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Abstract

Hydrological calibrations with historical data are often 
deemed insufficient for deducing safe estimations about a 
model structure that imitates, as closely as possible, the 
anticipated catchment behaviour. Ιn order to address this 
issue, we investigate a promising strategy, using as drivers 
synthetic time series, which preserve the probabilistic 
properties and dependence structure of the observed data. 
The key idea is calibrating a model on the basis of 
synthetic rainfall-runoff data, and validating against the 
full observed data sample. To this aim, we employed a proof 
of concept on a representative catchment, by testing several 
lumped conceptual hydrological models with alternative 
parameterizations and across two time-scales, monthly and 
daily. Next, we attempted to reinforce the validity of the 
recommended methodology by employing monthly 
stochastic calibrations in 100 MOPEX catchments. As before, 
a number of different hydrological models were used, for the 
purpose of proving that calibration with stochastic inputs is 
independent of the chosen model. The results highlight that 
in most cases the new approach leads to stronger parameter 
identifiability and stable predictive capacity across 
different temporal windows, since the model is trained over 
much extended hydroclimatic conditions.
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Deterministic Hydrological Calibration Scheme
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Conventional split-sample scheme for model calibration:

Identification of “optimal” modelling structure (parameter 
values adjustment), so that the modeled streamflow 
approximates, as closely as possible, the catchment  
hydrological response, on the basis of a specific subset of 
data (calibration subset).

Assessment of its predictive capacity on an independent 
subset (validation subset) of the historical dataset to 
ensure its adequacy for reproducing the hydroclimatic 
conditions of a period different than that for calibration.



Common Split-Sample Strategy Challenges

Discrepancies between the performance metrics for calibration and validation samples may indicate weak parameter 
identification. Thus, there is a need to extend the temporal horizon chosen for calibration, so that the model can be trained over 
longer periods and capture the catchment dynamics to a greater extent. BUT:

The available data may often not be representative of the catchment’s hydrological regime and long-term hydroclimatic 
changes; a common pitfall in the case of data-scarce catchments. 

As stated before, a part (e.g. half) of the whole dataset must be allocated for validation purposes, hence precious 
hydrologic information encapsulated in the associated dataset is sacrificed.

As seen in the previous outline of this approach, only the overlapping periods of the observed input and output data can 
be exploited for model calibration and validation, ergo the remaining period of data is not accounted for. This is a 
commonly encountered scenario, since the length of rainfall records often exceeds that of the runoff observations.

In conclusion, the separation strategy, as well as the length of the calibration period, can pose a serious problem for hydrological 
modelling applied based on the split-sample rationale.
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New approach for parameter identification: Stochastic Calibration [Efstratiadis et al., 2021]



Conceptual Scheme for Stochastic Calibration 
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Stochastic Calibration Procedure

The proposed framework is a simple conceptual approach, which follows the aforementioned calibration-validation logic. 
Specifically, model calibration is accomplished by using long synthetic data as inputs, while the adjusted model structure is 
validated against the full historical record.

Thus, an additional component is important to precede the calibration procedure, a stochastic model generating synthetic time
series, stochastically resembling the observed ones. Within those time series should be reproduced all statistical information 
regarding the full hydroclimatic regime of the basin. Such information is integrated in the realized input and output data and 
usually cannot be extracted in cases of length-limited data. What is more, this is further intensified since a significant part of this 
information is accounted for validation purposes within the split-sample calibration scheme.

Therefore, the drawbacks stemming from the application of the classical split-sample scheme are thereby eliminated, since:

The substantially longer synthetic sample, that is expected to describe the full hydroclimatic regime, dispensed for 
model calibration will eventually lead to more robust parameters and stable predictive capacity.

As stated above, the predictive capacity of the model is evaluated against the full set of observed data, hence the 
validation dataset is also extended.

