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Abstract  

Focal point of this work is the estimation of the distribution of maxima without the use 
of classic extreme value theory and asymptotic properties, which may not be ideal for 
hydrological processes. The problem is revisited from the perspective of non-
asymptotic conditions, and regards the so-called exact distribution of block-maxima of 
finite-sized k-length blocks. First, we review existing non-asymptotic 
approaches/models, and also introduce an alternative and fast model. Next, through 
simulations and comparisons (using asymptotic and non-asymptotic models), involving 
intermittent processes (e.g., rainfall), we highlight the capability of non-asymptotic 
approaches to model the distribution of maxima with reduced uncertainty and 
variability. Finally, we discuss an alternative use of such models that concerns the 
theoretical estimation of the multi-scale probability of obtaining a zero value. A useful 
finding when the scope is the multi-scale modeling of intermittent hydrological 
processes (e.g., intensity-duration-frequency models). The work also entails step-by-
step recipes and an R-package. 

Keywords: non-asymptotic distribution of k-length block maxima; non-Gaussian 
marginal distribution; autocorrelated processes; intermittent processes; Gaussian 
copula.  
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1 Introduction 

“We have to remember that what we observe is not nature herself, but nature exposed to 
our method of questioning.”  

 W. K. Heisenberg 

The probabilistic laws that rule the magnitude and frequency of occurrence of extreme 
events, particularly maxima, have been for years an active topic of research in a variety 
of scientific fields, including finance, actuarial science, as well as engineering, due to the 
severe and disruptive consequences that such events may cause (Embrechts et al. 1997; 
Reiss et al. 1997; Smith 2003; Beirlant et al. 2006). Of course, hydrological sciences are 
not an exception, rather a pioneer in the topic, as evidenced by the fact that the first 
relevant studies (Fuller 1914; Hazen 1914) were published more than 100 years ago. 
Also, hydrological applications were some of the first ones where the statistical theory 
of extreme value theory (EVT) was applied (Gumbel 1941b, a, 1958 pp. 236-245). As 
remarked by Katz et al. (2002), this is highlighted by E. Gumbel (1958) where in his 
iconic book, Statistics of Extremes, it is stated that “the oldest problems connected with 
extreme values arise from floods”. Eventually, the works of Gumbel together with other 
pioneering works in the domain (Fréchet 1927; Fisher and Tippett 1928; von Mises 
1936; Gnedenko 1943; Jenkinson 1955; de Haan 1971; Galambos 1972; Leadbetter 
1974, 1983; Pickands III 1975) are considered nowadays cornerstones for the 
development EVT. Studies that remain influential and arguably standard references in 
multiple scientific domains. For a thorough historical survey see Kotz and Nadarajah, 
(2000 ch. 1.1), while complete treatments on the subject can be found in Resnick 
(1987), Reiss et al. (1997), Coles (2001), Smith (2003), Salvadori et al. (2007), and 
Koutsoyiannis (2020). 

The importance of extremes in hydrological engineering is manifested by the critical 
nature of hydraulic infrastructures (e.g., reservoirs, spillways, dikes, etc.), which among 
the many purposes they serve (e.g., water supply, energy production), they are 
constructed to offer protection and security against rare, and extreme phenomena (e.g., 
floods). Thus, by definition their design and management have to take into 
consideration the probabilistic behaviour of extremes, i.e., account for the distribution’s 
tails (in particular the right one for maxima), where the extremes live. This criticality 
has motivated a significant amount of research in the domain hydrological extremes, 
offering a variety of approaches (Buishand 1989, 1991; Pilon et al. 1991; Wilks 1993; 
Koutsoyiannis et al. 1998; Koutsoyiannis 1999, 2004, 2020; Katz et al. 2002; Park and 
Jung 2002; Coles et al. 2003; Favre et al. 2004; Wilson and Toumi 2005; Deidda and 
Puliga 2006; Calenda et al. 2009; Svensson and Jones 2010; Volpi and Fiori 2012, 2014; 
Cavanaugh et al. 2015; Marani and Ignaccolo 2015; Volpi et al. 2015, 2019; Zorzetto et 
al. 2016; Blum et al. 2017; Salas et al. 2018; Ye et al. 2018; De Michele and Avanzi 2018; 
Salas and Obeysekera 2019; Benestad et al. 2019; Courty et al. 2019; De Michele 2019; 
Lombardo et al. 2019; Iliopoulou and Koutsoyiannis 2020; Serinaldi et al. 2020), just to 
name a few. For a thorough discussion on hydroclimatic extremes, and associated 
methodological approaches, the interested reader is referred to the recent book of 
Koutsoyiannis (2020). Nonetheless, many of these approaches are typically build upon 
the assumption of stationarity, while more recently special attention is given to 
methods accounting for non-stationarity (for a detailed review on such approaches see 
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Salas et al. (2018)). It is remarked that this modelling choice is for years a matter of 
significant debate (Lins and Cohn 2011; Matalas 2012; Montanari and Koutsoyiannis 
2014; Koutsoyiannis and Montanari 2015), with several works highlighting the 
importance of the hypothesis of stationarity.  

Notwithstanding the latter assumption, the majority of research works involve the use 
of EVT and the associated asymptotic laws and distributions. That is, focusing on the 
asymptotic distribution of block maxima (BM) or peaks over threshold (POT) 
exceedances, for a large number (tending to infinity) of events (block size or data 
respectively), under the hypothesis of temporal independence (i.e., zero serial 
correlation). Another important concept that is worth mentioning, despite the fact it is 
not in the core of this work, is the so-called extremal index (Leadbetter 1983; 
Leadbetter et al. 1983; Hsing et al. 1988; Leadbetter and Rootzen 1988; Coles 2001 Ch. 
5), which extends the classical asymptotic EVT for processes with zero serial correlation 
to serially dependent (stationary) ones. It is argued (Hsing et al. 1988) that the extremal 
index is an important quantity for dependent processes since it can be interpreted as 
the reciprocal of the expected size of an extremal cluster above high thresholds (i.e., 
quantify the extend of clustering of extremes). More details on the topic, as well as on 
estimation methods can be found in the above seminal works as well as in literature 
(e.g., Smith and Weissman 1994; Embrechts et al. 1997).    

On the other hand, the use of non-asymptotic laws and distributions (also called exact in 
Gumbel’s (1958) terminology) has received little attention in hydrology (Koutsoyiannis 
2004). Probably due to, 1) the distribution of the base/parent processes has to be a 
priori known (or inferred from data), and 2) the convenience offered (in terms of data 
storage/management and computation) by utilizing limiting laws that imply the use of 
subsets of data (i.e., inference on the distribution of maxima using only BM or POT 
observations). Of course, this convenience comes at the cost of neglecting the effect of 
temporal dependence, as well as neglecting observations per se (e.g., the second and 
third larger maxima within a block), facts that arguably affect the inference about the 
extremes behaviour (Volpi et al. 2019; Lombardo et al. 2019; Koutsoyiannis 2020; 
Serinaldi et al. 2020). 

In this line of thought, recent research efforts favor the use of the complete record of 
observations and also involve the derivation of the non-asymptotic distribution of 
maxima over a finite-size block. Representative works are those of Marani and 
Ignaccolo (2015), Zorzetto et al. (2016), De Michele and Avanzi (2018), Volpi et al. 
(2019) and Koutsoyiannis (2020), which are all however linked with the assumption of 
temporal independence. See also the recent review on the topic by De Michele (2019), 
focusing on the exact distribution of maximum annual daily precipitation. Notable 
exceptions are the works of Lombardo et al. (2019) and Serinaldi et al. (2020), that 
regard the exact distribution of  -length block maxima under the assumptions of 
Markov and general autocorrelation structures respectively. In particular, the latter 
work via thorough analyses and insightful discussions clarifies, and brings order, in 
many delicate matters that concern the non-asymptotic distribution of maxima of 
autocorrelated processes (highlighting also important links with the seminal works of 
Todorovic and Zelenhasic (1970), and Todorovic (1970)). 
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Having the above in mind, and motivated by the potential, as well as the growing 
interest in non-asymptotic distributions for the modelling of  -length block maxima 
herein we aim to:  

1. Review (section 3) the existing models/approaches for the derivation of the exact 
distribution of  -length block maxima, under the assumption that they arise from a 
stationary, discrete-time, non-Gaussian autocorrelated process with underlying 
dependence given by the Nataf’s joint distribution (i.e., the Gaussian copula). 

2. Implement the reviewed models in an R package, called bBextremes (freely 
available), favoring this way further research on the topic, as well as easy 
application of these approaches in real-world studies. 

3. Introduce (section 3.6) a fast model for the exact distribution of  -length block 
maxima by combining the exact distribution of an autoregressive process of order   
(AR( )) and a recent finding of Serinaldi et al. (2020) that regards the ability of Beta-
Binomial (  ) distribution to model the exact distribution of  -length block maxima 
of autocorrelated processes.  

4. Conduct a series of simulation experiments (section 4), involving intermittent non-
Gaussian autocorrelated processes, to demonstrate and also compare the 
performance of the reviewed models for the estimation of the distribution of  -
length block maxima with that of more classical approaches that involve: a) the 
asymptotic distribution of block maxima (i.e., the Generalized Extreme Value 
distribution) and, b) alternative, non-extreme-value distribution models for the  -
length block maxima series. A comparison that aims to provide answers to questions 
such as: Which model/approach should we employ to model the distribution of  -
length block maxima? Are the non-asymptotic models more robust than the asymptotic 
ones? Using which approach (asymptotic or non-asymptotic) we have better chances 
to identify the true distribution of  -length block maxima? 

5. Highlight an additional use of the    distribution, and the related models, that 
regards intermittent processes (e.g., rainfall at fine time scales), and the estimation 
of the probability of obtaining a zero value (also called probability dry, expressing 
the probability of a dry/zero interval) at multiple temporal scales of aggregation 
(section 5). A finding that can be of particular use when the scope is the multi-scale 
modeling of intermittent hydrological processes, such as the development of 
intensity-duration-frequency models (see section 5.4). 

The remaining of this work is structured as follows: section 2 provides a brief 
introduction to the necessary concepts and notions used in this work. Section 3 
discusses and reviews the existing approaches for the derivation of the exact 
distribution of  -length block maxima, as well as introduces a new model that combines 
the exact distribution of maxima of an AR(n) process and the    distribution. Section 4 
concerns the simulation experiments and comparisons mentioned above (point #4), 
while section 5 focuses on point #5. Finally, section 6 summarizes the key points and 
findings of this work through a brief discussion, noting also directions for future 
research. 

2 Notation and introduction of key concepts 

It is remarked that unless stated otherwise, this work concerns univariate stationary 
discrete-time processes with continuous or zero-inflated marginal distributions with 
finite variance as well as valid (i.e., positive definite) autocorrelation structures. Also, 
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we focus only on non-negative autocorrelation structures, since they are abundant in 
hydrometeorological processes. In addition, an assumption made throughout this work 
is that the latter processes are characterized by the Nataf’s joint distribution model 
(Nataf 1962; Liu and Der Kiureghian 1986), hence called Nataf-based processes 
(Tsoukalas et al. 2018a). Such processes are essentially characterized by Gaussian 
copula dependence structure (often termed meta-Gaussian, see Kelly and 
Krzysztofowicz (1997)); since they rely on the (typically non-linear) mapping (i.e., 
transformation, translation) of an appropriately parameterized Gaussian process.  

