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Abstract: We outline and test a new methodology for genuine simulation of stochastic processes
with any dependence structure and any marginal distribution. We reproduce time dependence
with a generalized, time symmetric or asymmetric, moving-average scheme. This implements
linear filtering of non-Gaussian white noise, with the weights of the filter determined by analytical
equations, in terms of the autocovariance of the process. We approximate the marginal distribution
of the process, irrespective of its type, using a number of its cumulants, which in turn determine the
cumulants of white noise, in a manner that can readily support the generation of random numbers
from that approximation, so that it be applicable for stochastic simulation. The simulation method is
genuine as it uses the process of interest directly, without any transformation (e.g., normalization).
We illustrate the method in a number of synthetic and real-world applications, with either persistence
or antipersistence, and with non-Gaussian marginal distributions that are bounded, thus making the
problem more demanding. These include distributions bounded from both sides, such as uniform,
and bounded from below, such as exponential and Pareto, possibly having a discontinuity at the
origin (intermittence). All examples studied show the satisfactory performance of the method.

Keywords: stochastics; stochastic processes; stochastic simulation; Monte Carlo simulation;
long range dependence; persistence; Hurst–Kolmogorov dynamics; climacogram; cumulants;
intermittence

1. Introduction

Reviews on the historical evolution of simulation of stochastic processes, with its
different schools, have recently been provided by Koutsoyiannis [1,2] and Beven [3]. In
most scientific disciplines, the dominant methods are those of the so-called time series
school, which developed families of models, known by the acronym ARMA (autoregressive–
moving average). These are also called Box–Jenkins models, after the influential book
by these authors [4], thus confirming Stigler’s law of eponymy [5], because, in fact, they
were introduced earlier by Whittle [6–8]. Despite their popularity, these models have
several problems, such as their lack of parsimony (except for the simplest of them, e.g., the
ARMA(1,1), summarized in the Appendix A), as well as the inability to model long-range
dependence (LRD) and to simulate non-Gaussian processes. On the other hand, both of
these features are profoundly present in most geophysical processes [9]. An extension of
these models, applicable to processes with LRD, was proposed by Hosking [10] under the
acronym ARFIMA (with the letter ‘F’ standing for fractional differencing and the letter ‘I’
for integrated). Again, these are good for Gaussian processes. Koutsoyiannis (2000) [11]
introduced the symmetric moving average (SMA) scheme to replace ARMA models with
a generic approach (more recently advanced in [12]), capable of reproducing any aspect
of time dependence, short-range (SRD) or long-range (LRD), in a parsimonious manner,
i.e., with a low number of parameters that are estimated from the data. This scheme can
also preserve the skewness of non-Gaussian processes, but has difficulty in dealing with
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higher-order moments, particularly with strongly intermittent processes, such as rainfall at
small time scales.

For the latter, point process (clustered) models were devised [13–16]. One advantage
of these types of models is the mechanistic representation of certain aspects of the process,
such as the arrival and cease of a storm event. The disadvantages are mainly focused
on the preservation of the dependence structure at multiple scales and their difficulty in
application in multivariate or multiscale schemes. For this reason, Koutsoyiannis et al. [17],
even though they used a 3D extension of a point process model (the so-called Gaussian
displacement spatial–temporal rainfall [18]), resorted to a linear generation scheme for an
application to multivariate rainfall disaggregation.

Several other modelling schemes use transformations of the process of interest, mostly
within a copula context [19–22], with the most widely applied transformation resulting in
a Gaussian process (normalization) [23,24]. However, such transformation schemes inherit
some of the limitations of the parent process. For example, it is well known that a Gaussian
process is necessarily symmetric in time and, thus, cannot capture time directionality,
otherwise known as irreversibility or time’s arrow [25]. On the other hand, it is known
that, in several natural processes, time’s arrow is present [26,27], and to reproduce it, we
need processes with asymmetric distributions, which can also exhibit asymmetry in time.

A more general algorithm for generation of any type of marginal distribution was
recently proposed by Lombardo et al. [28], but only under the condition of Markov depen-
dence, thus leaving out problems with more complex dependence, including LRD. Recent
advances include the use of machine learning methods in stochastic simulation, e.g., [29],
which, however, have the disadvantages of being implicit in their mathematical structure,
and non-parsimonious.

For these reasons, it is necessary to develop genuine stochastic simulation procedures,
which will be able to generate non-Gaussian processes without any transformation to
a Gaussian or other distribution. Such procedures have already been discussed in ear-
lier works, referring to the explicit preservation of four moments in a time-symmetric
setting [30] as well as preservation of distributions in terms of cumulants, rather than
moments [2,31]. However, the general idea of the latter works has never been applied in
practice to test its effectiveness. This is the subject of this paper.

The new methodology advances the state-of-the-art in stochastic generation by pro-
viding a general framework, capable of dealing with challenging Monte Carlo applications
within geophysics, engineering, and other fields. The merits of the methodology rely on its
ability to cope with the following aspects:

1. Complex dependence structures that extend way beyond the Markov dependence, and
incorporate long-range dependence and short-scale fractal (smoothness/roughness)
behavior. This is achieved by using a symmetric moving average scheme, which can
involve a large number of white noise terms, with their weights determined in an
explicit analytical manner.

2. Marginal distributions that extend beyond Gaussian and incorporate heavy tails,
boundedness, and intermittence. This is achieved by using an appropriate number of
cumulants, analytically determined from the distribution function, thus resulting in
genuine simulation of the process (without a transformation).