Given the above, the dilemma of which part of data to allot for calibration and which for validation, does not exist any more.
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In order to test the functionality of the proposed framework for stochastic calibration, a number of hydrological models with 
conceptual structure of varying complexity have been either developed or used. Each one of them is a bucket-type model with a 
lumped schematization, which uses a set of mathematical equations to simulate the main hydrological mechanisms at the 
catchment scale. All hydrological fluxes are expressed in units of water depth per unit time (i.e. mm/month or mm/day), while 
storages are expressed in terms of water depths (i.e. mm). Each model requires either daily or monthly areal rainfall (P) and
potential evapotranspiration (PET) as inputs. These models are:

Zygos-4P: a four-parameter lumped water balance model, based on a simplified version of Zygos model [Kozanis and 
Efstratiadis, 2006]

Zygos-6P: this six-parameter lumped model was also developed by adopting the structure of Zygos-4P scheme, by 
implementing a few modifications

GR2M: this monthly time step model belongs to the family of the GR rainfall-runoff models, a set of conceptual lumped 
hydrological models developed for specific time steps. For this study, it was selected the most recent version of GR2M 
model [Mouelhi et al., 2006]

GR4J: another model of the GR family, a four-parameter daily lumped hydrological model proposed by Perrin et al. [2003]

GR6J: a progressively modified version of the GR4J model, applied at a daily time step with six free parameters [Le 
Moine, 2008; Pushpalatha et al., 2011]

Both hydrological models Zygos-4P and Zygos-6P were configured in R-environment, whereas the aforementioned GR 
models have been already implemented within the R–package airGR [Coron et al., 2017a; Coron et al., 2017b].

The conceptual structure for each of the five models, as well as the equations which regulate each mathematical model, are 
presented in the following sections of this presentation.

Hydrological Modelling Tools
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Hydrological Model Zygos-4P

7

Zygos-4P Equations for each time step t:

QD(t) = ν P(t)

ΕΤD(t) = min[ PET(t) ; P(t) – QD(t) ]

S(t) = S(t – 1) + I(t)

I(t) = P(t) – QD(t) – ΕΤD(t)

ETS(t) = S(t) ( 1 – 𝑒−
PET(t) – ETD (t)

𝑲 )

PERC(t) = κ S(t)

QS(t) = max[ S(t) – K ; 0 ]

G(t) = G(t – 1) + PERC(t)

QB(t) = λ G(t)

Qsim(t) = QD(t) + QS(t) + QB(t)

ΕΤact(t) = ΕΤD(t) + ETS(t)

S(t) = S(t – 1) + I(t) – ETS(t) – PERC(t) – QS(t)

G(t) = G(t – 1) + PERC(t) – QB(t)

 

Figure 1 ȁ Schematic representation of the conceptual structure of the Zygos-4P model
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Hydrological Model Zygos-6P

Zygos-6P Equations for each time step t:
(additional or modified equations)

ΕΤD(t) = min[ 
𝑖 P t ≠ 0

𝑁
P(t) ; PET(t) ]

where i[P(t) ≠ 0] indicates the number of time 
steps t that a rainfall event occurred; N is 

the length of the rainfall data sample

QD(t) = ( P(t) – ΕΤD(t) ) 
S t−1

𝜥

𝝂

QB(t) = max[ λ ( G(t) – H ) ; 0 ]

L(t) = a G(t)

With the exception of aforementioned 
components, all of the remaining 

hydrological processes are calculated in an 
identical way to that of the Zygos-4P 

scheme.
 