Further to the brief introduction provided in this section, the interested reader is 
referred to Tsoukalas et al. (2020) for a general overview and historical roadmap of 
such developments, as well as computer software (R package anySim). Similar 
characteristic works of this kind can be found in hydrological domain, starting with the 
works of  Matalas (1967), Klemeš and Borůvka (1974), and Bell (1987), as well as more 
recent ones (Tsoukalas et al. 2017, 2018a, b, 2019; Serinaldi and Lombardo 2017; 
Papalexiou 2018; Kossieris et al. 2019). Interestingly,  similar developments can also be 
found in broader engineering literature (Gujar and Kavanagh 1968; Li and Hammond 
1975; Grigoriu 1984, 1998; Liu and Der Kiureghian 1986; Yamazaki and Shinozuka 
1988; Emrich and Piedmonte 1991; Cario and Nelson 1996; Popescu et al. 1998; Biller 
and Nelson 2003; Christakos 2012). 

To provide context, let {  }    , where   denotes the time index, be a discrete-time 
stationary process with arbitrary, continuous or zero-inflated, marginal distribution, 
  (   )   {   }, where   is a vector that denotes the distribution’s parameters. Let 
also the autocorrelation structure (ACS) of the process be denoted by,    
    [       ], where   {         } stands for the time lag. Hereafter, and without 
loss of generality the parameter vector   will be omitted for the sake of simplicity. 

A realization (i.e., a time series)    of the process    can be generated by the non-linear 
mapping of an auxiliary standard Gaussian process {  }    , hereafter abbreviated as 
Gp, with autocorrelation structure,  ̃      [       ], hereafter termed equivalent 

ACS, through the mapping operation,     
  ( ( )), where   denotes the cumulative 

distribution function (CDF) of the standard Gaussian distribution, and   
   denotes the 

inverse of the desired CDF (ICDF), also known as quantile function. Note that the 

relationship      (  ( )) also holds true. 

A delicate and important detail to recall is that the ACSs of the Gaussian and the target 
process are related via a double infinite integral (see the references mentioned above; 
e.g., Tsoukalas et al. (2019)), defining a relationship between    and  ̃ , abbreviated as 
Target-Equivalent correlation (TEC) relationship. The shape and non-linearity of the 
TEC relationship depends on the marginal distribution of    as well as its parameters  , 
i.e.,   (   ). Hence, it can be shorthanded as, 

     ( ̃     ) (1) 

where   denotes the TEC relationship. Note that the dependence of TEC on the 
distribution’s parameter vector   has been omitted for brevity. To establish a target 
process    with a desired ACS,   , the auxiliary Gp has to be parameterized with an 
appropriate (called equivalent) ACS  ̃ , which can be found by inverting the above TEC 
relationship, i.e., 
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  ̃     (      ) (2) 

It is noted that the above procedure can also be applied for the simulation of processes 
with discrete marginal distributions, such as, the Bernoulli, the Poisson or the Beta-
Binomial (e.g., Serinaldi and Lombardo 2017; Papalexiou 2018; Tsoukalas et al. 2019, 
2020). Herein, let us briefly discuss the case of processes with Bernoulli marginal 
distribution, which will be used next for the estimation of the distribution of maxima of 
non-Gaussian autocorrelated processes (see section 3). A discussion also useful for the 
theoretical estimation of the probability of obtaining a zero value at multiple scales (see 
section 5) for intermittent processes. 

Following the same notation, a process    can be dichotomized at any level    
  

  ( ), and converted into a binary process, denoted by   , having Bernoulli marginal 
distribution with parameter   (i.e.,   ( )), with state space {   } and probabilities 
 {   }   {     }        and  {   }   {     }       , by 
applying the following mapping procedure, 

    {
                   

  ( )    
  (   )

                   
  ( )    

  (   )
  (3) 

The above procedure will yield a process with      (      (  )) and ACS, 

 ̈      [       ], which will be different from that of   , i.e.,   . This is due to the use 
of the latter non-linear mapping operation. In order to find  ̈ , which depends both on 
    ( ̃     ) and the dichotomization level   ,  ̃  should be first estimated by 
inverting TEC (Eq. (2)), and then by setting as “target” the Bernoulli marginal 
distribution with parameter       (  ), convert the  ̃  to  ̈ . The latter procedure 
is expressed as, 

  ̈ (     )     (   (      )       (      (  ))) (4) 

or more conveniently as a function of  ̃  as, 

  ̈ (    ̃ )     ( ̃        (      (  ))) (5) 

where     is an abbreviation for the TEC relationship specifically for the case of   ( ) 
marginal distribution. It is interesting to note that the ACS  ̈  of a binary process is 
closely related with the notions of extremogram (Davis and Mikosch 2009), and tail 
dependence coefficients of a univariate process (Beirlant et al. 2006), which in turn can 
be viewed as analogues of the autocorrelation function of extreme values (i.e., values of 
a series exceeding a specified threshold   ). 

Nevertheless, to estimate the ACS of   , i.e.,  ̈   it is required to resolve a double infinite 
integral (e.g., Emrich and Piedmonte 1991; Serinaldi and Lombardo 2017; Serinaldi et 
al. 2020), as in the general case of Nataf (or Gaussian copula) -based processes, or resort 
to alternative approximate relationships (Liu and Der Kiureghian 1986; Serinaldi and 
Lombardo 2017). For reasons related with computational speed, herein we follow the 
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latter rationale and thus introduce an approximate closed-form expression for the TEC 
relationship for processes with   ( ) marginal distribution. In particular we used the 
following function,  

  ̈  (    (   ̃ )
 

  (  ))

 
  (  )

 (6) 

where,       (     ),   (   ), while   (  ) and   (  ) are parameters that 
depend on    (and hence to    distribution parameter  ). The parameters are given by, 

   (  )               
                (        ) (7) 

   (  )                
                (         ) (8) 

The functional forms of Eq. (7) and Eq. (8), depicted in Figure 1 for            , 
resemble those used by Serinaldi and Lombardo (2017). However, here they are 
combined with Eq. (6), which in turn resembles the form of the Kumaraswamy ICDF 
(Kumaraswamy 1980), which has been suggested earlier as a good candidate model for 
approximating TEC relationships (Papalexiou 2018). 

Compared to the more exact, but time consuming, numerical integration approach (see 
Figure 2), the proposed approximate solution provides a mean absolute difference 
error equal to ~0.0065, while the maximum error, in terms of simple difference is equal 
to ~0.04 for       . This error can be considered small for practical applications, 
given the computational gains that this approximation offers. Furthermore, in 
comparison with the solution provided by Serinaldi and Lombardo (2017), the 
proposed approximation offers two main advantages: 1) it consists a much simpler 
closed-form formula, since it avoids the use of Beta’s distribution CDF that does not has 
an explicit expression (as in the aforementioned paper), and 2) it can be easily inverted 
to find the equivalent (i.e., Gaussian) correlation coefficients. The latter advantage is of 
particular use when the objective is the simulation of processes with   ( ) marginal 
distribution and any (valid) ACS, which in such cases,     ̈ . In particular, the inverse 
of Eq. (6), is given by, 

  ̃    (   ̈ 
  (  ))

  (  )
 (9) 

  

Further to the above approach an alternative solution would be the use of an 
approximation formula for the bivariate Gaussian CDF (such as the one proposed by 
Koutsoyiannis (2020)), which is hidden in the double integral that links the Gaussian 
and target correlations in the case of    processes (see Eq. (2.1) in Emrich and 
Piedmonte 1991; Serinaldi and Lombardo 2017). In particular, the ACS of a   ( ) and a 
standard Gaussian process are linked by, 
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  ̈  
  (    ̃ )    

 (   )
 

(10
) 

where       ( ), and   (    ̃ ) stands for the bivariate standard Gaussian CDF with 

identical inputs   , i.e.,   (       ̃ )    (    ̃ ). The function    can be solved 

through numerical integration, or more conveniently approximated (for purposes of 
computational speed-up). Herein we suggest the use of a novel and accurate 
approximation (see Eq. (5.48) in Koutsoyiannis (2020), as well as the relevant 
comparisons highlighting the approximation’s accuracy), which reads as follows (for the 
sake of simplicity the indices   and   have been omitted), 

   ( )   ( )   (    )     (
  

 
)

 (       )

 
  (11

) 

where,    √
   ̃

    ̃
      

 

 
√

    ̃

   ̃
. To illustrate the accuracy of this approximation 

for the purposes of this work we formulated an additional comparison with the 
numerical integration approach (similar to that of Figure 2), yet this time focusing on 
very low values of   spanning from      to     . In this case the mean absolute 
difference error is equal to ~0.0023, while the maximum error, in terms of simple 
difference, is equal to -0.023, for        (see Figure 3). When cross-comparing the 
two approximation approaches it is found that, the former (i.e., Eq. (6)) performs better 
for values of   in the range of 0.5 to      (which was used to calibrate the parameters of 
Eq. (7) and (8)) while the latter approach (i.e., Eq. (11)) provides smaller approximation 
errors for values of   smaller than     . Having the above empirical results in mind, and 
aiming to minimize the approximation error, for all subsequent analyses we employ the 
first approach for   [        ], while employ the second one for values of   <    . 

Finally, it is noted that for convenience and subsequent use, hereafter we denote the 
autocorrelation matrices (with dimensions    ) of the target, Gaussian and binary 
processes, by   ,  ̃  and  ̈  respectively. By definition, the above matrices are Toeplitz 
ones, and can be established using the corresponding ACSs, i.e.,   ,  ̃  and  ̈  
respectively. For instance, the elements of    are [  ]          , where   and   are 

indices denoting rows and columns respectively. The element of    in most right (left) 
column and bottom (top) row is equal to        (      ). Therefore, for convenience we 

may write,            (   (   )), where         ( ) is a function that transforms a 

vector   into a Toeplitz matrix. 

3 The distribution of k-length block maxima of non-Gaussian 
autocorrelated processes  

3.1 The general case: in view of the Gaussian copula  

The distribution of k-length block maxima            {  } over a block of   time 
steps (i.e., of   random variables) is denoted by    

( )   {           }, and 

expresses the probability of not exceeding the value   in a block of size  , (i.e., in   time 
steps). Its reciprocal, or complementary function,  ̅  

( )       
( ), expresses the 

probability of exceeding the value   (i.e., observing at least one exceedance of   in a  -
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sized block). By construction the distribution    
 is identical to the multivariate 

distribution of order   of the so-called data-generating, base or parent process   , i.e., 

    
( )     

(    )     
(         )   {           } (12) 

which in turn can be expressed using the notion of copulas, and in particular using a  -
dimensional copula function denoted by   ( ), i.e.,  

    
( )     

(    )   {           }    (  ( )     ( )  ) (13) 

where   is a vector that contains the parameters of the copula. Also note that in the case 
of stationary processes, the marginal distribution of    is identical for all   and denoted 
by    (hence the index   can be safely omitted), while, since we are concerned with the 
distribution of k-length block maxima (hereafter denoted simply as the distribution of 
maxima) the input in the multivariate distributions is just  .  

It is recalled that a copula (Sklar 1959, 1973) is a multivariate distribution with uniform 
( ) marginals, which allows the establishment of a plethora of multivariate 
distributions, by modelling separately the dependence structure and the marginal 
distributions of the random variables (provided that both the copula and the marginals 
are differentiable). During the recent years copulas have gained significant popularity in 
a variety of scientific domains (e.g., Schweizer et al. 1991; Nelsen 2007), including that 
of hydrology (e.g., De Michele and Salvadori 2003; Favre et al. 2004; Salvadori and De 
Michele 2004, 2007; Salvadori et al. 2007; Chen and Guo 2019; Zhang and Singh 2019), 
since they have been proven particularly useful modelling tools to characterize and 
model a variety of dependence structures. 