3. Time asymmetry (irreversibility), achieved by using a non-Gaussian distribution
function, combined with an asymmetric moving average scheme, with the weights
again determined in an explicit analytical manner.

In the following sections, we outline the new methodology for genuine simulation
(Section 2), and illustrate it in a number of synthetic and real-world applications (Section 3).
In addition, we study the problem of approximating any distribution, if a number of its
cumulants are known, in a manner that can readily support the generation of random num-
bers from that approximation (Section 2.5 and discussion in Section 4). Such approximation
is suitable for analytical derivations, as well as for stochastic simulation in geophysical and
engineering applications and beyond.
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The simulation model developed is a linear stochastic model. As nonlinearity is
fashionable, some may think that the linearity of the approach proposed is a limitation or
even a severe drawback. The reality however is different because linearity and nonlinearity
have different meaning in deterministic and stochastic approaches. In the latter, linearity is a
powerful characteristic, enabling its extension in demanding problems, such as multivariate
models and coupling of models of different temporal or spatial scales [32] (also known
as downscaling or disaggregation). In this respect, it is relevant to recall the notion of
Wold decomposition of stochastic processes. Specifically, Wold [33,34] proved that any
stochastic process (even though he referred to it as a time series) can be decomposed
into a regular process (i.e., a process linearly equivalent to a white noise process) and a
predictable process (i.e., a process that can be expressed in terms of its past values). Thus,
nonlinearity is relevant to the predictable part, as this is purely deterministic, while for the
regular part linearity suffices.

2. Methods
2.1. Preliminaries

We denote x a stochastic (random) variable (underlining its symbol in order to dis-
tinguish it from a regular variable), F(x) := P{x ≤ x} its probability distribution func-
tion, F(x) := 1 − F(x) = P{x > x} its tail function (probability of exceedance) and
f (x) := d f (x)/dx its density function. Furthermore, we denote x(t) a stochastic pro-
cess at continuous time t (i.e., a family of stochastic variables x indexed by time t) and
xτ := 1

D
∫ τD
(τ−1)D x(t)dt its discrete time representation at equidistant times with temporal

resolution D, i.e., tτ = τD, for an integer τ. In a discrete-time stochastic process, it is
convenient to define the return period, T, of the event {xτ > x} as the average time between
two occurrences of the event. It is shown [2] that the following relationship holds true for
any stochastic process (irrespective of time dependence):

T(x)
D

=
1

F(x)
(1)

In other words, this one-to-one correspondence allows the return period to be used
in place of the tail function or the distribution function in several applications (e.g., in
probability plots); this has been the case for many years, particularly in engineering
applications.

2.2. Moments and Cumulants

The expectation of any function g(x) of the stochastic variable x is defined as:

E[g(x)] :=
∞∫
−∞

g(x) f (x)dx (2)

where we remind that g(x) is a stochastic variable per se. For g(x) = xp, we get the
non-central moment of order p (or pth raw moment or pth moment about the origin):

µ′p := E[xp] (3)

with the particular case p = 1 defining the mean:

µ := µ′1 = E[x] (4)

The central moment of order p is the expectation of g(x) = (x− µ)p:

µp := E[(x− µ)p] (5)
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with the particular case p = 2 defining the variance:

µ2 ≡ γ := E
[
(x− µ)2

]
=: σ2 (6)

where its square root σ is the standard deviation.
By choosing g(x) = etx for any t, the logarithm of the resulting expectation is called

the cumulant generating function:
K(t) := ln E

[
etx] (7)

The power series expansion of the cumulant generating function, i.e.,

K(t) =
∞

∑
p=1

κp
tp

p!
(8)

defines the cumulants κp. It is noted that the cumulants were introduced by Thielle as
early as in 1889 [35] and refined in 1899 [36,37] under the name half-invariants. The name
cumulants was first used by Fisher [38] by the suggestion of Hotelling [39].

Cumulants are related to non-central moments of the same and lower order by:

µ′p =
p−1

∑
i=0

(
p− 1

i

)
κp−iµ

′
i, κp = µ′p −

p−1

∑
i=1

(
p− 1

i

)
κp−iµ

′
i (9)

with µ′0 = 1. A simple proof of these equations has been provided by Smith (1995) [40], but
the recursive relationships had been already implied by Thielle [35,37]. Note that Equation
(9) links cumulants with non-central moments. The relationship of cumulants with central
moments is generally more complex, but for small p it takes the following simple forms:

κ0 = µ1 = 0, κ1 = µ′1 = µ, κ2 = µ2, κ3 = µ3, κ4 = µ4 − 3µ2
2 (10)

Equation (9) is very powerful as it allows simple calculation of cumulants from non-
central moments and vice versa in a recursive manner. Notably, for the calculation of the
moment or the cumulant of order p, the sums appearing in Equation (9) contain terms of
order not higher than p.

The importance of cumulants results from their homogeneity and additivity prop-
erties, as seen in Table 1. Most importantly, for a stochastic variable that is the linear
combination (weighted sum) of r independent variables, the cumulants of the resultant
are also a linear combination of the cumulants of the constituents. On the other hand,
application of conditioning, also contained in Table 1, is similarly useful as it allows simu-
lation of distributions that are mixtures of other distributions or have discontinuities in
their distribution functions. As seen in Table 1, the effect of conditioning is more easily
expressed in terms of moments, but Equation (9) readily allows the subsequent evaluation
of cumulants.

