreme events by three climate models of the IPCC AR4
at 8 test sites in the Mediterranean with long time series of temperature and precipitation. It is evident that
climate models are not able even to approach the natural behaviour in extreme events. In terms of the
probabilistic distribution of extremes, the real rainfall intensities are five times (500%) higher that what is
simulated by climate models (Figure 1, panels of the lower row), yet the modellers advise us to expect
intensification of extremes of the order of 10% due to warming climate. In other words, while they err by 500%,
they are able to discern a difference of 10%. 
The second step backward is the promotion of the strange idea that “stationarity is dead” (Milly et al., 2008), an
idea which proved to have a very high contagiousness rate (notably, not affecting Baldo Bacchi), triggering a
quest of “trends everywhere” and resulting in a surge of related articles. Specifically, Iliopoulou and
Koutsoyiannis (2020) have found that in 2018, among the scientific articles, registered by Google Scholar that
contained the terms “precipitation”, “hydrology” and “extremes”, 89% also contained the word “trends”. While
there has been a rising trend in the frequency of the word “trends” since 1960, near 2010 there has been an
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The 21st century has been marked by a substantial progress in hydroclimatic data collection and access to
them, accompanied by regression in methodologies to study and interpret the behaviour of natural
processes and in particular of extremes thereof. The developing culture of prophesising the future, guided
by deterministic climate modelling approaches, has seriously affected hydrology. Therefore, aspired
advances are related to abandoning the certainties of deterministic approaches and returning to stochastic
descriptions, seeking in the latter theoretical consistency and optimal use of available data.
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Il XXI secolo è stato segnato da un sostanziale progresso nella raccolta e nell’accesso ai dati idroclimatici,
accompagnato da una regressione nelle metodologie per studiare e interpretare il comportamento dei pro-
cessi naturali e in particolare dei loro estremi. La cultura della previsione che avanza, guidata da approcci
deterministici di modellazione del clima, ha seriamente influenzato l’idrologia. Perciò i progressi ai quali
tende sono legati all’abbandono delle certezze degli approcci deterministici e al ritorno alle descrizioni sto-
castiche, mirando in queste alla ricerca della coerenza teorica e all’uso ottimale dei dati disponibili.
Parole chiave: Precipitazioni estreme, Temperature estreme, Stocastica, K-momenti.
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ADVANCES IN STOCHASTICS OF HYDROCLIMATIC
EXTREMES 

PROGRESSI NELLA STOCASTICA DEGLI EVENTI
IDROCLIMATICI ESTREMI

L'ACQUA 1/2021 - 23

IDROLOGIA

G
IO

R
N

A
TA

 D
I 
S
T
U

D
IO

 I
N

 M
E
M

O
R
IA

 D
I 
B
A

LD
A

S
S
A

R
E
 B

A
C

C
H

I



upward shift in that frequency (Figure 2).
However, the entire popular exercise is
based on a misinterpretation of the meaning
of stationarity and nonstationarity and a
confusion of the concepts of stationarity
and dependence (Koutsoyiannis and
Montanari, 2015; Koutsoyiannis, 2020a).
Both stationarity and ergodicity are abstract
mathematical concepts; hence they are
immortal (Montanari and Koutsoyiannis,
2014).

2. REVERSING CURRENT TRENDS
AND RETURNING TO A CONSISTENT
STOCHASTIC FRAMEWORK
As discussed in the Introduction, the recent
setbacks have their origin in the belief that
the climate models can reliably represent
the hydrological cycle and predict its future
changes. However, a recent study on global
scale by Koutsoyiannis (2020b) has shown that this is not the case. The standard hypotheses related to the
presence of atmospheric water and the expectations, based on climate model results, of the intensification of the
hydrological cycle and particularly the extreme events, are not confirmed by global-scale data from reanalyses
and satellites. 
If climate models were able to provide some useful information, it would be possible to incorporate it in a decent
stochastic framework. Specifically, Tyralis and Koutsoyiannis (2017) have established a Bayesian framework to
convert deterministic climate model predictions into formal stochastic ones. The underlining idea is that if the
deterministic forecasts are good, then the Bayesian framework proposed takes them into account, otherwise they
are automatically disregarded. The results of applying this framework to the average precipitation in a large area,
namely the contiguous United States, which has the richest observation network, showed that conditioning on
climate model outputs does not affect the results of a stationary stochastic model build on the basis of the real-
world data. The reason is that the climate model results are irrelevant to reality and thus the framework
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Figure 1 - Daily annual maximum precipitation in (left column) Perpignan, southern France, and (right column)