In this work, the focus is given to the Gaussian copula for three main reasons. 1) It 
enables the relatively easy and straighthood modelling of multivariate distributions 
with more than two dimensions, compared to alternatives requiring pair-copula 
constructions (Aas et al. 2009; Joe 2014). 2) It consists the dependence structure of 
Nataf-based processes, which are used herein to generate synthetic time series, as well 
as validate the reviewed non-asymptotic models of    

. 3) It has been widely used in 

hydrological domain for a variety of modelling purposes; see for instance the reviewed 
works of Section 2, the work of Renard and Lang (2007) who demonstrate the use of 
this copula in four different applications (some of them related with extremes), as well 
as works related with the meta-Gaussian distribution model (Kelly and Krzysztofowicz 
1997; Fang et al. 2002; Herr and Krzysztofowicz 2005; Genest et al. 2007), which can be 
viewed as a Gaussian copula (for more applications of this kind see the brief review on 
meta-elliptical copulas presented in section 2.3.3 of Chen and Guo (2019)). However, 
and despite the above reasoning, it is remarked that the Gaussian copula is related with 
the property of asymptotic independence, and thus it is argued that the plausibility of 
this assumption is a topic requiring further research. With this in mind, all formulas 
presented in this section are first introduced using general copula functions, and then 
specialized for the specific case of Gaussian copula.  
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In particular, using the Gaussian copula, i.e.,   ( )    ( 
  (  )      (  )  ̃ ), 

where     (   ), and   (   ̃ ) denotes the kth order multivariate standard Gaussian 

CDF with zero mean and correlation matrix  ̃ , we obtain the following relationships 
for the CDF of   , 

  {           }     
( )     

(    )    (   (  ( ))      (  ( ))  ̃ ) (14) 

It is also remarked that Eq. (14) does not have a closed-form solution, and requires the 
use of numerical integration methods, something that it is not a trivial task. For 
demonstration, as well as verification purposes, herein we obtained estimates of the 
latter formula using the copula R-package (Yan 2007; Kojadinovic and Yan 2010; 
Hofert et al. 2014). Also, it is noted that the latter package provides functions applicable 
up to dimension       , hence it cannot be used when the block size is larger than 
1000 (e.g., for the estimation of annual maxima distribution of an hourly process; where 
       ). 

3.2 The case of independence 

It is well known that the distribution of maxima    over a block of   time steps of a 
stationary stochastic process with zero ACS, i.e., consisted by   independent identically 
distributed (i.i.d.) random variables, has an explicit and tractable solution given by 
(Gumbel 1958 ch. 3.1, Eq. (1)), 

    
( )  ∏   

( )

 

   

 (  ( ))
 

 (15) 

where   ( ) is the marginal distribution of the base process   . The latter formula 
consists also the basis for the derivation of classical asymptotic results (i.e.,    ) that 
regard the probability distribution of extremes (e.g., maxima). In particular, it has been 
shown (Fisher and Tippett 1928; Gnedenko 1943) that when     there are just three 
types of extreme value asymptotes, in Gumbel’s terms, (or more simply, extreme value 
distributions), that is, the Fre chet (1927), the Gumbel (1958), and the reversed Weibull. 
All of them contained into the iconic Generalized Extreme Value distribution (   ; see 
Eq. (B8) in Appendix B) of von Mises (1936). It is recalled that     is the asymptotic 
distribution of    under the assumptions of independence and stationarity.  

3.3 The case of AR(1) process 

As elaborated in, the arguably not widely popularized, work of Hirtzel et al. (1982) 
(focusing though only in the Gaussian case), and recently in hydrological domain by 
Lombardo et al. (2019), the distribution of k-length block maxima    of a first order 
autoregressive process (i.e., AR(1) or Markov) can be obtained by a simple and tractable 
formula, i.e., 

    
( )  (

   
( )

   ( )
)

   

  ( )  (
  (  ( )   ( ))

  ( )
)

   

  ( ) (16) 
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where   (  ( )   ( )) is a bivariate copula. In the case of the Gaussian copula the 

above relationship is re-written as, 

    
( )  (

  ( 
  (  ( ))    (  ( ))  ̃ )

  ( )
)

   

  ( ) (17) 

As in the more general case of Eq. (14),    also requires the use of numerical 
integration techniques (herein implemented using the copula R package), which in this 
case impose a minimal computational overhead. An alternative, more computationally 
efficient route would be the use an approximation formula for   , such as a recently 
proposed one (Koutsoyiannis 2020 pp. 166-167), which proved to be quite accurate 
(see Figure 5.5 therein) for a wide range of parameters/values. 

3.4 The case of AR(n) process 

The previous model of    is being further extended herein for autoregressive processes 
of order   (AR(n)). In such cases, the distribution of maxima is provided by, 

 

   
( )  (

     
( )

   
( )

)

   

   
( )

 (
    (  ( )     ( ))

  (  ( )     ( ))
)

   

  (  ( )     ( )) 
(18) 

where   (  ( )     ( )) denotes a  -dimensional copula. For the Gaussian copula the 

above expression reads as follows, 

    
( )  (

    ( 
  (  ( ))      (  ( ))  ̃   )

  (   (  ( ))      (  ( ))  ̃ )
)

   

  (   (  ( ))      (  ( ))  ̃ ) (19) 

However, the direct use of this model is particularly complicated and quite unstable, 
since it involves the ratio of two high-order multivariate distributions (i.e.,      

 and 

   
), which in the case of Gaussian copula require the use of numerical integration, 

which may lead to accuracy problems. A potential, and computationally efficient remedy 
to this issue is discussed next at section 3.6. 

3.5 An approximation based on the Beta-Binomial distribution 

As shown by Serinaldi et al. (2020), the distribution of maxima over a block of size  , i.e., 
   

, as well as the  -dimensional standard Gaussian distribution with identical inputs, 

can be very well approximated using the Beta-Binomial distribution (  ), which is used 
herein for computational purposes. It is also interesting to note that the 
abovementioned work found that same methodological approach can be used to 
estimate with satisfactory accuracy the exact distribution of maxima of AR(1) processes 
with other types of dependence structures, such those provided by the Clayton and 
Gumbel copulas (e.g., see Figure 1 in Serinaldi et al. (2020), as well as the relevant 
discussion therein). 
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Nonetheless, it is recalled that the    distribution is typically used to describe the 
number of successes over a certain number of trials (i.e., exceedances over a block of 
size  ). A random variable      has probability mass function (PMF) and CDF given 
by, 

    (       )   {   }  (
 

 
)
 (         )

 (   )
   {       } (20) 

    (       )   {   }  ∑(
 

 
)
 (         )

 (   )

 

   

   {       } (21) 

where  (   ) denotes the complete beta function, while      is a parameter denoting 
the number of trials, as well as     and     are shape parameters. For subsequent 
use, it is noted that for    , the PMF and CDF of    result into an identical expression 

(since ( 
 
)   ), that is, 

    (       )     (       )  
 (     )

 (   )
 (22) 

According to the aforementioned work, the distribution of maxima    
 over a block of 

size   of an autocorrelated stationary process    can be very well approximated using 
the    distribution, in particular the distribution of maxima    is estimated by, 

 

   
( )     

(    )    ( 
  (  ( ))      (  ( ))  ̃ )

    (       (  ( )  ̃ )    (  ( )  ̃ ) ) 

 

(23) 

As hinted by notation, both parameters of    distribution depend on   ( ) and  ̃  
which can be found by the following relationships,  

    (  ( )  ̃ )  
   ̈  (  ( )  ̃ )

 ̈  (  ( )  ̃ )
(    ( )) (24) 

    (  ( )  ̃ )  
   ̈  (  ( )  ̃ )

 ̈  (  ( )  ̃ )
  ( ) (25) 

where,  ̈  (  ( )  ̃ ) denotes the so-called intra-cluster correlation coefficient 

( ̈   [ 
 

   
  ]), of the associated binary process, dichotomized at value   (hence the 

use of “double dot” notation for correlation coefficient); see Serinaldi et al. (2020), and 
references therein, for further details. In particular,  ̈  (  ( )  ̃ ) can be estimated by, 

  ̈  (  ( )  ̃ )  
   ̈ (  ( )  ̃ )   

 (   )
  (26) 
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where   is a k-dimensional vector of ones, and  ̈ (  ( )  ̃ )     ( ̃     

  (      ( ))), which can be easily and well approximated using the closed-form 

TEC relationship of Eq. (6).  

It is remarked that in the above discussion we used a slightly different notation than the 
one used by Serinaldi et al. (2020), aiming to further highlight the links between 
different types of correlation coefficients (i.e., those in the target, the Gaussian and the 
binary domain) as well as clarify their appropriate use to estimate    

. 

3.6 An alternative and fast approximation based on the Beta-Binomial 
distribution and the distribution of maxima of AR(n) processes 

A potential issue with the above    model for    
 is related with the fact that when   is 

large enough, then the Toeplitz operator required to establish  ̈          ( ̈  (   )), 

where  ̈  (   )     ( ̃  (   )      (      ( ))), can prove a significant 

computational barrier in several programming languages (e.g., R), given that this 
operation has to be performed for any given value of    for which we need to estimate 
   

( ). For instance, in R, the function stats::toeplitz(x), where x is vector of size 

   , requires about 5 sec (in a 2.2GHz quad-core Intel Core i7 processor), hence a 
remedy may be needed for such cases. Of course, a potential way around is to use a 
faster function for such operation (e.g., written in a low-level programming language, 
such as C/C++). However, herein we follow a different route (which of course can be 
combined with alternative/faster toeplitz functions) and propose an approximation 
that combines Eq. (19) and Eq. (23) into a single relationship (abbreviated as, 
AR(n)+  ). This model reads as follows (assuming    ), 

 

   
( )

 (
   (         (  ( )  ̃   )    (  ( )  ̃   ) )

   (       (  ( )  ̃ )    (  ( )  ̃ ) )
)

   

   (       (  ( )  ̃ )    (  ( )  ̃ ) ) (27) 

The above model essentially assumes that the distribution of maxima    
( ) of a 

process      , with ACS   , can be approximated by that of a high order AR process, 
where instead of numerically estimating (via integration) high-order copula functions 
(as in Eq. (14)), we approximate them using the    distribution. Also, the above formula 
reduces the dimension of the vector to which the Toeplitz operator is applied, since the 
maximum Toeplitz matrix involved has dimension    , where   denotes the order of 
the AR process. As a rule of thumb (heuristic), and after several numerical 
investigations (not shown herein), we suggest the use of   in the range of, ⌊   ⌋    
⌊   ⌋, where ⌊ ⌋ denotes the floor operator. The rationale behind this heuristic rule is 
that a value of   lying within the suggested range can account for a significant portion of 
the process’ second-order properties (through the autocorrelation coefficient matrices 
of  ̃    and  ̃ ), and thus can provide a good approximation of the    

( ) distribution. 

Of course, the use of     results to information loss, and thus when maximum 
precision is required, the use of the approach discussed in section 3.5 should be 
considered preferable. However, the proof-of-concept examples of section 4 illustrate 
that the loss of precision is limited, and the proposed approximation can yield results 
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almost identical to that of the method of section 3.5, even for processes with strong 
dependence structure (see section 4 for more details and results). 

3.7 An algorithmic step-by-step recipe 

The use of Eq. (15) (the case of independent processes) and Eq. (16) (the case of AR(1) 
processes), is rather straightforward, hence it is not further discussed herein. On the 
other hand, Eq. (18) is also omitted since its raw use is numerically unstable (for 
reasons explained above). Therefore, herein, we focus on the use of the procedures 
described in sections 3.5 and 3.6, both involving the use of the    distribution, which is 
a relatively new development in the domain of hydrology, thus, deserving some extra 
attention to ensure the clear understanding of the underlying mechanics. With this in 
mind, and assuming that the marginal distribution    and ACS    of the process are 
known, a step-by-step recipe is provided below for the estimation of the distribution of 
maxima    over a block of   time steps. 