Figure 2 ȁ Schematic representation of the conceptual structure of the Zygos-6P model



Monthly Hydrological Model GR2M
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Figure 3 ȁ Schematic representation of the conceptual structure of the GR2M model

 

GR2M Equations for each time step:

S1 = 
S + 𝑿𝟏φ

1+φ
S

𝑿𝟏

where φ = tanh( P / X1 )

P1 = P + S – S1

S2 = 
S1 1 −ψ

1+ψ 1−
S1
𝑿𝟏

where ψ = tanh( PΕΤ / X1 )

S = 
S2

1+
S2
𝑿𝟏

3 1/3 &  P2 = S2 – S

P3 = P1 + P2 &   R1 = R + P3

R2 = X2 R1

Qsim = 
𝑅2
2

R2 + 60
&  R = R2 – Qsim
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Daily Hydrological Model GR4J

Figure 4 ȁ Schematic representation of the conceptual structure of the GR4J model

 

PN = max[ P – PET ; 0 ]

ETN = max[ PET – P ; 0 ]

PS = 
𝑋1 1−

S

𝑋1

2
φ

1 +
S

𝑋1
φ

where φ = tanh( PN / X1 )

ETS = 
S 2 −

S

𝑿𝟏
ψ

1 + 1 −
S

𝑿𝟏
ψ

where ψ = tanh( ETN / X1 )

S1 = S + PS – ETS

Perc = S 1 − 1 +
4

9

S1

𝑿𝟏

4 − Τ1 4

S = S1 – Perc

PR = Perc + (PN – PS)

F = 𝑿𝟐
R

𝑿𝟑

7/2

R1 = max[ R + Q9 + F ; 0 ]

QR = R1 1 − 1 +
R1

𝑿𝟑

4 − Τ1 4

R = R1 – QR

QD = max[ Q1 + F ; 0 ]

Qsim = QR + QD

Q9(t) = 0.9 σk =1
l [ UH1(k) · PR(t – k + 1) ]

Q1(t) = 0.1σk = 1
m [ UH2(k) · PR(t – k + 1) ]

l = int[ X4 ] + 1
m = int[ 2 X4 ] + 2

where 

GR4J Equations for each time step t:



Daily Hydrological Model GR6J
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GR6J Equations for each time step:
(additional or modified equations)

 

Figure 5 ȁ Schematic representation of the conceptual structure of the GR6J model

F = 𝑿𝟐
R

𝑿𝟑
− 𝑿𝟓

R1 = max[ R + 0.6 Q9 + F ; 0 ]

E1 = E + 0.4 Q9

The exponential store is controlled by a model 
parameter, X6, which acts as a base level in the 

reservoir. The routed runoff QE is estimated as a 
function of the current store level E1 and this parameter.

Qsim = QE + QR + QD

The mathematical equations developed by Perrin et al. 
[2003] to describe the hydrological processes until the 

point of two flow components Q1 and Q9, resulted from 
the two unit hydrographs (UH1 & UH2), continue being 

valid for the GR6J model.

The routed runoff QR and the routing reservoir level R 
at the end of each daily time step are calculated 
according to the respective equations of GR4J.



Calibration Methods & Criteria

▪ The parameter sets for both Zygos-4P and Zygos-6P models are estimated for all the study catchments using the 
Evolutionary Annealing-Simplex (EAS) optimization method [Efstratiadis and Koutsoyiannis, 2002], a hybrid scheme that 
merges the strengths of both local and global search.

▪ The calibration of all three of the GR models was employed with the technique proposed by Michel [1991], an algorithm that 
also combines a local and a global approach and is already implemented in airGR R–package [Coron et al., 2017a; Coron et al., 
2017b].

Model Performance Index:
[Nash and Sutcliffe, 1970]

NSE = 1 –
σi = 1
N Qobs,i −Qsim,i

2

σi = 1
N Qobs,i −Qobs

2

where NSE is the efficiency metric,

Qobs,i is the observed runoff values,

Qsim,i is the modeled runoff values,

Qobs stands for the mean runoff

Table 1 summarizes the ranges of variation for each 
model parameter, as obtained from the literature.