Torrevieja, south-eastern Spain; (upper row) time series; (lower row) empirical probability distributions and fit-

ted Generalized Extreme Value (GEV) distribution. The historical data series and distributions are depicted in

red, while those simulated by climate models are shown by other colours as seen in the legend. Source: Tsak-

nias et al. (2016).

Figure 2 - Frequency of appearance of the word “trends” in arti-

cles contained in the Google Scholar database that also contain

the words “precipitation”, “hydrology” and “extremes”. Adapted

from Iliopoulou and Koutsoyiannis (2020).



effectively disregards them, as it should. Therefore, climate model predictions (or projections) can hardly justify
a reason to be incorporated in studies of real-world processes.
The statistical counterpart of the futuristic endeavour, namely the fitting of trends based on data and projecting
them to the future, was examined recently in a comprehensive study by Iliopoulou and Koutsoyiannis (2020),
based on long precipitation series (> 150 years). The study compared four cases of projection to the future,
namely (a) the mean estimated from the entire record, (b) a local time average estimated from the recent past, (c)
a linear trend fitted to the entire record, and (d) a local linear trend estimated from the recent past. The process
mean is a neutral predictor of the future (zero efficiency) but turns out to be better than predictions based on
trends. In other words, the predictive skill of the trend models is poor, worse than using the mean. The model
based on the local time average (case b) of previous years proves to be the best of the four. The reason is that in
real-world processes there is temporal dependence. Hence, a local temporal average (of values of the recent past)
can be a better predictor than the global (or the true) mean. On the other hand, the simplistic trend approach
reflects a poor interpretation of a complex reality.

3.TIME DEPENDENCE
Time dependence in natural processes should normally be well understood as no one would expect the present to
be fully independent from the past. However, the adherence to using classical statistics, in which everything is re-
garded independent from everything else, has affected geophysical sciences, including hydrology. Thus, patterns
that are manifestations of dependence are commonly interpreted as nonstationarities and modelled as trends, in
order to reinstate the illogical and ever failing hypothesis of time independence. However, by claiming nonstatio-
nariry, one also rejects ergodicity (which cannot exist without stationarity) and, in sequel, one excludes the possi-
bility of making inference from data, which actually is the desideratum (Koutsoyiannis and Montanari, 2015).
Therefore, the entire endeavour is in vain and absurd.
Dependence manifests itself both on short and long time lags. It is also manifest on short and long time scales. It
is rather easy to understand dependence on short time lags and scales; for example, after a day with high river
flow one would expect that in the next day the flow would be high, too. However, at long time lags or scales, de-
pendence manifests change, rather than “memory”. Long-term change (which should not be confused with non-
stationarity), produced by 
different mechanisms acting
on different time scales, is
the rule in nature (Kout-
soyiannis, 2013). The resul-
ting picture in a time series
is characterized by patterns
and differs from random
noise. It is exactly the pre-
sence of patterns which
makes the autocorrelation (a
measure of dependence) of
the series different from ze-
ro. An illustration is given in
the upper part of Figure 3.
This is a plot of the longest
available hydrological time
series, the Nilometer series
and, more specifically, the
annual minimum water level
of the Nile River for 849
years. For comparison, the
lower part of Figure 3 de-
picts a purely random time
series synthesized from an 
idealized (computer-simula-
ted) roulette wheel. Clearly,
the structured randomness
of the upper plot is different
from the pure randomness of
the lower plot.
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Figure 3 - (Upper) Structured randomness seen in the Nilometer data (annual

minimum water level of the Nile River; 849 values). (Lower) A time series repre-

senting pure randomness: each value is the minimum of 36 roulette wheel out-

comes. The value of 36 was chosen so that the standard deviation be equal to

the Nilometer series. Adapted from Koutsoyiannis (2013).