All common distribution functions used in a wide range of stochastic applications
have elegant analytical expressions either of their moments or the cumulants of any order,
and in some cases of both. These are gathered in Table 2 for distributions with finite domain,
in Table 3 for distributions with infinite domain, but with all their moments finite, and in
Table 4 for the heavy-tailed distributions with upper-tail index ξ; in the latter case, both
moments and cumulants exist for p < 1/ξ and are infinite for larger p. The following notes
apply to these tables:

1. The meaning of the parameters is the following.

(a) Dimensional parameters, with dimensions identical to those of the stochastic
variable x: µ: mean; σ > 0: standard deviation; λ > 0: scale parameter; a, b: lower
and upper bound of x.
(b) Dimensionless parameters: ξ > 0: upper-tail index; ζ > 0: lower-tail index; ς > 0:
additional shape parameter, Pi ∈ [0, 1]: probability.
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2. The meaning of constants and standard functions is this: γ: Euler constant; Bp:
Bernoulli number of order p; δ(x): Dirac delta function of x; Γ(a): gamma function of
a; ψ(a): digamma function of a; B(a, b): beta function of a, b.

3. Distributions named “half” have their “full” version whose density f (x) and tail
function F(x) are obtained by dividing those given in the tables by 2. The “half”
version given in the tables corresponds to x ≥ 0, while in the “full” version x ∈ R.
The moments µ′p of the “full” version is: (a) for even p, 0; (b) for odd p, equal to those
of half version.

4. All other distributions, defined for x ≥ 0 but not named “half”, can also be extended
to the whole real line by replacing x with |x| and dividing f (x) by 2. Again, the
moments µ′p of this extended version is: (a) for even p, 0; (b) for odd p, equal to those
of original version.

Table 1. Typical operations useful in simulation and their mathematical handling.

Operation Mathematical Relationship Eqn. no.

Shift of origin κp[x + c] =
{

κ1[x] + c p = 1
κp[x] p > 1

(11)

Multiplication by a constant(a) κp[ax] = apκp[x] (12)

Linear combination of independent variables κp[a1x1 + . . . + arxr] = ap
1 κp[x1] + . . . + ap

r κp[xr] (13)

Conditioning on an event A1 with probability
P1 := P(A1),

where the complementary event A2 has probability
1− P1 = P(A2)

µ′p[x] = P1µ′p[x|A1] + (1− P1)µ
′
p[x|A2] (14)

Conditioning on an event A1 with probability
P1 := P(A1), where x = c (constant)
upon the complementary event A2

µ′p[x] = P1µ′p[x|A1] + (1− P1)cp (15)

Conditioning on an event A1 with probability
P1 := P(A1), where x = 0

upon the complementary event A2

µ′p[x] = P1µ′p[x|A1] (16)

Table 2. Non-central moments and cumulants of common distributions with finite domain (all moments and cumulants
exist).

Name, Domain Probability Density or
Distribution Function Moments, µ′p Cumulants, κp

Impulse, x = µ f (x) = δ(x− µ) µp
{

µ p = 1
0 p > 1

Finite number of impulses,
x ∈ {x1, . . . , xn}

f (x) =
n
∑

i=1
Piδ(x− xi)

n
∑

i=1
Pix

p
i

Uniform, a ≤ x ≤ b f (x) = 1
b−a

bp+1−ap+1

(p+1)(b−a)


µ′1 = a+b

2 p = 1
(b−a)pBp

p p odd

0 p even

Beta, 0 ≤ x ≤ b f (x) = ( x
b )

ζ−1
(1− x

b )
ς−1

B(ζ,ς)
Γ(ζ+ς) Γ(p+ζ)
Γ(ζ)Γ(p+ζ+ς)

bp

Kumaraswamy, 0 ≤ x ≤ b
F(x) =

1−
(

1−
( x

b
)ζ
)ς ςB

(
ς, 1 + p

ζ

)
bp
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Table 3. Non-central moments and cumulants of common distributions with zero upper-tail index (all moments and
cumulants exist).

Name, Domain Probability Density or Distribution Function Moments, µ′p Cumulants, κp

Poisson
x = j, j ∈ N0

f (x) = e−ς
∞
∑

j=0

ςj

j! δ(x− j) ς

Exponential, x ≥ 0 f (x) = e–x/µ/µ p!µp (p− 1)!µp

Gamma, x ≥ 0 f (x) = (x/λ)ζ−1e–x/λ

λ Γ(ζ)
Γ(p+ζ)

Γ(ζ) λp ζ(p− 1)!λp

Generalized gamma, x ≥ 0 f (x) = 1
λ Γ(ζ/ς)

( x
λ

)ζ−1 exp
(
−
( x

λ

)ς
)

Γ(p/ς+ζ/ς)
Γ(ζ/ς)

λp

Weibull, x ≥ 0 F(x) = 1− exp
(
−
( x

λ

)ζ
)

Γ
(

p
ζ + 1

)
λp

Normal, x ∈ R f (x) =
exp

(
− (x−µ)2

2σ2

)
√

2πσ


µ′1 = µ, p = 1

σ2 p = 2
0 p > 2

Half-normal, x ≥ 0 f (x) = 2
λ
√

2π
exp

(
− x2

2λ2

)
2p/2
√
π

Γ
(

p+1
2

)
λp

Extended half-normal (Chi), x ≥ 0
f (x) =

√
2

λ Γ(ζ/2)