Model Parameter Unit Range Reference

Zygos-4P

ν - [0 , 1]

Ranges deduced from 

numerous simulations

K mm [0 , 1000]

κ - [0 , 1]

λ - [0 , 1]

Zygos-6P

ν - [0.1 , 2.5]

H mm [0 , 300]

a - [0 , 1]

GR2M
X1 mm [0 , 1500]

Mouelhi et al., 2006
X2 – or mm/day [-10 , 10]

GR4J
X3 mm [1 , 500]

Perrin et al., 2003
X4 days [0.5 , 8]

GR6J
X5 - [-4 , 4] Le Moine, 2008

X6 mm [0.5 , 20] Pushpalatha et al., 2011

Table 1 ȁ Parameters of conceptual rainfall-runoff models and their feasible ranges
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Proof-of-Concept – Study Area

The available hydrological data (precipitation, 
potential evapotranspiration, runoff) are of daily 
time scale and extend over the period 01/08/1958 
to 31/07/2016 (Fig. 7). The data were taken from 
a previous study conducted  by Rebolho et al. 
[2018] in the same watershed.
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Figure 7 ȁ Historical daily rainfall and runoff time series Figure 6 ȁ Geographical representation of the Loing catchment

Before we proceed to a large scale analysis, the proposed framework is established upon a specific study basin, the Loing 
river basin.  The geographical representation of the basin is given in Figure 6 (catchment boundary was taken from 
European Catchments and Rivers Network
System (ECRINS) ).



Proof-of-Concept – Analysis Setup

At first, stochastic calibration for this specific study case 
was employed at a monthly time-scale using the 
hydrological models GR2M and Zygos-6P. Thus, the daily 
observed data are aggregated at the monthly scale (Fig. 8). 
Subsequently, we proceed to a further analysis, testing the 
validity of the framework at the daily scale, by employing 
GR4J and GR6J rainfall-runoff models.
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Figure 8 ȁ Historical monthly rainfall and runoff time series
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For each model calibration, the classical split-sample 
scheme is initially employed, by dividing the 
historical records into two equal subsets of length 29 
years each, for calibration and validation.
Consequently, the stochastic calibration procedure is 
employed, and the models are fitted against a 
synthetic time series of length 1000 years, and their 
structure is validated against the full sample of 
observations.



A consistent and robust stochastic calibration framework dictates a few specifications for the data synthesis procedure:

Representation of the full probabilistic behavior of the input and output processes, through careful assignment of 
suitable distribution models across processes and scales, instead of a blind reproduction of the observed statistical 
characteristics per se [Tsoukalas et al., 2019, 2020].

Representation of auto- and cross-dependencies, which are statistical descriptors of the major drivers and cause-effect 
phenomena across the hydrological cycle.

Multi-scale consistency, through effective coupling of stochastic models across multiple time scales, to ensure the 
reproduction of the marginal and dependence behavior of the modelled processes not only at the temporal resolution of 
the hydrological simulation (e.g., daily, monthly), but also across coarser levels of aggregation (e.g., annual).

Regarding the synthetic time series generation procedure, these were produced via the anySim R-package [Tsoukalas et al., 
2020], specifically designed for the simulation of non-Gaussian behavior, which characterizes hydrometeorological processes, 
apart from other significant peculiarities such as periodicity, intermittency, and auto- and cross-dependence.

Concerning the evapotranspiration synthetic input data, we simply apply the mean monthly values of the historical sample.

Stochastic Simulation – Conditions on the Synthesis Procedure
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Figure 9 ȁAuto-dependency patterns among runoff data between subsequent months (left) and

cross-dependency patterns between rainfall and runoff (right), derived from the 
observed data (split into two periods) and the synthetic ones (12 000 values)

As shown in Figure 9, the synthesis scheme ensured the 
reproduction of dependency patterns that are much 
extended than the observed ones. These are expected to 
represent the full hydroclimatic regime of the basin, 
which cannot be traced in the case of the observed data, 
due to their limited length. Actually, while using the split-
sample calibration approach, only half of this information 
is accounted for.
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Runoff at month t+1 [mm]