Step 1. Given the the marginal distribution    and the ACS   , estimate the equivalent 
correlation coefficients  ̃  up to      , by first establishing the corresponding TEC 
relationship, and then by inverting it, i.e., obtain  ̃         (          ). 

Step 2. Create a vector   [       ], of length  , that contains the values for which we 
need to estimate    

( ). 

Step 3. For each           , first estimate  ̈ (  (  )  ̃ )     ( ̃       (    

  (  ))), next the quantity  ̈  (  (  )  ̃ ), and finally the parameters    (  (  )  ̃ ) 

and    (  (  )  ̃ ) of the    distribution. 

Step 4. Finally, for each           , estimate the distribution    
(  ) using Eq. (23), i.e., 

   
(  )     

(     )     (       (  (  )  ̃ )    (  (  )  ̃ ) ). 

The above step-by-step recipe concerns the model of section 3.5, while the one of 
section 3.6 (i.e., AR(n)+   model for    

) is almost identical, with the main differences 

being on the use of Eq. (27) in step 4, as well as the estimation of  ̈ (  (  )  ̃ ) and the 

related quantities at step 3, up to      , where   is the order of the selected 
approximating AR(n) process. Also, it is noted that the inverse cumulative distribution 
function (ICDF) of    

 does not attain an analytical form for the models of section 3 

(apart from the i.i.d. case which is given by,       
   

  (    )). Therefore, in order 

to estimate   for a given probability   (   ), one has to resort in solving the equation 
   

( )    for a fixed value of  , that is,       

  ( )     {         
( )}  If the 

notion of return period,     (   ) is employed (typically expressed in years), 

which is the norm in hydrology, the above expression is re-written as,       

  (  
 

 
)     {      

 

 
    

( )} which denotes the return level   for a given   (hence the 

abbreviation   ). Finally, and for further convenience, it is noted that the above recipe, 
as well as the algorithmic implementation of    

   are both implemented in the 

bBextremes R package. It is remarked that an algorithmic implementation of    

   

would not be possible, in terms of reasonable computational time, without the use of the 
approximations introduced in section 2 and 3.6 (i.e., the closed-form formula of the TEC 
relationship for the case of   ( ) processes and the AR(n)+   model, respectively). As 
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an example, it is mentioned that the required computational time (in R programming 
language, and in the same computer mentioned above) to estimate    

   for a single value 

of  , for the case of the    model and for      , is 2 sec, without the use of the above 
approximations. On the contrary, the computational time is reduced to 0.06 sec (~33 
times faster) when employing the approximations introduced herein. It is noted that the 
computational effort required by the non   -based approaches discussed in this section 
is not mentioned since it is negligible. 

4 Simulation studies  

4.1 Validation of the distribution of k-length block maxima models 

Aiming to validate, as well as demonstrate the performance of the    
 models presented 

in section 3, we employ four (4) simulation studies, all of them concerning processes 
with zero-inflated (  ) marginal distributions. The simulated studies are detailed in 
Table 1. The selection of parameters of the ACS models and the marginal distributions 
was made on the basis of stress-testing the models of section 3 (i.e., under persistent 
ACSs – see appendix C for details about the employed ACS models). The selection of a    
marginal distribution stems from the intermittent behaviour that characterizes 
hydrometeorological processes, such as rainfall, at fine time scales (e.g., daily or finer); 
see also Appendix A for a brief overview of a    distributions. In particular, we 
employed a    variant of the Burr type-XII distribution (Burr 1942; Singh and Maddala 
1976; Tadikamalla 1980). The parameters of this distribution, abbreviated as         
(see Appendix B for more details), are set equal to those found by Koutsoyiannis (2020), 
for the daily rainfall record at the station of Bologna, Italy (using a time series with 
more than 200 years of daily data). For each of the four simulation studies, we 
generated1 synthetic time series with the target distribution and ACS, each of length 
          , where      . Mimicking this way, a realization of a daily process of 
10 000 years (e.g., see panel (a) in Figure 4 and Figure 5, where a randomly selected 
window of        time steps is depicted), and a distribution    

 of the annual block 

maxima of a daily rainfall process. 

The analysis showed that similar results were obtained for all four cases, and due to this 
in the main text we focus on the first two cases, which concern persistent processes 
with fractional Gaussian noise (fGn) (e.g., Mandelbrot and Van Ness 1968; Beran 1992; 
Koutsoyiannis 2010), with   parameter, controlling the degree of persistence of the 
process, equal to        and      , respectively (see Appendix C for details). The 
results of analysis for the other two simulation studies are presented in Appendix D 
(specifically in Figure D1, and Figure D2). 

The results of case studies #1 and #2 are visualized in Figure 4 and Figure 5, 
respectively. In these plots, panels (b) and (c) validate the ability of the anySim R 

package (Tsoukalas et al. 2020) to generate realizations with the target marginal and 
ACS, while panel (d) depicts the series of  -length block maxima obtained using       
as a block size. Panel (e) provides a comparison between the empirical distribution of  -

                                                        

1 The simulations were performed using the anySim R package (Tsoukalas et al. 2020), which is capable 
of simulating Nataf-based (i.e., Gaussian copula) processes with any marginal distribution (with finite 
variance) and (valid; i.e., positive definite) correlation structure (temporal, spatial or combination of 
them). 
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length block maxima (orange dots) and the theoretical models of    
 of section 3. The 

comparison is conducted on the basis of return period,     (     
) (note that since 

we set      ,   is interpreted as referring to years; assuming that    refers to a daily 
process). It is interesting to observe that, despite the use of particularly strong ACSs 
(especially simulation studies #2 and #3; Figure 5 and Figure D1), all    

 models 

converge to about the same return levels,  , for     . This observation is also in 
accordance with tail-independence property that characterizes the Gaussian copula 
(Embrechts et al. 1999; Beirlant et al. 2006; Davis and Mikosch 2009). Also, it is 
observed that apart from the i.i.d. and AR(1) models of    

, that do not reproduce the 

distribution of    
 with high accuracy for     , all other models, that is, the Gaussian 

copula (Eq. (14)), the    (Eq. (23)), and the AR(n)+   (Eq. (27)), are almost 
indistinguishable for all  . This observation also validates the performance of the 
proposed AR(n)+   model, which is also the faster among the three. In particular, for 
the estimation of the return period of fifty (50) return levels the AR(n)+  , the    and 
the Gaussian copula models require about 0.22 sec, 5.5 sec, and 145 sec respectively. 

4.2 The GEV or not the GEV? 

Naturally, one may wonder what kind of approach should we eventually use to model 
the distribution of block maxima. A thought that leads to the following questions: 

 How does the reviewed non-asymptotic models compare to the iconic asymptotic 
approach that implies the use of the Generalized Extreme Value (   ) over the 
subset of block maxima values? 

 How does the reviewed non-asymptotic models compare to the use of a non-
extreme value distribution (any other but GEV or GPD) directly to the subset of 
block maxima?  

 Which approach is more robust (i.e., has lower uncertainty or variability), and thus 
allows for better identifiability of the probabilistic behaviour of the maxima? 

 Using which modelling approach (asymptotic or non-asymptotic), we have better 
chances to identify the true distribution of  -length block maxima? 

Aiming to provide answers to the above questions, we setup a computational 
experiment to compare different approaches for the estimation of the distribution of 
block maxima. In particular, we formulate a Monte-Carlo experiment composed by the 
following steps: 

1. We define a process with a given marginal distribution and ACS. In this case, we 
employ the intermittent process with moderate fGn ACS (e.g., rainfall) of simulation 
study #1, i.e.,        (                              ) and    

  
   (      ). It is remarked that the distribution parameters resemble those 

identified by Koutsoyiannis (2020)) for the daily rainfall recorded at the station of 
Bologna, Italy, while the parameter of the ACS is set a bit higher than the average 
value (      ) identified by the large-scale analyses of Kantelhardt et al. (2006) 
and Iliopoulou et al. (2016) for rainfall records. 

2. We generate (using anySim R package) a large number of realizations from the 
above process, with length      . In this case, we produced 1000 realizations, 
and by setting       and   {      }, we mimic daily records of 50 and 100 
years (records with typical and rich length, which are nowadays become more and 
more available). 
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3. We perform a set of diagnostics and analysis on the basis of the produced time series 
ensemble. 

The approaches that are examined and compared herein are: 

I. The non-asymptotic distribution of block maxima (in particular   ( )     for 
fixed  ), identified using the complete record of observations. The employed 
approach entails the fitting of the         to each one of the realizations, as well as 
the fitting of the Cauchy-type correlation structure (CAS). The fitting of the 
distribution was done using the method of L-moments2 (Hosking 1990), while the 
empirical probability of zero is estimated as the count of zero values to the total 
length of the series. On the other hand, CAS was fitted by minimizing the sum of least 
square error between the CAS model (see Appendix C) and the empirical 
autocorrelation coefficients. It is remarked that the CAS is not the true ACS of the 
process (i.e., the fGn with        which was used for the generation of the 
timeseries), and has been selected herein due to its increased flexibility to describe a 
wide range of ACSs.  

II. The asymptotic distribution of block maxima, i.e., the     model. This entails the 
fitting of the     only on the record of block maxima (for each one of the 
realizations). The fitting was also performed using the L-moments method2.  

III. The use of a non-extreme value distribution model fitted directly to the record of 
block maxima (see, Chen and Singh 2018). In particular, we fitted (through L-
moments) the       distribution on the block maxima record of each one of the 
realizations; a distribution often employed in hydrology for such purposes (e.g., 
Shao et al. 2004; Hao and Singh 2009; Usta 2013). 

Hereafter, the three above approaches are abbreviated as, ZIBrXII+AR(n)+βB, GEV+BM, 
and BrXII+BM, respectively. 

Since the characteristics of the process are a priori known we can estimate (using the 
  ( )     model described in section 3.6) the true distribution of  -length block 
maxima (since      , we resemble annual daily maxima) of the process. We then use 
this distribution, as well as the generated realizations (see point #2 above), to compare 
the performance of the three alternative approaches on the basis of the following 
diagnostics: 

1. Based on the time series ensemble compare the estimates of the expected (mean) 
return level  , as well as estimates for selected confidence levels (here, 10% and 
90%). 

2. For each alternative approach and each realization estimate the absolute relative 
difference between the obtained empirical level  ̂  and the theoretical one,    
(which is known a priori), i.e.,     ( ̂    )   ⁄  . Furthermore, on the basis of 
these estimates construct, and compare the empirical CDF of obtaining an error 
lower than    for each approach. 

                                                        
2 The distribution fitting was performed using the lmom R package (Hosking 2019). Particularly, for the 

      distribution we employed the pelp function which, as described, provides “Parameter estimation 
for a general distribution by the method of Lmoments”. It is noted that for computational efficiency, and 
optimization-related reasons, in the case of       distribution (as well as for other models comprised by 
a scale and multiple shape parameters) the argument type should be set to “s” (for more details see p. 37 
of the package manual). 
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3. Compare the mean and standard deviation values of the absolute relative difference 
of    (estimated using all 1000 realizations) between the theoretical and alternative 
approaches for a range of return periods  . 

4. Compare the asymptotic behaviour of the distribution of maxima as identified by the 
three approaches. It is noted that since we employ the       distribution for the 
continuous part of the base process, the distribution of the maxima should exhibit 
the same asymptotic behaviour dictated by the tail index   (=0.098 in our case), see 
also Koutsoyiannis (2020). Also, since in our experiment we use the     and the 
      distributions (fitted either to block maxima or the complete record), that 
share the same asymptotic behaviour (      ), they should in theory converge to 
the same value of  . 