The easiest way to quantify this difference is through the climacogram of the process, i.e. the variance of the
time-averaged process at scale k as a function of k. More formally, let x(t) be a stationary stochastic process
representing the instantaneous quantity of a certain hydrological or other physical process in continuous time t.
Let X(k) := ∫0

κ
x(ξ)dξ be the cumulative process over the time interval [0,k] so that X(k)/k be the averaged process

at time scale k. Then the climacogram, γ(k), is defined as:

(1)

The cumulative process enables representation of the process in discrete time τ (denoting the continuous-time
interval [(τ - 1)D, τD], where D is a time unit) by

(2)

This can readily be expanded to define a discrete time process averaged at scale k = κ D, where κ is an integer:

(3)

With reference to the Nilometer data, where we have a realization of the process xτ of length 849, i.e. the time
series, x1, x2, ..., x849, we first calculate the sample estimate of variance γ (1), for time scale 1 (year). Then we form
a time series at time scale 2:

and calculate the sample estimate of the variance γ (2). We repeat the same procedure and form a time series at
time scale 3, 4, … (years), up to scale 84 (1/10 of the record length), and calculate the variances γ (3), γ (4),…
γ (84). The climacogram, the variance
γ (κ) as a function of scale κ, is
visualized as a double logarithmic plot
in Figure 4.
If the time series xτ represented a purely
random process, the climacogram would
be a straight line with slope –1. In real
world processes, the slope is different
from –1, designated as 2H – 2, where H
is the so-called Hurst parameter (0 < H <
1). The resulting model is expressed by:

(4)

where this scaling law defines the Hurst-
Kolmogorov (HK) process. High values
of H (> 0.5) indicate enhanced change at
large scales, else known as long-range
dependence or long-term persistence. It
indicates strong clustering (grouping) of
similar values. For the Nilometer series,
H = 0.87. This high value indicates that
(a) long-term changes are more frequent
and intense than commonly perceived,
and (b) future states are much more
uncertain and unpredictable on long time
horizons than implied by pure
randomness.
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Figure 4 - Climacogram of the Nilometer time series. The empirical

climacogram is estimated from the data, while all other are theoreti-

cal. A purely random process (H = 0.5) has a constant slope -1. A

Markov process has a curved climacogram for small scales, which

becomes a straight line with slope -1 at large scales. The best fitted

model is the Hurst-Kolmogorov with H = 0.87, whose slope is con-

stant. If we take into account the bias in the empirical estimation

(which is high, shown as the difference in the two red lines in the

plot), the resulting adapted theoretical climacogram fits well the

empirical climacogram. Adapted from Koutsoyiannis (2013).



4. EXAMPLES FROM NORTHERN ITALY
Does the behaviour of modern hydroclimatic time series resemble that of the Nilometer or that of random noise?
To answer this question, we can investigate time series from Northern Italy, where we can find some of the lon-
gest records of the world. 
Figure 5 shows the daily precipitation in Bologna for 206 years (1813-2018) as well as the hourly precipitation
for 23 years (1990-2013 with 2008 missing). In addition to the daily values, the 10-year average and maximum
values are also plotted. It is clearly seen that the 10-year climatic values have varied irregularly by a factor of 2
for the average daily precipitation and by a factor > 3 for the maximum daily precipitation. This is consistent
with the Hurst-Kolmogo-
rov behaviour and not with
the trendy climate-change
culture of monotonic
trends attributed to global
warming. Similar upward
and downward fluctua-
tions are seen for hourly
rainfall, even though the
shorter length of record
does not allow to view
them on a 10-year scale;
rather, a 2-year scale has
been used in the figure.
Figure 6 shows the daily
minimum and maximum
temperature in Milano for
246 years (1763-2008, al-
most uninterrupted), along
with the maxima and mi-
nima of a 30-year long sli-
ding window. 
Again, we have upward
and downward fluctua-
tions; the upward ones
prevail. A clearer illustra-
tion of temperature extre-
mes in Milano is provided
in Figure 7 extremes, whe-
re for each month the se-
cond highest value of
maximum temperature and
the second lowest of mini-
mum temperature are plot-
ted in a sliding window of
a 30-year length (contai-
ning ≈30×30=900 values).
Again, upward and down-
ward fluctuations are seen
with the upward ones pre-
vailing, particularly in the
low extremes. The clima-
tic range, measured as the
difference of the high and
low extremes, was 47 °C
in in 1800, increased to 53
°C in 1860 (worst period),
deceased to 45 °C in 2000
(best period), and increa-
sed to 48 °C in 2008.
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Figure 5 - Rainfall in Bologna, Italy (44.50°N, 11.35°E, +53.0 m). (Upper) Daily data