(
x2

2λ2

) ζ
2−

1
2 exp

(
− x2

2λ2

) 2p/2 Γ
(

p+ζ
2

)
Γ
(

ζ
2

) λp

Lognormal (ln x ∼
N(ln λ, ς)), x ≥ 0 f (x) =

exp
(
− 1

2ς2 (ln( x
λ))

2)
√

2π ςx
e

p2ς2
2 λp

Extreme value type I (EV1), x ∈ R F(x) = exp
(
−e−

x
λ

)
(−1)pψ(p−1)(1)

p! λp

2.3. Second Order Properties

For a stochastic process x(t) in continuous time t or xτ in discrete time τ, we define
the cumulative process X(k) ≡ Xκ , for continuous time scale k := κD, where κ denotes
discrete time scale, as:

X(k) ≡ Xκ := x1 + x2 + · · ·+ xκ =

κD∫
0

x(t) dt (17)

The time average of the original process xτ for discrete time scale κ is

x(κ)τ :=
x(τ−1)κ+1 + x(τ−1)κ+2 + · · ·+ xτκ

κ
=

Xτκ − X(τ−1)κ

κ
(18)

The variability of the time-averaged process is quantified by the variance:

γκ := var
[

x(κ)τ

]
(19)

This can be extended to a continuous-time process, for which

γ(k) := var
[

X(k)
k

]
, γκ = γ(κD) (20)
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Table 4. Non-central moments of common distributions with upper-tail index ξ (moments and cumulants exist for p < 1/ξ).
Here, the cumulants do not have simple explicit expressions but can be readily calculated from Equation (9).

Name, Domain Probability Density or Distribution Function Moments, µ′p

Pareto
x ≥ 0 F(x) = 1−

(
1 + ξ x

λ

)− 1
ξ B

(
1
ξ − p, p + 1

)
λp

ξ p+1

Pareto-Burr-Feller (PBF)
x ≥ 0 F(x) = 1−

(
1 + ξζ

( x
λ

)ζ
)− 1

ξζ B
(

1
ξζ −

p
ζ , p

ζ + 1
)

λp

(ξζ)
p
ζ
+1

Dagum
x ≥ 0 F(x) =

(
1 + 1

ξζ

( x
λ

)− 1
ξ

)−ξ ζ
(ξζ)1−ξ pB(1− ξ p, ξ p + ξζ)λp

Extreme value type II (EV2)
x ≥ 0 F(x) = exp

(
−ξ
( x

λ

)− 1
ξ

)
Γ(1− pξ)

(
λ
ξ

)p

Half Student
x ≥ 0 f (x) =

2
(

1+( x
λ)

2)− 1
2−

1
2ξ

λ B
(

1
2 , 1

2ξ

) B
(

1
2+

p
2 , 1

2ξ−
p
2

)
B
(

1
2 , 1

2ξ

) λp

Half extended Student
x ≥ 0 f (x) =

2
(
( x

λ)
2) ζ

2−
1
2
(

1+( x
λ)

2)− ζ
2−

1
2ξ

λ B
(

ζ
2 , 1

2ξ

) B
(

1
2ζ +

p
2 , 1

2ξ−
p
2

)
B
(

1
2ζ , 1

2ξ

) λp

Generalized beta prime (GBP)
x ≥ 0 f (x) =

ς( x
λ)

ζ−1
(1+( x

λ)
ς
)
− ζ

ς−
1
ξς

λ B
(

ζ
ς , 1

ξς

) B
(

ζ
ς+

p
ς , 1

ξς−
p
ς

)
B
(

ζ
ς , 1

ξς

) λp

Clearly, this is a function of the time-scale κ and is termed the climacogram of the
process, from the Greek climax (κλίµαξ, meaning scale) [41].

For sufficiently large k (theoretically as k→ ∞ ), we may approximate the climacogram
as:

γ(k) ∝ k2H−2 (21)

where H is termed the Hurst parameter. The theoretical validity of such (power-type)
behavior of a process was implied by Kolmogorov (1940) [42,43]. The quantity 2H − 2 is
visualized as the slope of the double logarithmic plot of the climacogram for large time-
scales. In a purely random process, H = 1/2, while in most natural processes 1/2 ≤ H ≤ 1,
as first observed by Hurst in 1951 [44]. This natural behavior is known as LRD, (long-
term) persistence or Hurst–Kolmogorov (HK) dynamics. A high value of H (approaching
1) indicates enhanced presence of patterns, enhanced change and enhanced uncertainty
(e.g., in future predictions). A low value of H (<1/2) indicates enhanced fluctuation or
antipersistence.

A stochastic process x(t) for which the property (21) is valid not only asymptotically,
but precisely for any scale k, i.e.,

γ(k) = λ
(α

k

)2−2H
(22)

where α and λ are scale parameters with units of time and
[
x2], respectively, is termed the

Hurst–Kolmogorov (HK) process [12].
The HK process is a simple mathematical model offering acceptable approximations

for large scales, but it is not physically plausible for small scales because it yields infinite
variance of the instantaneous process (as k→ 0) [45]. Therefore, filtered versions thereof
(FHK) with finite variance at all scales are better options to model natural processes. Here
we use two versions of FHK, namely:
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• The generalized Cauchy-type FHK (FHK-C) with climacogram:

γ(k) = λ0

(
1 + (k/α)2M

) H−1
M (23)

• The mixed Cauchy–Dagum-type FHK (FHK-CD) climacogram:

γ(k) = λ1

(
1 +

k
α

)2H−2
+ λ2

(
1−

(
1 +

α

k

)−2M
)

(24)

In addition to the Hurst parameter H, which characterizes the global scaling behavior,
when k→ ∞ , the filtered models include a second scaling exponent M characterizing the
local scaling (or smoothness or fractal behavior) when k→ 0 . Furthermore, the FHK-CD
model contains two scale parameters of state, λ1 and λ2, instead of the single λ of the
FHK-C, offering greater flexibility.