Figure 6 to Figure 9 synopsize the diagnostics #1 to #4, respectively. It is remarked 
that when performing the diagnostics #2 and #3, we included in our analysis the 
distribution of  -length block maxima of the i.i.d. model of Eq. (15), aiming to assess the 
effect of neglecting the autocorrelation for the estimation of the distribution of maxima. 
This modelling approach is abbreviated as ZIBrXII+iid. 

Starting by Figure 6, that presents the comparison between the distribution of maxima 
obtained by the three approaches, it is observed that the mean (coloured solid lines) of 
the return levels obtained by the ZIBrXII+AR(n)+βB model and the GEV+BM model are 
both very close to the true values, while the mean of the BrXII+BM approach implies 
significantly larger return levels. On the other hand, the 80% confidence intervals 
(similarly coloured shaded areas) of the ZIBrXII+AR(n)+βB model are much narrower 
than those the other two models; with those of BrXII+BM approach being the largest of 
all. The above observations hold for both      and      , and are being further 
confirmed by Figure 7, where we compare the absolute relative mean square error    
for the return periods   {              }. The CDFs of    highlight that for all 
examined  , the probability of not exceeding a specified value of error    is higher when 
using the ZIBrXII+AR(n)+βB model, implying that it has better chances to obtain the 
minimum    among all methods under comparison (the same applies also for the 
ZIBrXII+iid model). On the other hand, the BrXII+BM gives much lower estimates of 
probability of not exceeding   , especially for     , implying that there is a significant 
chance to exceed that threshold value.  

The previous observation is also validated in Figure 8 where we plot the mean and 
standard deviation of    (estimated on the basis of all 1000 realizations). In this figure, 
it is clear that the non-asymptotic models of BM, i.e., the ZIBrXII+AR(n)+βB and 
ZIBrXII+iid, are those with the lower values of mean and standard deviation of    for 
    . Their estimates differ for lower values of    since the ZIBrXII+iid is linked with 
the assumption of temporal independence (a characteristic that influences particularly 
small  ). This observation highlights the importance of identifying a good distribution 
model for the base process in order to devise a good model for the maxima 
corresponding to     . Furthermore, when comparing the two other models, i.e., the 
GEV+BM and the BrXII+BM, it can be argued that the former shows better, and more 
stable performance since it exhibits lower values for both the mean and standard 
deviation of   .  
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Moving to the final diagnostic, i.e., comparison of the obtained asymptotic behaviour of 
the three approaches, we depict in Figure 9 the empirical CDF of the estimates of the 
tail indices (parameter  , in both       and     distributions), obtained by the three 
methods (the true value,        , is depicted with an orange vertical line). This plot 
indicates clearly that for both      and      , the ZIBrXII+AR(n)+βB model is the 
one with smaller variability of   estimates, ranging in a much narrower spectrum 
compared to the other two approaches.  

On the other hand, the GEV+BM approach exhibits a tendency to negative values of   
( { ̂   }       for     , and  { ̂   }       for      ), which is not in 

harmony with the expected tail behaviour. This tendency may also provide a possible 
explanation for the increased variability exhibited by the GEV+BM approach in Figure 9 
(and similar plots in SM) which could be attributed to the fact that the    ’s shape 
parameter   (i.e., tail index) can admit values in (    ), thus includes the case of 
reversed Weibull distribution for    . It is recalled that the reversed Weibull is an 
upper-bounded distribution with finite upper support (see Eq. (B8) in Appendix B), an 
assumption that is considered unrealistic for most hydroclimatic processes (e.g., 
precipitation and runoff processes are considered physically bounded from below, i.e., 
at zero, and unbounded from above); see for instance Koutsoyiannis (2004a). 

Moving to the case of BrXII+BM approach, it is observed that the obtained estimates of   

exhibit a significant shift from the true value, since the median estimates are   ̂         

and  ̂         for      and       respectively (all other percentiles are shifted 
accordingly). This shift towards larger values of    implies a distribution of maxima with 
much heavier right tail than the a priori defined distribution, and thus leading to 
misspecification of the process’s asymptotic behaviour. To the author’s view, this may 
be due to the fact that the       distribution is a particularly flexible model (since it 
has two shape parameters) that can take a lot of forms. This flexibility may be also the 
root of this problem since the fitting of the       distribution to the BM subset (i.e., 
though matching the empirical L-moments with their theoretical counterparts), may 
provide spurious parameter estimates, just to fit the data. After all, it is important to 
recall that distribution functions are models, and thus can be often wrong or over-
parameterized. Also, fitting a distribution model to a set of data is nothing more than 
solving an optimization problem (e.g., minimizing the difference between empirical and 
theoretical quantities, such as moments and quantiles, or alternatively maximizing the 
likelihood function), which may result into suboptimal or non-informative solutions 
(i.e., local optima). A potential remedy to this issue, which may be worth exploring (left 
out for future research), would be the identification of the tail index of the       
distribution on the basis of the complete record (e.g., using L-moments), and then 
estimating the other two parameters using the BM subset (of course a similar approach 
could be followed using other distribution models parameterized using a tail index 
parameter, e.g., the Dagum distribution, which is the Burr III model after the 
introduction of an additional scale parameter; see Kleiber (2008)). Formulating this 
way, a multi-level distribution fitting method for extremes. 
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The above analysis and diagnostics were performed for all four simulation studies of 
Table 1, yielding similar results, hence not included herein. As a proof of concept, we 
included in Appendix D, only plots similar to the Figure 6 (Figure D3 to Figure D5). 
Furthermore, we a provide a Supplementary Material (SM) document which contains 
four (4) additional simulation studies complementing those presented in this section 
(see Figure S1 to Figure S15 of SM). All of them concern a base/parent process with 
fractional Gaussian noise (fGn) autocorrelation structure (ACS) with        and differ 
at the marginal distribution of the process, which is continuous or zero-inflated (see 
Table S1 of SM for details). The results presented in the SM are similar and alignment 
with those presented in the main manuscript. 

All in all, the above diagnostics (including those of SM) seems to agree, and highlight 
that estimating the distribution of  -length block maxima using non-asymptotic 
distribution models results into quite stable and less variable estimates of return levels 
(compared to the other two approaches examined). Highlighting this way the suitability 
of the models of section 3, such as the AR(n)+βB, and the original βB model of Serinaldi 
et al. (2020) for use in real-world applications. On the other hand, the competence and 
utility of the     model is further remarked under the premise of limited data 
availability (i.e., assuming that only the subset of BM is available), since it exhibits less 
variability and more consistent behaviour compared to the approach that fits a non-
extreme value distribution (i.e., the Burr type-XII) directly to the record of BM. 

Further to the above, it is remarked that the performance of non-asymptotic models of 
maxima could be further improved by using alternative and more robust distribution 
fitting methods (beyond the L-moments method used herein) and more advanced 
methods (than the simple least square error minimization used herein) for ACS 
identification (e.g., see, Koutsoyiannis 2020). Finally, an incidental advantage of using a 
non-asymptotic distribution model is that the supports of the resulting BM distribution 
are in agreement with those of the distribution employed for the base process (e.g., if 
the distribution of the base process is defined in [   ), then the resulting non-
asymptotic BM distribution will have the same supports). A property that is also in-line 
with the nature of several hydrological variables defined in [   ), e.g., rainfall and 
streamflow. Recall that the supports of the     distribution depend on the value of tail 
index parameter (see Appendix B), and can result into bounded (from below or above) 
or completely unbounded distributions.  

5 The probability of a zero value over multiple temporal scales 

5.1 Theoretical background and key concepts 

Another particularly interesting use of the    
 models presented in section 3, especially 

of those based on the    distribution, concerns processes characterized by intermittent 
behaviour (i.e., modelled using    marginal distributions). In such case, these models 
can be used to estimate the probability of observing a zero value over multiple scales of 
(e.g., temporal) aggregation  . For simplicity, hereafter called probability of zero at scale 

 , and denoted by   
( )

. While not so apparent at first sight, and as detailed later on (see 

section 5.4), this quantity can be of particular use when modelling the behaviour of 
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extremes (i.e., maxima). It is noted that in the hydrological domain,   
( )

 is also called 

probability dry at scale  , denoting the probability of a dry interval at scale  . 

However, before getting into the implementation details, let us first provide some 

necessary context. Let {  
( )

}
    

 or simply {  } be an intermittent discrete-time 

stationary stochastic process at some time scale    .  

Let us also define the averaged aggregated process   
( )

 at a higher time scale   

     , obtained by: 

   
( )

 
 

 
∑   

  

  (   )   

 (28) 

where   is the new time index of the averaged aggregated process. Note that while 
herein we focus on the averaged aggregated process, the same rationale can be applied 

for a non-averaged aggregated process, obtained as  ̌ 
( )

 ∑   
  
  (   )   . 

Further, let also the process be characterized at all scales   by: 

 a    marginal distribution   ( )( )   { ( )   }    
( )

 (    
( )

)  ( )( ), 

where   ( )    ( )  ( )    { ( )     ( )   }. For simplicity   ( )  

  ( )( )   {   }     (    )  ( ), where,      
( )

  {   } is a 

parameter controlling the inflation of zeros (i.e., the discrete part of the    

distribution – the probability of observing a zero value), and      ( )  

  ( )  ( )    { ( )     ( )   } denotes the distribution to be inflated (i.e., 

the continuous part of the    distribution, herein assumed to be defined in the 
positive half line (   )). For completeness and subsequent use, it is noted that 

  
( )

  { ( )   }      
( )

, while for simplicity let      
( )

. See Appendix A 

for more details. 

 an autocorrelation structure   
( )

     [  
( )

     
( )

],    , for simplicity 

     
( )

. 

The mean and variance of the process at scale    , are    ( )   [  
( )

], and 

   ( )       ( )      [  
( )

]. The mean of positive values, i.e.,     [      ] 

can be obtained by,       , and the variance of positive values, i.e.,       [    

  ]  (           )   
 . Similarly, the autocovariance structure is,      

( )
 

   [  
( )

     
( )

]      , while        . 

The properties of process at scale     are related with those of the averaged 
aggregated process at higher time scale         In particular, it is straightforward to 
obtain the mean and autocovariance by (Koutsoyiannis 2005), 
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  ( )     [  
( )

] (29) 

   
( )

    [  
( )

     
( )

]  
 

 
∑      (  

   

 
)  

 

  
∑ ∑       

(   ) 

      

 

   

   

     

 (30) 

The variance of the averaged aggregated process at scale  , i.e.,  ( ), is  ( )    
( )

  Also, 
note that          ( ). The autocorrelation of the averaged aggregated process at 

scale   is,   
( )

   
( )

   
( )

. 

Arguably, the above quantities are not enough to characterize the behaviour of an 
intermittent processes, since no information is provided about the degree of 

intermittency at scales of aggregation    . This is also apparent by the need of   
( )

 to 
estimate the mean and the variance of positive values at scale  . The formulas for the 
estimation of these quantities at scales of aggregation     are given by, 

   
( )

 
 

  
( )

 (31) 

   
( )

 
 ( )  

( )
     

( )
   

(  
( )

)
  (32) 

Solving the above equation for  ( )  yields 

  ( )  
        

( )
     

( )
(  

( )
)
 

  
( )

 (33) 

which highlights the link between the variance of the whole process (including zeros) 
with the mean and the variance of positive values, as well as with probability of zero at 

scale  . Of course, when   
( )

   (i.e.,   
( )

  ),   
( )

 and  ( ) are identical quantities. 