Rainfall [mm] Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual

Mean 67.5 66.6 69.1 61.8 53.0 55.3 53.5 68.3 57.4 56.7 57.0 56.4 722.5

St. deviation 36.9 27.0 30.2 29.6 28.2 30.5 31.2 31.5 26.2 30.7 29.9 35.6 132.3

Skewness 0.603 0.554 0.488 0.508 0.537 0.856 0.558 1.019 0.458 1.111 0.217 0.865 0.131

Lag-1 correl. 0.162 -0.016 -0.173 0.035 -0.058 0.197 0.102 -0.031 0.296 0.135 0.108 -0.231 0.126

Runoff [mm]

Mean 7.9 10.7 17.0 22.2 21.3 20.1 16.1 13.6 9.6 6.6 5.8 5.4 156.4

St. deviation 5.0 7.3 10.5 13.8 12.7 11.3 9.9 7.2 8.8 3.6 3.6 2.3 66.2

Skewness 1.769 2.31 1.177 0.962 0.82 1.345 1.659 0.95 5.284 1.402 2.404 1.044 0.357

Lag-1 correl. 0.713 0.786 0.576 0.672 0.514 0.717 0.683 0.746 0.438 0.455 0.833 0.703 0.483

Lag-0 correl. 0.616 0.392 0.61 0.681 0.748 0.758 0.625 0.436 0.394 0.532 0.330 0.202 0.841

Table 2 ȁ Key statistical information of observed rainfall and runoff data and their lag-0 

cross-correlation coefficient at the monthly and annual time scales

Table 2 demonstrates the key statistics of historical rainfall 
and runoff data (mean, standard deviation, skewness, 
auto- and cross-correlations), to be reproduced within the 
synthetic time series that are used in stochastic calibration. 



Monthly Time-Scale Analysis – Zygos-6P Model
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Split-Sample 
Approach

NSECal NSEVal NSETot

0.837 0.836 0.836

Stochastic 
Calibration

NSE

0.836

Split-Sample 
Approach

ν Κ [mm] κ Η [mm] α λ

1.763 235.0 0.184 60.8 0.120 0.142

Stochastic 
Calibration

ν Κ [mm] κ Η [mm] α λ

1.835 234.2 0.180 44.2 0.157 0.173

Table 3 ȁModel performance evaluation

Figure 10 ȁ Visual inspection of the agreement between observations and model 

predictions (Split-Sample approach)

Table 4 ȁ Optimized Zygos-6P parameter values

Figure 11 ȁ Visual inspection of the agreement between observations and model 

predictions (Stochastic Calibration approach)

NSECal : NSE in Calibration

NSEVal : NSE in Validation

NSETot / NSE : Overall NSE
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Monthly Time-Scale Analysis – GR2M Model
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Split-Sample 
Approach

NSECal NSEVal NSETot

0.817 0.776 0.798

Stochastic 
Calibration

NSE

0.798

Split-Sample 
Approach

X1 [mm] X2

395.4 0.77

Stochastic 
Calibration

X1 [mm] X2

399.4 0.77

Table 5 ȁModel performance evaluation

Figure 12 ȁ Visual inspection of the agreement between observations and model 

predictions (Split-Sample approach)

Table 6 ȁ Optimized GR2M parameter values

Figure 13 ȁ Visual inspection of the agreement between observations and model 

predictions (Stochastic Calibration approach)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

M
ea

n
 M

o
n

th
ly

 R
u

n
o
ff

 [
m

m
]

Observed

Modeled (Split-Sample)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

M
ea

n
 M

o
n

th
ly

 R
u

n
o
ff

 [
m

m
]

Observed



Daily Time-Scale Analysis – GR4J Model
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Split-Sample 
Approach

NSECal NSEVal NSETot

0.848 0.895 0.871

Stochastic 
Calibration

NSE

0.805

Split-Sample 
Approach

X1 [mm] X2 [mm/d] X3 [mm] X4 [days]

520.1 -0.70 35.9 4.20

Stochastic 
Calibration

X1 [mm] X2 [mm/d] X3 [mm] X4 [days]