Once the model climacogram is given, all other second-order properties of the process
are uniquely determined through simple mathematical expressions. Thus, the autocovari-
ance function in continuous and discrete time, for lags h and η = h/D, respectively, is
derived from the climacogram through the relationships [2,12]:

c(h) := cov[x(t), x(t + h)] =
1
2

d2h2γ(|h|)
dh2 (25)

for continuous time and

cη := cov
[
xτ , xτ+η

]
=

(η + 1)2γ|η+1| + (η − 1)2γ|η−1|
2

− η2γ|η| (26)

for discrete time, where cov [] stands for covariance.
Finally, the power spectrum s(w) of the process is the Fourier transform of the autoco-

variance, so that:

s(w) := 4
∞∫

0

c(h) cos(2πwh)dh⇔ c(h) =
∞∫

0

s(w) cos(2πwh)dw (27)

for continuous time and

sd(ω) = 2c0 + 4
∞

∑
η=1

cη cos(2πηω)⇔ cη =

1/2∫
0

sd(ω) cos(2πωη)dω (28)

for discrete time.

2.4. Stochastic Simulation

To simulate the discrete-time stochastic process xτ with any autocovariance function
cη we can use the generalized moving average scheme [1,11,12]:

xτ =
J

∑
j=−J

ajvτ−j (29)

where aj are weights to be calculated from the autocovariance function, vj is white noise
averaged in discrete-time (in the general case assumed non-Gaussian) and J is theoretically
infinite, so that in all theoretical calculations we assume J = ∞, while in the generation
case J is a large integer chosen so that the resulting truncation error be negligible.

As explained in [1], the above scheme is opposite to the common schemes of the
time series school. Specifically, (a) we use a purely moving average scheme without any



Sci 2021, 3, 34 9 of 26

autoregressive term and (b) we do not connect the generating scheme with observations,
as the observations have already been used in the model-fitting phase, which is totally
isolated from generation. Specifically, the fitting consists of a choice of an appropriate
climacogram expression such as (23) or (24) and the estimation of its parameters, as well
as the choice of a distribution function, such as those contained in Tables 2–4, and the
estimation of its parameters. This tactic assures modelling parsimony. More details on
the fitting procedure, which is not covered here, can be found in [2]. Here we only stress
the methodological suggestion that we never estimate from data classical moments and
cumulants of order greater than 2, because these are unknowable from data [31]. While the
methodology that we follow heavily depends on high-order moments and cumulants, it is
stressed that these are determined by theoretical calculations and never from the data.

Assuming unit variance of the white noise vj, writing Equation (29) for xτ+η , mul-
tiplying it by (29) and taking expected values we find the convolution expression for
J = ∞:

cη =
∞

∑
l=−∞

alaη+l (30)

We need to find the sequence of aη , η = . . . ,−1, 0, 1, . . . , so that (30) holds true. The
following generic solution of the generating scheme, giving the coefficients aη , has been
proposed by Koutsoyiannis [1]:

aη =

1/2∫
−1/2

e2πi(ϑ(ω)−ηω)AR(ω)dω (31)

where i :=
√
−1, ϑ(ω) is any (arbitrary) odd real function (meaning ϑ(−ω) = −ϑ(ω)) and

AR(ω) :=
√

2sd(ω) (32)

As proved by Koutsoyiannis [1], the sequence of aη :

1. Consists of real numbers, despite the expression in (31) involving complex numbers;
2. Satisfies precisely Equation (30); and
3. Is easy and fast to calculate using the fast Fourier transform (FFT).

This theoretical result is readily converted into a numerical algorithm, which consists
of the following steps [1]:

1. From the continuous-time stochastic model, expressed through its climacogram γ(k),
we calculate its autocovariance function in discrete time (assuming time step D) by
Equation (26). (This step is obviously omitted if the model is already expressed in
discrete time through its autocovariance function).

2. We choose an appropriate number of coefficients J that is a power of 2 and perform
inverse FFT (using common software) to calculate the discrete-time power spectrum and
the frequency function AR(ω) for an array of ωj = jw1, j = 0, 1, . . . , J, w1 := 1/JD:

sd
(
ωj
)
= 2c0 + 4

J

∑
η=1

cη cos
(
2πηωj

)
, AR(ωj

)
=
√

2sd
(
ωj
)

(33)

3. We choose ϑ(ω) (see below) and we form the arrays (vectors) AR and AI, both of size
2J indexed as 0, . . . , 2J – 1, with the superscripts R and I standing for the real and
imaginary part of a vector of complex numbers, respectively:

[
AR
]

j
=

{
AR(ωj

)
cos
(
2πϑ

(
ωj
))

/2, j = 0, . . . , J[
AR]

2J−j , j = J + 1, . . . , 2J − 1 (34)



Sci 2021, 3, 34 10 of 26

[
AI
]

j
=


−AR(ωj

)
sin
(
2πϑ

(
ωj
))

/2, j = 0, . . . , J − 1
0 j = J

−
[
AI]

2J−j j = J + 1, . . . , 2J − 1
(35)

4. We perform FFT on the vector AR + i AI (using common software), and get the real
part of the result, which is precisely the sequence of aη .