To estimate   
( )

 let us recall that by definition,   
( )

  {           }, which 
expresses the probability of having   consecutive zeros in an equally d-sized block at 
the base time scale    . Thus, this probability is identical to Eq. (14), for    , hence, 

 
  

( )
  { ( )   }   {           }     

(    )

   ( 
  (  ( ))      (  ( ))  ̃ ) (34) 

which in turn allows us to use the models of section 3 to estimate   
( )

. Yet, this time 
with fixed   (equal to 0) and varying  (  ), denoting the scale at which we wish to 

estimate   
( )

. Noting also that for the    distribution,   ( )    . In particular, the    
and AR(n)+   of section 3.5 and 3.6 respectively, read as follows, 
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( )
    

( )     
(    )    (   (  ( ))      (  ( ))  ̃ )

    (       (  ( )  ̃ )    (  ( )  ̃ ) ) (35) 

 

  
( )

    
( )

 (
   (         (  ( )  ̃   )    (  ( )  ̃   ) )

   (       (  ( )  ̃ )    (  ( )  ̃ ) )
)

   (     )

   (       (  ( )  ̃ )    (  ( )  ̃ ) ) (36) 

Notice that apart from fixing    , and varying  , depending on which scale one wishes 

to estimate   
( )

, the only modification concerns Eq. (36), where the exponent of the first 
part of the formula now becomes,    (     ), instead of the original value of     
(recall that in this case,    ). This is due to the fact that there is no point of using an 
   

 model of an AR( ) process when the target scale   is smaller than the order of the 

AR model, i.e.,  .  

5.2 An algorithmic step-by-step recipe 

Step 1. Given the the marginal distribution    and the ACS   , estimate the equivalent 
correlation coefficients  ̃  up to       , where    is the maximum scale we are 
interested in (see step #2), by first establishing the corresponding TEC relationship, and 

then by inverting it, i.e., obtain  ̃          (           ). 

Step 2. Create a vector   [       ], of length  , that contains the scales   for which 
we wish to estimate   

  (in accenting order). 

Step 3. For each         , first estimate  ̈  
(  ( )  ̃  

)     ( ̃       (    

  ( ))), next the quantity  ̈  (  ( )  ̃  
), and finally the parameters    (  ( )  ̃  

) 

and    (  ( )  ̃  
) of the    distribution. 

Step 4. Finally, for each         , estimate the quantity   
       

( ) using Eq. (35), i.e., 

  
       

( )      
(    )     (       (  ( )  ̃  

)    (  ( )  ̃  
) ). 

As in the case of the recipe of the distribution of block maxima,    
, given in section 3.7, 

the above recipe concerns the use of the    model, while the recipe for implementing 

AR(n)+   model for the estimation of   
( )

 is similar.  

Finally, it is noted that instead of    , alternative, low, threshold values can be used, 
e.g., for the case of rainfall to account for measurement accuracy of rain gauges (e.g., not 
logging rainfall below 0.1 mm). This recipe is also implemented in the bBextremes R 
package. 

5.3 Proof of concept by simulation 

To illustrate the proposed methods for   
( )

 estimation, we employ the first two 

simulation studies of Table 1. It is reminded that both processes concern a         
distribution with                                and differ in the ACS. The 1st 
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process is modelled using   
   

(      ), while the second   
   

(      ). The 
results are visually synopsized in Figure 10, where panels (a) and (b) provide 
respectively for simulation studies #1 and #2, a comparison between the empirical (as 
obtained by simulation), and theoretical (as obtained by the formulas of section 5.1) 

probability of a zero value over multiple temporal scales (i.e.,   
( )

  { ( )   }) 

  {       }. Mimicking this way, an intermittent process with daily time step. It is 
noted that the results are similar for the other simulation studies (including #3 and #4 
of Table 1, hence not presented herein). 

As in the case of the distribution of  -length block maxima, the    and AR(n)+   

models prove to be capable of establishing the multiscale behaviour of   
( )

, since they 

are in absolute agreement with the values obtained by both the simulation, as well as 
the Gaussian copula (obtained by numerical integration). 

5.4 Further considerations and potential applications 

As hinted earlier, the multiscale description of the probability of observing a zero value, 
can be of particular use within the context of modelling extreme values, such as k-length 
block maxima.  

With rainfall intensity processes in mind,   
( )

, can be used in conjunction with  ( )   , 

and    (hence  ( ); since they are interrelated quantities; see Eq. (30)) in order to 
devise parsimonious multiscale probabilistic models for rainfall. For instance, this 

information solely suffices to fit a multi-scale    distribution; where   
( )

 determines 
the degree of zero-inflation at scale  , while the continuous part (i.e., the positive 
values) can be modelled using a two-parameter marginal distribution whose 

parameters can be directly obtained by the classical methods of moments (since   
( )

 

and   
( )

 are known for all scales  ; see Eq. (31) and Eq. (32)). Further to this, it is noted 

that it is possible to use three-parameter marginals, using for instance a property that 
characterizes distributions with Pareto-type tails (such as the Burr type XII (Burr 1942; 
Singh and Maddala 1976; Tadikamalla 1980) or the Dagum (Dagum 1977; Kleiber 
2008)). This property implies that the tail index remains constant across multiple scales 
of aggregation   (Koutsoyiannis 2020). The total number of parameters to construct 

such a multiscale distribution model, i.e.,   ( )( )   { ( )   }    
( )

 (  

  
( )

)  ( )( ), where   ( )   { ( )     ( )   } is the distribution of positive 

quantities, is equal to the number of parameters of the base process’s marginal 
distribution and ACS. For instance, if a three-parameter marginal is selected and a two-
parameter ACS, the total number of parameters is five (5). Regardless the number of 
parameters, once   ( )  has been determined, it is also straightforward to turn this 
information into an intensity-duration-frequency (IDF) model; which are models widely 
used in hydrology for the design of hydraulic engineering works that need to be 
resilient under extremes. For a thorough overview on the topic of IDF models see the 
works of Koutsoyiannis et al. (1998) and Koutsoyiannis (2020), as well as the recent 
work of Courty et al. (2019), who aim at providing a global IDF model.  

For instance, assuming that a procedure similar to the one described above has been 

followed, thus   ( ) and   
( )

 could be determined, a rainfall IDF model can be 

constructed with the help of the formulas of section 3. To provide an example, let us 
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assume that we work with data expressed in terms of hourly intensities (which is the 
norm for IDF models), and we used as a basic time scale (i.e.,    ), the one 
corresponding to duration           (i.e., 15 min). Let us assume also that it was 
decided to use the i.i.d. model of Eq. (15) for the distribution of k-length block maxima 
(i.e.,    

). Under these assumptions, the return period,   [years] of rainfall intensity   

[mm/h] and duration       [h], where         , will read as follows, 

 

 (   )  
 

     
(    

( )
  ( ))

 
 

  (  ( )(    
( )

  ( )))
 ( )

 
 

  (  
( )

 (    
( )

)   ( )(   ( )))
 ( )

 
(37) 

where,  ( )       denotes the block size (number of time steps) that corresponds to 1 
year at time scale  , and    stands for the block size of 1 year at the basic time scale (i.e., 
for     and   ), also identical to the number of hours of 1 year divided by   . In our 
working example (since          )            , hence  ( )             
(e.g., when    , i.e.,     [ ],  ( )      , and when     , i.e.,      [ ], 

 ( )     ). Also note that  ( ) is a vector containing the distribution’s parameters at 
scale  . 

In addition, the inverse relationship that expresses rainfall intensity   [mm/h] as a 
function of return period   [years] and duration       [h], where         , 
reads as follows, 

  (   )   
 ( )
  ((  

 

 
)
   ( )

   
( )

  ( ))   
 ( )
  (

(  
 
 )

   ( )

   
( )

    
( )

  ( )) (38) 

Similar, yet somewhat more difficult to handle, IDF models can be constructed using the 
other models for the distribution of k-length block maxima presented in section 3 
(accounting also for the effect of the process’s autocorrelation in    

 ). 

However, and without having performed a thorough analysis, it may be argued that the 
above simple model can prove to be sufficient for most hydrologic engineering studies, 
since,  

1) The ACS of daily rainfall, when modelled using the fGn ACS, has been identified to 
exhibit an average value of        (e.g., see the large-scale analyses of Kantelhardt 
et al. (2006) and Iliopoulou et al. (2016)); which implies a rather weak ACS 
compared to those used herein (       and       ) to demonstrate the 
performance of    

 models. 

2) The investigated models for the distribution of k-length block maxima converge to 
the same return level   for return periods     -20 years (at least for processes 
ACS similar or weaker than those explored herein, e.g., fGn with      ). 
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3) Typical hydraulic works are designed for    10-20 years (e.g., the standard for 

reservoir spillways is          years). 
4) It is a relatively simple and fast model, an important aspect for real-world 

engineering purposes. 
5) The effect of autocorrelation is not completely neglected, since it is used for the 

estimation of   
( )

, and thus   ( ) .  

6) The i.i.d. model of    
 provides larger return levels   for the same  , compared to 

those accounting for the autocorrelation of the base process. Thus, lies on the safe 
side from the perspective of hydrological engineering and hydraulic infrastructures 
design. 

We remark that the above procedure is not illustrated in this work, hence the above 
arguments should not be taken for granted, rather verified or falsified, using extensive 
analysis and simulations (left out for a sequel work). However, it is noted, that a similar, 
yet not identical, approach to the one sketched above, has been recently presented by 
Koutsoyiannis (2020), for the construction of a seven-parameter IDF model (also called 
ombrian model), achieving a very good accuracy between observations. With the main 
differences being that this work, 1) uses an alternative definition for return period, 
linked with the so-called complete time series analysis (CTA) of extremes (see also 
section 3 in Serinaldi et al. (2020) where the delicate difference between the one used 
herein is highlighted), as well as 2) uses parametric functions (Koutsoyiannis 2020) to 

establish the scaling laws implied by   
( )

 and  ( ), using notions similar to the one of 

lower scale extrapolation (Kossieris 2020). Of course, various elements of these 
approaches may be combined into different ways, formulating alternative IDF models, 
whose performance needs to be further verified under different real-world situations 
(e.g., using long, fine time scale, quality-controlled historical rainfall datasets comprised 
by records from all around the world). 

6 Summary and concluding remarks 

The distribution of k-length block maxima is arguably of particular interest for the 
design and management of hydraulic infrastructures, thus consists a valuable tool for 
hydrological design (i.e., estimate the design rainfall of a hydraulic work for a given 
return period, T) and flood risk assessment and security. Until very recently the focus 
was almost exclusively given on approaches that utilize the notions of temporal 
independence, limiting laws (e.g., for the block size), subsets of data (e.g., BM or POT) 
and asymptotic properties (convergence to the     or generalized Pareto distribution; 
   ). While these assumptions are convenient in terms of data storage, data 
management and computations they may hide important information about the 
probabilistic behaviour of extremes. 

This work provides an alternative view, by focusing on the non-asymptotic distribution 
of the k-length block maxima that arise from a base/parent, discrete-time, stationary, 
non-Gaussian autocorrelated processes under the assumption of Nataf’s joint 
distribution (i.e., Gaussian copula). Assuming that   is constant, and in view of the 
Gaussian copula, we reviewed five non-asymptotic distribution models for the 
distribution of k-length block maxima. In particular, we discussed models based on the 
assumptions that the base process is characterized by, independence (i.i.d.), AR(1) and 
AR(n) autocorrelation structure (ACS), as well as detailed two alternative models that 
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rely on the Beta-Binomial (  ) distribution, i.e., the   -based model of Serinaldi et al. 
(2020) and the newly proposed AR(n)+   model, which can be used as an alternative 
and fast approximation (~33 times faster than the original   -based model) for 
processes with general ACSs (as the original   -based model). In addition, throughout 
the manuscript special effort was given to highlight the links between the various types 
of correlation coefficients (i.e., target, equivalent, and binary) that are used to 
characterize the base process (after transformations/mappings) across different 
domains (i.e., target, Gaussian, and Bernoulli, respectively), thus clarify delicate steps, 
avoid potential pitfalls, and algorithmize the underlying computational procedure (by 
providing step-by-step recipes). It is remarked that the assumption of Gaussian copula 
can be relaxed and other types of copulas can be employed with satisfactory 
performance (see Serinaldi et al. (2020)), an aspect which can be a potential topic of 
future research. 