1011.6 -0.48 38.8 4.39

Table 7 ȁModel performance evaluation

Figure 14 ȁ Visual inspection of the agreement between observations and model 

predictions (Split-Sample approach)

Table 8 ȁ Optimized GR4J parameter values

Figure 15 ȁ Visual inspection of the agreement between observations and model 

predictions (Stochastic Calibration approach)
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Daily Time-Scale Analysis – GR6J Model
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Split-Sample 
Approach

NSECal NSEVal NSETot

0.849 0.802 0.858

Stochastic 
Calibration

NSE

0.815

Split-Sample 
Approach

X1 [mm] X2 [mm/d] X3 [mm] X4 [days] X5 [-] X6 [mm]

242.1 -1.63 885.4 4.40 0.22 1.49

Stochastic 
Calibration

X1 [mm] X2 [mm/d] X3 [mm] X4 [days] X5 [-] X6 [mm]

296.6 -2.38 52.1 4.38 0.41 3.04

Table 9 ȁModel performance evaluation

Figure 16 ȁ Visual inspection of the agreement between observations and model 

predictions (Split-Sample approach)

Table 10 ȁ Optimized GR6J parameter values

Figure 17 ȁ Visual inspection of the agreement between observations and model 

predictions (Stochastic Calibration approach)
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Conclusive Remarks Regarding the Proof-of-Concept Case 

In regard to the monthly time-scale analysis, it is evident that the proposed methodology for calibration against 
synthetic rainfall-runoff data is functional. Specifically, the Zygos-6P and GR2M models performed equally well for 
calibration against historical data (split-sample approach) and against synthetic data (stochastic calibration approach). 
Moreover, the model parameter values for each calibration method are really close.

Concerning the daily time-scale analysis, for the application of the split-sample scheme the overall efficiency NSEtot for 
the two daily hydrological models (GR4J and GR6J) is slightly higher than the efficiency metric NSE that was estimated 
for the stochastic calibration case. Hence, the convergence between the above-mentioned metrics indicate that the 
stochastic calibration framework has certain potentials for application also to the daily scale. It is also worth noticing 
that the optimized parameter values against the synthetic rainfall-runoff data are quite different with respect to the ones 
derived by calibrating against the half of historical data, especially for the case of GR6J model.

The results of this initial investigation consist some first evidence to assume that the implementation of the stochastic 
calibration framework is independent of the chosen hydrological model.
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Large Scale Analysis
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Figure 18 ȁ Geographical location of the 100 selected MOPEX watersheds

After proving the functionality of the proposed 
framework for the previously presented study area, 
the validity of the proposed framework is tested 
against a large set of catchments at a monthly 
scale. Specifically, this investigation was conducted 
by selecting 100 catchments, accompanied by their 
respective datasets, from the MOPEX database
(Fig. 18).

MOPEX (MOdel Parameter Estimation EXperiment) 
is a project developed for the enhancement of a priori
parameter estimation methodologies for 
hydrological models and land surface 
parameterization schemes [Schaake et al., 2006].

A combination of criteria was taken into account 
for the selection of optimal set of catchments. 
Specifically, it resulted from:

▪ the percentage of stream flow missing values 
and

▪ cross-correlation between rainfall and 
streamflow.



The spatially averaged rainfall, evapotranspiration and streamflow data, provided for each of the 100 catchments, are 
observed at the daily time interval, thus they are aggregated at the monthly scale.

As in the previous study, a number of different hydrological models were used, to further fortify the assumption that 
calibration with stochastic inputs is independent of the chosen rainfall-runoff model structure. Specifically, for this study we 
use the GR2M, Zygos-4P and Zygos-6P models, which have been already presented in a former section. It should be noted that 
for the case of the split-sample approach, once more half of the total historical sample is used for calibration purposes.