By choosing J as a power of 2, the vectors AR and AI will have size 2J which is also a
power of 2, thus maximizing the speed of the FFT calculations. (More details are contained
in a supplementary file in [1], which includes numerical examples along with the simple
code needed to do these calculations on a spreadsheet).

Remarkably, Equation (31) gives, instead of a single solution, a family of infinitely
many solutions. All of them preserve exactly the second-order characteristics of the
process and each of them is characterized by the chosen function ϑ(ω). Even assuming
ϑ(ω) = ϑ0signω with constant ϑ0, again there are infinitely many solutions, each one
characterized by the value of ϑ0. Also, even if the sequence of ϑ

(
ωj
)

is constructed as a
sequence of random numbers, again Equation (30) will be satisfied and the resulting aη

can be directly used in generation. The availability of infinitely many solutions enables
preservation of additional statistics, such as those related to time asymmetry [1,27].

The special case ϑ(ω) = 0 gives a symmetric solution with respect to positive and
negative η:

AS(ω) ≡ AR(ω) =
√

2sd(ω), aS
j =

1/2∫
0

√
2sd(ω) cos(2πjω)dω = aS

−j (36)

where the superscript S stands for symmetric. This has been known as the symmetric moving
average (SMA) scheme [11], while any other solution denotes an asymmetric moving average
(AMA) scheme.

In addition, there exist several options related to the distribution of the white noise vτ ,
which in general is not Gaussian. Hence, preservation of moments and cumulants of any
order becomes possible. Specifically, by virtue of Equation (13), the pth cumulants κp and

κ
(v)
p of the processes xτ and vτ , respectively, are related by:

κp =
J

∑
j=−J

ap
j κ

(v)
p (37)

Solving for κ
(v)
p we find:

κ
(v)
p =

κp

∑J
l=−J ap

j

(38)

Given the so-calculated κ
(v)
p for any order p, the distribution function of the white noise is

fully determined.

2.5. Distribution Function Approximation

A problem usually met in practice, including in the present simulation framework,
is to approximate a distribution function up to an order pmax. A convenient way to make
the approximation is to choose a number L of elementary distribution functions from
Tables 2–4, thus, defining the white-noise processes wl , l = 1, . . . , L, and obtaining the
approximation v′τ of vτ as a linear combination of wl with weights a′l , i.e.,:

v′τ =
L

∑
l=1

a′lwl (39)
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The cumulants κ
(wl)
p of wl are then determined from Tables 2–4 and those of v′τ , by

virtue of (13), are:

κ
(v′)
p =

L

∑
l=1

a′
p

l κ
(wl)
p (40)

The goodness of the approximation up to order pmax is given by an error expression
such as:

e1 :=
pmax

∑
p=2

((
κ
(v′)
p

) 1
p −

(
κ
(v)
p

) 1
p

)2

, e2 :=
pmax

∑
p=2

 1
p

ln

 κ
(v′)
p

(κ
(v)
p

2

(41)

where the second form (e2) is more appropriate if all cumulants are positive and increasing
fast. In order for the above equations to work in all cases, even when κp is negative and p is

even, the quantity
(
κp
)1/p is meant to denote the quantity sign

(
κp
) ∣∣κp

∣∣1/p; this convention
is followed throughout the entire paper. By minimizing either e1 or e2 using a common
solver, we simultaneously find the series of weights a′l and the parameters of the marginal
distribution of each of wl . Further details will be given in the applications of Section 3,
where it will also be seen that, for a sufficient approximation, the number of constituent
distributions L of wl is small, usually 1 or 2.

It is stressed that, in each of the above error expressions, we have intentionally
excluded the error of the cumulants of order 1, i.e., the mean values. Therefore, we expect
that with this procedure the mean will not be preserved. However, this can be easily
tackled by adding a constant c to v′τ . Apparently, the required shift should be

c = κ
(v)
1 − κ

(v′)
1 (42)

Based on the above approximation, the generation process will produce the stochastic
process

x′τ :=
J

∑
j=−J

ajv′τ−j (43)

where, if the approximation is satisfactory, we reasonably expect that the statistical proper-
ties of x′τ will be equal to those of xτ . This proves to be always the case if the domain of the
stochastic variable xτ is unbounded in both directions (i.e., xτ ∈ R), but some additional
manipulation (post-processing) may be needed if the domain of xτ is not the entire real
line, or if the distribution function of xτ has discontinuities, as will be illustrated in the
applications of the next section.

3. Applications and Results

We illustrate the methodology by five applications for bounded xτ as this case is
more demanding (the unbounded case is much easier). Three applications are synthetic
mathematical examples used as benchmarks, namely the exponential distribution, which is
bounded from below, and the uniform distribution, which is bounded from both below and
above. The next two are real-world applications dealing with one of the most challenging
natural processes, namely the precipitation process, which is bounded from below (by 0),
highly intermittent, and with heavy distribution tail. The latter two applications refer to
two different time scales, fine (hourly) and coarse (annual). In the synthetic example with
the exponential distribution and in the two real-world applications, the stochastic processes
are persistent with a large Hurst parameter, ranging from 0.80 to 0.92. In the synthetic
examples of the uniform distribution, we use both a persistent and an antipersistent process,
with Hurst parameters 0.70 and 0.20, respectively.