The performance of the models has been validated through four simulation studies, 
concerning intermittent processes modelled with zero-inflated (  ) distributions, and 
particularly strong theoretical ACS. The simulations highlight the performance of the 
two   -based models, being able to describe the distribution of k-length block maxima 
with high accuracy. Interestingly, and as confirmed by the examples of Serinaldi et al. 
(2020) (solely though for the    and i.i.d. models), the distribution of k-length block 
maxima obtained by the five models converge as the probability of exceedance 
decreases (i.e., large values of return periods), as a result of the tail independence 
property of the Gaussian copula (Embrechts et al. 1999; Beirlant et al. 2006; Davis and 
Mikosch 2009). A result that if investigated further can be used to relax, in some extent, 
the need for precise identification of the ACS structure of the base process (i.e., when 
using data-based inference from historical records); when the target is the identification 
of the design rainfall for a given return period. Highlighting on the other hand the 
importance of selecting and fitting an appropriate marginal distribution to the observed 
records of observations. In our view, this is actually a major point of interest for future 
studies, since throughout this work it was assumed that the marginal distribution    
and the ACS    of the base process    are a priori known.  

Next, using as examples intermittent processes (e.g., daily rainfall), we performed a 
series of simulation experiments (see also the simulations provided in the 
Supplementary Material) and comparisons (using asymptotic or non-asymptotic models 
for the block maxima distribution), aiming to provide answers to questions such as, 
which model/approach should we employ to model the distribution of  -length block 
maxima? Are the non-asymptotic models more robust than the asymptotic ones? Using 
which approach (asymptotic or non-asymptotic), we have better chances to identify the 
true distribution of  -length block maxima? The results of the devised Monte-Carlo-type 
experiments remark the ability of the non-asymptotic approaches to model the 
distribution of maxima with reduced uncertainty and variability, since in all diagnostics 
the latter approaches demonstrated better and more stable performance in terms of 
identifying the true probability distribution of maxima (which was a priori know). A 
finding that highlights that if the complete record of observations is available (i.e., not 
just a subset of BM or POT data), then our best bet would be the use of non-asymptotic 
models for the distribution of maxima. However, it is important to remark that when 
only a subset of BM is available, the simulation experiments and diagnostics performed 
herein verify the competence of     distribution to describe the probabilistic 
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behaviour of maxima (compared to fitting a non-extreme value distribution model, such 
as the Burr type-XII, directly to the record of BM). 

An additional topic of interest of this work, also regarding intermittent processes (i.e., 
modelled by a    distribution), concerns the use of the two aforementioned   -based 
models for the estimation of the probability of observing a zero value across multiple 
levels of aggregation d. As demonstrated via two simulation studies the two models 
proved to be capable of determining the probability of observing a zero value across 
multiple scales  , solely based on the marginal distribution and correlation structure of 
the base process. It is also highlighted that this topic, which at first sight might be 
considered irrelevant with the behaviour of extremes, can be (see the discussion of 
section 5.4) a crucial step for the multi-scale modeling of the marginal distribution of 
hydrometeorological processes, as well as used for the development of intensity-
duration-frequency (IDF) models (e.g., rainfall), such as the one sketched in section 5.4.  

With all the above in mind, and by acknowledging that this work did not covered real-
world applications, (since the focus was on methods and algorithmic developments) it is 
argued that it would be of particular interest to further assess and cross-compare the 
performance of such modelling approaches (e.g., asymptotic Vs non-asymptotic models 
for the distribution of maxima, multi-scale modeling of the process’ distribution 
construction of IDF models) by employing real-world datasets (e.g., rainfall or runoff) 
comprised by multiple stations and long records of observations. Furthermore, such 
large-scale datasets could also provide a unique testbed to assess the plausibility of the 
Gaussian copula assumption for the dependence structure of the process among 
consecutive time steps, an assumption made throughout the analyses presented herein. 
It is recalled that the latter copula is linked with the property of asymptotic tail 
independence and thus its plausibility for hydrometeorological processes should be 
further investigated.  

Incidental developments of this work are: 1) the closed-form approximation for 
establishment of the TEC relationship (i.e., target vs equivalent correlations) for 
(binary) processes with Bernoulli marginal distribution, which can be used either for 
computational speed-up of   -based block maxima models, or for the generation of 
correlated binary processes. 2) The brief note on the moments, probability weighted 
moments, and L-moments of zero-inflated distributions (presented in Appendix A). This 
distribution is widely used in the hydrological domain and is particularly suitable for 
processes characterized by intermittency (e.g., fine time scale ones). Appendix A is 
filling this way the gap in hydrological literature which, to the best of the author’s 
knowledge, was lacking from a similar effort. 3) Finally, and in the spirit of reproducible 
research, all the procedures and recipes described herein have been implemented in R 
programming language (R Core Team 2017), in the form of an R package, named 
bBextremes, which to the best of the author’s knowledge is currently the only open-
source implementation of these models. 
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Appendix A: Moments, probability weighted moments, and L-moments of 
zero-inflated distributions 

The CDF, denoted as   , and ICDF, denoted as   
   of a zero-inflated (  ) distribution 

are given respectively by,  

     ( )   {
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 (A1) 
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where,     {   } is a parameter controlling the inflation of zeros (i.e., the discrete 
part of the    distribution – the probability of observing a zero value), and    
        {       } denotes the distribution to be inflated (i.e., the continuous 

part of the    distribution, herein assumed to be defined in the positive half line (   )). 
For completeness and subsequent use, it is noted that,     {   }      . 

For applications of this distribution in hydrological domain see for instance the early 
works of Roche (1963 p. 69), Thom (1968), Mooley (1973), Bell (1987), Lanza (2000), 
and the more recent ones of Bárdossy and Pegram (2009, 2016). See also, Papalexiou 
(2018), Tsoukalas (2018), Tsoukalas et al. (2018b, 2019, 2020) who used it within the 
context of Nataf-based (i.e., Gaussian copula) stochastic models, aiming at the 
simulation of intermittent hydrometeorological processes, such as rainfall at fine time 
scales, as well as Kossieris et al. (2019) for modelling non-physical processes, such as 
water demand. 

Moments of a zero-inflated (  ) distribution model 

Denoting by   ( ) the probability density function of the RV  , the theoretical raw 

moments (or moments about the origin),   
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of the zero-inflated distribution are given by, 
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where       
 ( ) is the     raw moment of            {       }. Noting that, 

  
 ( )    and   

 ( )      [ ].  

The corresponding     order central moments,   ( )   [(    ) ], can be obtained 
by the following general relationship that the links raw and central moments. 
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The inverse relationship is given, 

   
 ( )   [( ) ]  ∑(

 

 
)   ( )

 

   

  
   

 (A5) 

where ( 
 
) denotes the Binomial coefficient. Note that   ( )    and   ( )   . For 

instance, for          the central moments are given by,  

   ( )    
 ( )  (  

 ( ))
 
 (A6) 

   ( )    
 ( )     

 ( )  
 ( )   (  

 ( ))
 
 (A7) 

   ( )    
 ( )     

 ( )  
 ( )   (  

 ( ))
 
  

 ( )   (  
 ( ))

 
 (A8) 

Particularly, the mean (  ), variance (  
 ) and skewness (   

   ( ) (  ( ))
   

⁄ ) of a 

zero-inflated distribution are given by, 

     
 
   (A9) 

   
   

 
(  

  (    )  
 ) (A10) 

 

   
 

(     
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   (     

 )    
  

     

√(     
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 )   
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(  
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(A11) 

where,          ,    
        

  and            
 denote the mean, variance and 

skewness of the continuous distribution          . It is noted that an analytical 

relationship can be established for the kurtosis coefficient (   
   ( ) (  ( ))

 
⁄ ), 

but it is too complex, and probably of limited use, hence not included herein. 

Probability weighted moments (PWMs) of a zero-inflated (  ) distribution model 

Assuming that the random variable   has finite mean, the PWMs are defined as 

(Greenwood et al. 1979),   (     )  ∫ (  
  ( ))

 
  (   )   

 

 
, where, in the most 

general case,  ,   and  , are real numbers (typically though denoting non-negative 
integers). When    ,    , and     , PWMs reduce to classical moments, i.e., 
  (     )    

 ( ). Following the above definition, the PWMs of a    distribution are 
given by, 
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   (     )  ∫ (  
  (
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 0

 (A12) 

The two most common types of PWMs are the so-called,  - and  -type moments 
(Greenwood et al. 1979), which for the    distribution are given by (note that hereafter 
when convenient, the subscript   is omitted for simplicity),  

  ( )    (     )  ∫ (  
  (

    

    
)) (   )   

 

 0

 (A13) 

 
 ( )    (     )  ∫ (  

  (
    

    
))     

 

 0

 
(A14) 

It is also noted that the quantities  ( ) and  ( ) are related by, 

  ( )  ∑(
 

 
) ( )

 

   

 (A15) 

  ( )  ∑(
 

 
) ( )

 

   

 (A16) 

Hence providing interchangeably the same information about a distribution (Kumar et 
al. 1994). Furthermore, there is also a link between  - and  -type PWMs and L-
moments (Hosking 1990) of order  , which allows us to express the latter as function of 
the former, i.e., 

 𝜆    ∑    𝑚
 

 

𝑚  

 ( )  (  ) ∑    𝑚
 

 

𝑚  

 ( ) (A17) 

where, 

    𝑚
  (  )  𝑚 (

 

 
) (

   

 
) (A18) 

The first four L-moments of a distribution can be obtained by, 

 𝜆   ( )   ( ) (A19) 

 𝜆   ( )   ( )     ( )    ( ) (A20) 

 𝜆   ( )    ( )    ( )    ( )    ( )   ( ) (A21) 

 𝜆   ( )     ( )     ( )     ( )     ( )     ( )     ( )   ( ) (A22) 
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while, the L-coefficient of variation (  ), L-skewness (  ) and L-kurtosis (  ) can be 
obtained respectively by (note that, 𝜆    ), 

    𝜆 𝜆 ⁄     𝜆 𝜆 ⁄     𝜆 𝜆 ⁄  (A23) 

Following a recent result related with so-called knowable, or for short, k-moments 
(Koutsoyiannis 2020) as well as simple reasoning, it is possible to derive formulas that 
link the  - and  -type moments of the continuous distribution (i.e.,       ( ) and 

      ( ) respectively) with those of the    distribution (i.e.,   ( ) and   ( )). In 

particular, the quantities       ( ) and   ( ) are related by, 

   ( )        ( )(    )
    (A24) 

On the other hand, the the quantities       ( ) and   ( ) are related by, 

   ( )  
  

   

   
∑(

   

 
)        (   )

   

   

(
    

  
)
 

 (A25) 

The above equation along with Eq. (A17)-(A22) provide the means to calculate the 
theoretical L-moments of a    distribution (Eq. A1), on the basis of       ( ) or 

      ( ) and   , even analytically, if       ( ) or       ( ) have an explicit form (see 

Appendix C, for the case of a zero-inflated Burr type XII distribution). 
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Appendix B: Distribution functions 

The CDF and ICDF of a zero-inflated Burr type-XII (       ) distribution are given by, 

  ( )      (    (
 

𝜆
)
𝜁

)

 
 
 𝜁

 
(B1) 

       ( )  𝜆(
(

  
   

)
 𝜁

  

  
)

  𝜁

 
(B2) 

where        .    is a parameter that controls the inflation of zeros, while 𝜆   , 
    and     denote the scale, shape, and tail index parameters respectively. Of 
course, by setting      (i.e.,     ) we obtain the classical       distribution (i.e., 
not inflated with zeros) (Burr 1942; Singh and Maddala 1976; Tadikamalla 1980). 