for 206 years; for the period 1813-2007 (195 years, uninterrupted) the data are

from the Global Historical Climatology Network (GHCN); for the period 2008-

2018, the data are provided by the repository Dext3r of ARPA Emilia Romagna.

(Lower) Hourly rainfall data for the period 1990-2013 (23 years full coverage, whi-

le the entire 2008 is missing), provided by the Dext3r repository. Source for daily

data: Koutsoyiannis (2020a); for hourly data: Lombardo et al. (2019).



A typical interpretation of the prevalence of the upward segments would be to attribute them to global warming,
which in turn would be attributed to human CO2 emissions, etc. However, other factors, more local than global,
may have been more important and it would be prudent to investigate them. One of them is urbanization, a
depiction of which is given in Figure 8.
By comparing the temporal evolution of maxima in Milano and two nearby stations (Monte Cimone and
Paganella; Figure 9), in which there is no increasing trend, it appears that urbanization is the principal factor
causing temperature increase, rather than global effects.
A necessary subsequent step would be to investigate the stochastic properties of the time series and try to build a
consistent stochastic representation (such as that in Koutsoyiannis et al. 2007), rather than relying on
computationally complex but conceptually simplistic deterministic approaches. As a first observation, the
climacograms of daily maximum and minimum temperature in Milano, shown in Figure 10, suggest a
pronounced Hurst-Kolmogorov behaviour (evident for time scales > 1 year) with a large value of Hurst
parameter, approaching 1. This suggests a very large climatic uncertainty about the future.
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Figure 6 - Daily minimum and maximum temperature in Milano, Italy (45.47°N, 9.19°E, 150.0 m) for the period

1763-2008 (246 years, almost uninterrupted); available from the Global Historical Climatology Network (GHCN)

- Daily.

Figure 7 - Depiction of the behaviour of monthly temperature extremes in Milano, Italy for the period 1763-

2008; each plotted value is the second highest maximum temperature value in a sliding window for the same

month of the previous 30 years (containing ≈30×30=900 values); likewise for the second lowest value for mini-

mum temperature.



5. CHARACTERIZATION OF EXTREMES BY K-MOMENTS 
While the climacogram is a powerful tool in characterizing the dependence in a stochastic process, it is relevant
to remark that the climacogram is based on second-order characteristics of the process. On the other hand, it is
well known that the behaviour of extremes cannot be captured by second-order moments but is related to higher-
order ones. One may think of introducing climacograms of high-order moments to serve the purpose of studying
extremes. However, as shown by Koutsoyiannis (2019), classical moments of order higher than 2-3 are
unknowable, in the sense that their values cannot be reliably estimated from typical samples, even when in theory
their estimators are unbiased. 
To overcome this problem Koutsoyiannis (2019) introduced the knowable moments (or K-moments), a category
of which, most useful for the study of extremes, is the noncentral knowable moment of order (p, 1) defined as:
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Figure 8 - Depiction of urbanization in Milano. The up-

per graph refers to 1988 (population 3 506 838, urban

extent 88 417 ha), and the second in 2013 (population

6 402 051, urban extent 277 177 ha). Both graphs have

the same scale. Source: Glynis (2019) from data provi-

ded by the Atlas of Urban Expansion.