3.1. Simulating a Persistent Process with Exponential Distribution

For a process with exponential distribution, which is a subcase of the gamma distribu-
tion, there exist generation algorithms for the case of short-range (Markov) dependence
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(e.g., [46]). As already mentioned, a more general algorithm for generation of any type
of marginal distribution has recently been proposed by Lombardo et al. [28], but again
under the condition of the Markov dependence. However, the method proposed here can
generate such a process irrespective of the type of the dependence, whether SRD or LRD.

For illustration we assume an FHK-C model (Equation (23)) with parameters
H = 0.8, M = 0.5, α = 1, λ0 = 1.32, so that γ1 = 1. The FHK-C climacogram is
shown in Figure 1b, marked as “theoretical”, while the resulting autocorrelation function
is shown in Figure 1c. As in the exponential distribution (from Table 3), µ =

√
γ1 = 1,

the cumulants of the process xτ are κp = (p− 1)!. These are depicted in Figure 1a, along
with the cumulants of vτ determined from Equation (38), where, to avoid big numbers, the
quantities κ

1/q
p are plotted. The coefficients aj, needed to evaluate κ

(v)
p in Equation (38), are

determined from the SMA (symmetric) generation scheme (Equation (36)) with J = 1024.
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Figure 1. Graphical depiction of the results of the simulation application for a synthetic example
of a persistent FHK process with exponential distribution: (a) cumulants; (b) climacogram; (c)
autocorrelogram; (d) marginal distribution.

Coming to the approximation v′τ of vτ , we use two constituents wl with gamma
distributions and allow a discontinuity Pl at w = 0 in each of them. Assuming unit variance
in each of them, from the equations of Table 3 we have ζλ2 = 1, so that the continuous part
of the distribution is fully determined by the shape parameter ζ. Hence, the approximation
v′τ , according to Equation (39), is determined by the parameters ζ1, ζ2, P1, P2, a′1, a′2, which
are calculated by minimizing e2 in Equation (41), assuming pmax = 10. The resulting values
of the parameters are ζ1 = 1.255, ζ2 = 30, P1 = 0.298, P2 = 1, a′1 = 1.333, a′2 = −0.0655,
while the required shift of Equation (42) is negligible (c ≈ 0). The cumulants of v′τ are also
plotted in Figure 1a, where it can be seen that they are indistinguishable from those of vτ

and thus the achieved approximation is very good.
The generation of values of v′τ is quite easy using a random number generator for the

gamma distribution. From a series of random numbers v′τ , a total of n = 10, 000 values
of xτ are then determined from Equation (29). A small number (6.6%) of them are small
negative values. To remedy this problem, we reflect these values about zero, or, in other
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words, replace xτ with −xτ . Theoretically, this remedy will have a distorting effect in the
multivariate distribution of xτ , but in fact, this effect turns out to be negligible.

Comparison of the theoretical statistical characteristics of the distribution of xτ to the
empirical ones of the generated sample are shown in the panels of Figure 1. In the empirical
climacogram (Figure 1b), the plotted points correspond to unbiased estimates of variance;
this is achieved by adding the quantity γ(n) = 0.0331 to the classical statistical estimates,
as explained in [2]. The empirical climacogram agrees well with the theoretical one. The
empirical autocorrelation is shown in Figure 1c. Here, the bias correction was applied
using an approximate method from [47], according to which the unbiased estimate is the
weighted sum of the classical autocorrelation estimate and the number 1, with the weight
of the latter being equal to 1/n′, where n′ := γ(1)/γ(n) is the so-called equivalent sample
size of any process, and differs substantially from n if the process is persistent [48]. (We note
that a precisely unbiased estimate of autocovariance has been provided by [49] but this is
more laborious). Finally, Figure 1d shows a comparison of the theoretical and empirical
marginal distribution of xτ . The empirical distribution of each value of the generated time
series, arranged in ascending order, so that x(i:n) be the ith smallest value of the series of n
values, was estimated on the basis of unbiasedness of the logarithm of return period T(i:n).
As shown in [2], this estimate is

T(i:n)

D
=

n + e1−γ − 1
n− i + e−γ

=
n + 0.526

n− i + 0.561
(44)

Again, the agreement between theoretical and the empirical distributions is very good.
For comparison, a conventional method using an ARMA(1,1) model and a normalizing

transformation is given in the Appendix A for the same case study.

3.2. Simulating a Persistent Process with Uniform Distribution

The simulation of a persistent process with uniform distribution is more demanding
because of the double boundedness and the sharp discontinuities of the density function
at the bounds, while linear generation procedures tend to generate unbounded processes
with smooth density. On the other hand, the double boundedness offers an option of
approximation with a process v′τ that takes on a finite number of values. In other words,
we assume that the stochastic variable v′τ is discrete, taking on values v′i with probabilities
Pi, as illustrated in Figure 2. The details of this approximation will be explained in a
while. Despite v′τ being assumed discrete, thanks to the fact that the generation of xτ via
Equation (29) involves a linear combination of very many variables v′τ , the variable xτ will
in effect be continuous.
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Figure 2. Probability mass function of the discretized white noise used in the simulation application
for a synthetic example of a persistent FHK process with uniform distribution.
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As in the previous case, for illustration, we assume an FHK-C model (Equation (23))
with γ1 = 1. We note that the fourth cumulant of this uniform distribution, which in
this case equals the coefficient of kurtosis, is κ4 = −1.2. The fourth cumulant of vτ (κ(v)4 )

should necessarily be lower than that (κ(v)4 < −1.2) for a persistent process. On the other
hand, it is known than the kurtosis of any distribution cannot be lower than −2. Therefore,
the margin for having a positively autocorrelated process xτ with uniform distribution
is rather small. An FHK-C model with parameters H = M = 0.7, α = 1, λ0 = 1.346 (so
that γ1 = 1) yields a feasible κ