The classical, raw moments of order   of the         distribution, are given by, 

   ( )  
   𝜆

 

 (  )  𝜁   
 (

 

 
 
 

  
 

 

 
 ) (B3) 

where  (   ) denotes the Beta function. It is noted that, the rth moment of the         
(and      ) distribution is finite, only if,      . Thus, to have finite variance      . 

The  -type PWMs οf order   of the         distribution can be obtained by (see also 
Koutsoyiannis (2020) for a similar formula concerning K-moments), 

  ( )  
  

   𝜆

   

 

 (  ) 𝜁⁄
 ( 

   

  
  

 

 
 
 

 
) 

(B4) 

The above equation provides also the basis to analytically calculate the L-moments of a 
        distribution. In particular, the L-mean (𝜆 ), the L-coefficient of variation (  ) 
and L-skewness (  ) can be obtained by (L-kurtosis,   , is omitted due to its 
complexity), 
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ACCEPTED M
ANUSCRIP

T

    
𝜆 

𝜆 
 

 (
 
ζξ

 
 
  

 
 )      (

 
ζξ

 
 
  

 
 )     

  (
 
ζξ

 
 
  

 
 )

 (
 
ζξ

 
 
  

 
 )     (

 
ζξ

 
 
  

 
 )

 (B7) 

The  -type PWMs and L-moments of the classical       distribution (i.e., not inflated 
with zeros) can be estimated by simply setting      (i.e.,     ). 

The CDF of the Generalized Extreme Value (   ) distribution is given by, 

  ( )  

{
 
 

 
 

   ( (     
     

𝜆
)
  

 
 
)   ≠  

   (    ( 
     

𝜆
))                      

   (B8) 

where       and 𝜆    are the tail index (shape), location and scale parameters 
respectively.     encompasses three distributions, the Fréchet (           
[  𝜆  ⁄    )), the Gumbel (           (     )) and the reversed Weibull 
(           (     𝜆  ⁄ ]); the latter case is not considered herein, since it regards 
upper bounded RVs. The moments of the     are finite up to orders smaller than     
(i.e.,        implies that the distribution’s moments that are greater or equal to 4 (  
 ) are infinite). 
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Appendix C: Autocorrelation structures 

The autocorrelation structure (ACS) of a fractional Gaussian noise (fGn) model (e.g., 
Mandelbrot and Van Ness 1968; Beran 1992), also referred to as Hurst-Kolmogorov 
(HK; Koutsoyiannis 2010), to credit seminal works, is given by, 

   
fG ( )  

 

 
(      𝛨       𝐻        𝐻) 

(C1) 

where,   denotes the time lag, and   (   ) is the so-called Hurst parameter that 
controls the degree of persistence of the ACS. It is noted that a process with fGn ACS 
with      , is identical to white noise one (i.e., i.i.d.), while for   (     ), the ACS is 
positive for any  , and exhibits long range dependence. 

The Cauchy-type correlation structure (CAS), has been originally proposed by 
Koutsoyiannis (2000) in an effort to provide a parsimonious yet flexible ACS model 
capable of modelling a wide range of processes, entailing both short- and, long-range 
dependence. The ACS of CAS is given by: 

   
CAS(  𝜅)  (  𝜅  )         (C2) 

where     and 𝜅    are model parameters. It is noted that     implies an ACS 
identical to that of an AR(1) processes (i.e., short-range dependence), and     implies 
an ACS with long-range dependence. The increased flexibility provided by CAS is 
demonstrated in several other studies, involving the simulation of physical (Tsoukalas 
et al. 2018b, 2019) and non-physical processes (Kossieris et al. 2019; Kossieris 2020), 
as well as spatiotemporal random fields (Tsoukalas et al. 2020).   
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Appendix D: Additional figures for the simulation studies of section 4 
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Tables 

Table 1. Selected marginal distributions and autocorrelation structures (ACSs) for the 
simulation studies of this section. 

Simulation study ID # 1 2 3 4 

Marginal distribution 
Zero-inflated Burr type-XII*: 

        (                              )** 

ACS*,      
   

(      )   
   

(     )   
 𝐴𝑆(           )   

AR( )*** 

Relevant Figure Figure 4 Figure 5 Figure D1 Figure D2 

* For further details about the employed marginal distributions and ACSs, i.e., the fGn, and Cauchy-type correlation 
structure (CAS), see Appendix B and C respectively. Also, Appendix A provides a brief overview on zero-inflated 
marginal distributions, as well as provides formulas for the calculation of their moments, probability weighted 
moments (Greenwood et al. 1979) and L-moments (Hosking 1990). 
** The selected parameters resemble the distributional properties (as identified in Koutsoyiannis (2020)) of daily 
rainfall recorded at the station of Bologna, Italy.  
*** The parameters of the AR(3) ACS are,                          , where   ’s denotes the autoregressive 

parameters of an AR process (in this case of order 3). Its ACS is given by,   
𝐴𝑅( )

 ∑       
 
   . See also Figure D2c 

for a graphical illustration of this ACS. 

 

  



 

ACCEPTED M
ANUSCRIP

T

List of captions 

Figure 1. Graphical illustration of (a) Eq. (7), and (b) Eq. (8), for various values of    
   (1     ), where   is the parameter of the Bernoulli distribution (i.e.,   ( )). 

Figure 2. (a) Graphical comparison between the approximate closed-form expression of Eq. (6) 
and numerical integration for establishment of the TEC relationship for processes with   ( ) 
marginal distribution. (b) Graphical depiction of the error (simple difference) between the 

approximate closed-form expression of Eq. (6) and numerical integration. This plot focuses on 
typical values of   spanning from 0.5 to 10 4. 

Figure 3. (a) Graphical comparison between the approximate closed-form expression of Eq. 
(11) and numerical integration for establishment of the TEC relationship for processes with 
  ( ) marginal distribution. (b) Graphical depiction of the error (simple difference) between 
the approximate closed-form expression of Eq. (11) and numerical integration. This plot focuses 
on very low values of   spanning from 10 2 to 10 9. 

Figure 4. (a) Simulated realization (randomly selected window of 365  30 time steps); (b) 
comparison between empirical (i.e., simulated) and target theoretical distribution (in terms of 
probability of exceedance, i.e., 𝑃{   }  1    ( )); (c) comparison between empirical (i.e., 

simulated) and target theoretical ACS (in this case      
   (  0 65)); (d) time series of 

maximum values of a block with size   365; (e) comparison of the distribution of maxima 
over a  -length block (in terms of return period,  ), obtained by the models of section 3. Note 
that the axes of panel (e) are logarithmic. 

Figure 5. As in Figure 4, but for simulation study #2 (see Table 1), which differs at the type of 

the ACS structure, in this case      
   (  0 8). Note that the axes of panel (e) are logarithmic. 

Figure 6. Comparison of the distribution of maxima over a 365-length block (in terms of return 
period,   1 1     

⁄ ), as obtained by different methods, assuming an intermittent base 

process with        ( 0  0 75   7 07   0 928   0 098) marginal distribution and ACS 

structure      
   (  0 65). Panel (a) regards estimates (the median, and the 80% 

confidence intervals) based on 1000 realizations with length   365  50, while panel (b) with 
length   365  100. The axes of both panels are logarithmic. 

Figure 7. Comparison (in terms of empirical CDF) of the absolute relative difference [%] 
between the theoretical the return level    (estimated using the   ( )     model; see section 
3.6) and the estimated return level    as obtained by different methods for the estimation of the 
distribution of maxima over a 365-length block (estimated using each of the 1000 realizations). 
The results concern an intermittent base process with        ( 0  0 75   7 07   0 928   

0 098) marginal distribution and ACS structure      
   (  0 65). From left to right, each 

column corresponds to   10 50 100 and 1000. Also, the first row corresponds to estimates 
based on 1000 realizations with length   365  50, while the second one to   365  100. 
For the sake of comparison, this plot includes an additional model for the distribution of 
maxima, i.e., the i.i.d. model of Eq. (15) combined with a         marginal (abbreviated in the 
plot as, ZIBrXII+iid). Note, that the black and magenta lines overlap in several cases. 

Figure 8. Panels (a) and (b): mean absolute relative difference [%] between the theoretical 
distribution of maxima (estimated using the   ( )     model; see section 3) and the 
investigated approaches. Panels (c) and (d): standard deviation of the absolute relative 
difference [%] between the theoretical distribution of maxima and the investigated approaches. 
The estimates were derived using 1000 realizations of an intermittent base process with 
       ( 0  0 75   7 07   0 928   0 098) marginal distribution and ACS structure 



 

ACCEPTED M
ANUSCRIP

T

     
   (  0 65). Panels (a) and (d) regards realizations with length   365  50, while 

panels (b) and (d) with   365  100. Note, that for the sake of comparison, this plot includes 
and an additional model for the distribution of maxima, i.e., the i.i.d. model of Eq. (15) combined 
with a         (abbreviated in the plot as, ZIBrXII+iid). 

Figure 9. Comparison (in terms of empirical CDF) between the estimates of the tail indices 
(parameter  , in both       and     distributions), obtained by the different methods. The true 
value (  0 098) is illustrated with the vertical orange line. The estimates were derived using 
1000 realizations of an intermittent base process with        (   0 75   7 07   0 928   

0 098) marginal distribution and ACS structure      
   (  0 65). Panel (a) regards 

realizations with length   365  50, while panel (b) with   365  100. 

Figure 10. Comparison between the empirical (as obtained by simulation), and theoretical (as 
obtained by the formulas of section 5.1) probability of a zero value over multiple temporal 

scales   {2   365}, (i.e.,  0
( )

  { ( )  0}) for simulation study #1 (panel a) and #2 (panel 

b). 

Figure D1. As in Figure 4, but for simulation study #3 (see Table 1), which differs at the type of 
the ACS structure, in this case      

 𝐴𝑆(  1 5 𝜅  0 5). Note that the axes of panel (e) are 
logarithmic. 

Figure D2. As in Figure 4, but for simulation study #4 (see Table 1). which differs at the type of 

the ACS structure, in this case      
𝐴𝑅(3)

 ∑       
3
  1 , where  1  0 4  2  0 2      3  0 1. 

Note that the axes of panel (e) are logarithmic. 

Figure D3. As in Figure 6, but for simulation study #2 (see Table 1). which differs at the type of 

the ACS structure, in this case      
   (  0 8). The axes of both panels are logarithmic. 

Figure D4. As in Figure 6, but for simulation study #3 (see Table 1). which differs at the type of 
the ACS structure, in this case      

 𝐴𝑆(  1 5 𝜅  0 5). The axes of both panels are 
logarithmic. 

Figure D5. As in Figure 6, but for simulation study #4 (see Table 1). which differs at 

the type of the ACS structure, in this case      
𝐴𝑅( )

 ∑       
 
   , where    

                     . The axes of both panels are logarithmic.  
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Figure 10.  
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Figure D6.  
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Figure D7.  
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Figure D8.  
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Figure D9.  
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Figure D10.  

 

 

 

 

 