Aiming at an efficient comparison between the performance for each calibration methodology, we presented graphically the 
model efficiency metrics (NSE) concerning the historical sample allocated for validation purposes. This decision stemmed from 
the notion that the validation period of observed records contains the only data over which, in both calibration methodologies, 
the rainfall-runoff model has not been trained. On the contrary, model efficiency metrics regarding the model calibration period
of historical data by employing the split-sample calibration approach would be biased since the selected model has been over-
fitted on this period.

Analysis Setup
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Figure 19 ȁ Scatter plots of poor/low (above) or good/high 

(below) model performance (NSE) by employing the Split-
Sample approach and the Stochastic Calibration

Figure 20 ȁ Scatter plots of GR2M model parameters estimated through Split-Sample approach or Stochastic 

Calibration
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Figure 21 ȁ Scatter plots of poor/low (above) or good/high 

(below) model performance (NSE) by employing the Split-
Sample approach and the Stochastic Calibration Figure 22 ȁ Scatter plots of Zygos-4P model parameters estimated through Split-Sample approach or Stochastic 

Calibration

Total Hist. Sample: NSE (Stoch Cal.) > NSE (Split-Sample Cal.) : 

Hist. Validation Sample: NSE (Stoch Cal.) > NSE (Split-Sample Cal.) : 

Hist. Calibration Sample: NSE (Stoch Cal.) > NSE (Split-Sample Cal.) : 
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Figure 23 ȁ Scatter plots of poor/low (above) or good/high 

(below) model performance (NSE) by employing the Split-
Sample approach and the Stochastic Calibration

Figure 24 ȁ Scatter plots of Zygos-6P model parameters estimated through Split-Sample approach or Stochastic Calibration

Total Hist. Sample: NSE (Stoch Cal.) > NSE (Split-Sample Cal.) : 

Hist. Validation Sample: NSE (Stoch Cal.) > NSE (Split-Sample Cal.) : 

Hist. Calibration Sample: NSE (Stoch Cal.) > NSE (Split-Sample Cal.) : 
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Conclusive Remarks Regarding the Large Scale Analysis

On the basis of our previous view concerning efficient comparison between the tested calibration methodologies, it is 
evident that the stochastic calibration outperforms the conventional split-sample approach.

It is evident that in each model analysis some parameters estimated by stochastic calibration differ from the ones 
stemmed from the split-sample approach. Concerning the analysis using the GR2M model, parameter values for X1

differs noticeably for calibration employed by a split-sample approach and for stochastic calibration. Regarding the 
analysis using the Zygos-4P model, parameter values for K, κ and λ derived from the use of the two calibration 
methodologies disagree in most of the tested basins, with this disagreement being more intense in the case of parameter 
λ. Discrepancy between the parameter values estimated by each calibration methodology appears for every parameter 
also in the case of the Zygos-6P model.
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Conclusions & Proposals for Future Research

This study showed the strengths of stochastic calibration against conventional split-sample approaches. Initially, this 
novel methodology proved equally sufficient as the classical split-sample scheme when we employed a monthly-
scale analysis by means of proof-of-concept, whereas at a daily scale the stochastic calibration methodology 
demonstrated slightly lower performance. 

Afterwards, the proposed method was stressed-tested against a set of 100 catchments and outperformed the split-sample 
approach for model calibration, regardless of the chosen model for hydrological simulation.

Moreover, calibration with the use of synthetic inputs and outputs proved to be independent of the hydrological model 
complexity.

Undoubtedly, this is just a first attempt to prove the validity of stochastic calibration, and calls for further studies. In particular:

▪ It may not always be efficient to characterize the different aspects of model performance for a particular rainfall-runoff model
with only one performance metric. Thus, more efficiency metrics should be compared to evaluate the predictive capacity of 
each method.

▪ It is also worth exploring the potentials of this methodology by employing rainfall-runoff models of more complex structure.

▪ Another suggestion would be to further test the applicability of stochastic calibration at the daily time scale.
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