Figure 9 - Comparison of maximum temperature in

Milano and nearby stations in non-urbanized areas.

Each value is the second highest daily temperature

maximum in a sliding window containing the pre-

vious 30 years (irrespective of the month it occurred).

Note that both Monte Cimone and Paganella stations

are located at elevations about 2000 m higher than

Milano, which causes a temperature difference of

6.5 °C/km × 2 km = 13 °C; to account for this effect

the right vertical axis is shifted by 13 °C with respect

to the left one.

Figure 10 - Climacogram of the of maximum and minimum daily temperature in Milano.



(5)

The relevance of K-moments for extremes results from the following relationship, rendering them expected
values of maxima:

(6)

Their knowability stems from the fact that we can construct estimators with good properties such as
unbiasedness, small variance and fast convergence to the true value. The unbiased estimator of K'p for any
positive order p (usually, but not necessarily, integer), up to the sample size n, is (Koutsoyiannis, 2020a):

(7)

where x(i:n) is the ith order statistic (representing the ith smallest value) in a sample of size n and Γ( ) is the
gamma function.
A K-moment is a characteristic of the marginal distribution of a process and therefore it is not affected by the
dependence structure. However, its estimator is affected. Indeed, temporal dependence induces bias to estimators
of K-moments. Thus, the unbiasedness ceases to hold in stochastic processes. For a Markov process the effect of
autocorrelation is negligible, unless n is low and r high (e.g. > 0.90). However, for an HK process this effect can
be substantial. In that case, what we estimate by equation (7) is not an estimate of the Kp for order p, but one for
a lower order p', where (Koutsoyiannis, 2020a):

(8)

Thus, the K-moment framework allows to take into account the dependence structure of the process. An
exceptional characteristic of the K-moments is the fact that to each estimated value of Kp we can easily assign a
return period, which makes the framework ideal for studying extremes. Recalling that for maxima, the return
period of a value x is given as T(x) = D/(1 – F(x), where D is a reference time unit (e.g. 1 year) and F is the
distribution function of x, the assignment of return periods to K'p values is made through the coefficients Λp,
defined as:

(9)

It happens that Λp varies only slightly with p. Any symmetric distribution will give exactly Λ1 = 2 because K'1 is
the mean, which equals the median and thus has a return period of 2D. Hence, a rough approximation is the rule of
thumb, Λp ≈ 2. Generally, the exact value Λ1 is easy to determine, as it is the return period of the mean, while the
exact value of Λ∞ (for order p → ∞ ) depends only on the tail index ξ of the distribution (Koutsoyiannis, 2020a):

(10)

where γ = 0.577 is the Euler’s constant. These enable simple approximation of Λp and hence of the return period
by:

(11)

A better approximation of Λp, almost perfect for any distribution function, is (Koutsoyiannis, 2020a):

(12)

30 - L'ACQUA 1/2021

IDROLOGIA

G
IO

R
N

A
TA

 D
I 
S
T
U

D
IO

 I
N

 M
E
M

O
R
IA

 D
I 
B
A

LD
A

S
S
A

R
E
 B

A
C

C
H

I



This involves two constants β and B, which depend on the distribution function. The effectiveness of this
approximation for a number of distributions is depicted in Figure 11.
A detailed presentation of the K-moment framework and its application in several cases of assessment and
modelling of extremes can be found in Koutsoyiannis (2020a). Even the most demanding applications, such as
the construction of reliable ombrian curves (else known as intensity-duration-frequency curves) for time scales
ranging from minutes to decades, has been well served by this framework. 

6. CONCLUDING REMARKS
Following the current trend in hydrology may mean taking steps back. An advice to avoid them would be: better
classic than trendy (cf. Iliopoulou and Koutsoyiannis, 2020). A non-trendy stochastic framework, equipped with
the central concepts of stationarity, ergodicity and time dependence (particularly long-range one), offers a good
representation of the hydrological processes and their extremes. The newly introduced knowable moments (K-
moments) are powerful tools that unify other statistical moments (classical, L-, probability weighted) and order
statistics, offering several advantages, including their theoretical consistency and optimal use of available data.
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