(v)
4 = −1.76, while, for instance, the case H = M = 0.75,

would yield an infeasible κ
(v)
4 = −2.02. The FHK-C climacogram for the feasible parameter

set (H = M = 0.7) is shown in Figure 3b, marked as “theoretical”, while the resulting
autocorrelation function is shown in Figure 3c. In order for the uniform distribution to
have variance γ1 = 1, its upper bound should be b =

√
12 = 3.464, with lower bound

a = 0. The cumulants of the process xτ , determined from Table 2 and Equation (9), are
shown in Figure 3a, along with the cumulants of vτ determined from Equation (38) (for the
convention used for κ

1/q
p for negative quantities and p even, see the note in Section 2.4 below

Equation (41)). The coefficients aj, needed to evaluate κ
(v)
p in Equation (38), are determined

from the SMA (symmetric) generation scheme (Equation (36)) with J = 1024.
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Comparisons of the theoretical statistical characteristics of the distribution of xτ to
the empirical ones of the generated sample are shown in the panels of Figure 3, which
are similar as those in Figure 1. A difference is that in panel (d), instead of estimating the
return period of each x(i:n) (the ith smallest value of the series of n values), we give the
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non-exceedance probability F(x), estimated on the basis of its unbiasedness. In this case,
the unbiased estimate is [2]:

F
(

x(i:n)
)
=

i
n + 1

(45)

The approximation v′τ of vτ is done through the discretization of the former de-
scribed above. Twenty equidistant v′i with probabilities Pi are assumed, where v′i = i/b,
i = 1, . . . , 20. The distribution of v′i was assumed symmetric, i.e., Pi = P21−i, so that the
unknown parameters to be optimized are ten, namely, P1, . . . , P10. These are calculated
by minimizing e1 in Equation (41), assuming pmax = 10. The resulting values are shown
graphically in Figure 2. It is remarkable that the distribution of v′τ is far from uniform,
despite the fact that the cumulants of v′τ , as seen in Figure 3a, are not very different from
those of xτ , which has uniform distribution. The cumulants of v′τ , also plotted in Figure 1a,
are indistinguishable from those of vτ ; thus, the achieved approximation is very good. An
exception is seen in the first cumulants of v′τ and vτ , which are quite different; thus, the
required shift of Equation (42) is not negligible, namely c = −1.503.

The generation phase is quite easy, as values of v′τ are readily generated by inverse-
transform sampling, given the staircase-like distribution function of a discrete stochastic
variable. A total n = 10 000 values of xτ are then generated from Equation (29). A small
number (~2%) of them are either small negative values or somewhat greater than b. As
in the previous case, we reflect the negative values about zero, replacing xτ with −xτ .
Likewise, we reflect the very high values about b, replacing xτ with 2b− xτ .

In all panels of Figure 3, the agreement between theoretical and the empirical charac-
teristics is very good.

3.3. Simulating an Antipersistent Process with Uniform Distribution

For further illustration, we examine the same uniform distribution as above but for
an antipersistent process (with H < 1/2). Actually, this case is easier as the changes in
kurtosis is smaller than in the previous case; thus, feasibility of the solution is assured.

Again, an FHK-C model was assumed, now with parameters H = 0.2, M = 0.8,
α = 1, λ0 = 2 (so that γ1 = 1, while κ

(v)
4 = −1.265). All other choices are the same as in the

previous application (e.g., upper bound b =
√

12 = 3.464, etc.) The approximation v′τ of vτ

through discretization is depicted in Figure 4. Again, this differs substantially from the
uniform distribution, even though the cumulants of v′τ , as seen in Figure 5a, are virtually
indistinguishable from those of xτ and vτ . Yet there is a substantial difference in the first
cumulants of v′τ and vτ , so that the required shift of Equation (42) is large, c = 13.675.
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Comparisons of the theoretical statistical characteristics of the distribution of xτ to the
empirical ones of the generated sample are shown in the panels of Figure 5. In all panels
the agreement between theoretical and the empirical characteristics is very good.

3.4. Simulating the Precipitation Process at the Hourly Time Scale

Here we use a recently developed [2] full stochastic model of the precipitation process
at any time scale k. This model gives directly the ombrian relationships (else known as
intensity-duration-frequency curves) but it also provides any stochastic characteristic of
the precipitation process that is required for stochastic simulation. Furthermore, in [2]
this model has been applied to construct the ombrian curves by fitting the model in some
locations, but the model was not used for stochastic simulation. Among the locations
studied in [2], here we provide a stochastic simulation for rainfall in Bologna, using the
parameter values fitted there. The application in this subsection is for the hourly scale,
while an additional application for the annual scale is given in the next subsection.
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(v)
1 = 15.49).

The model is based on the following assumptions, which are mathematically consistent
(with one exception as detailed below):

1. Pareto distribution with discontinuity at the origin for small time scales (Table 5, Equa-
tion (46), left). The tail index ξ is constant for all time scales k, while the probability
wet, P(k)

1 , and the state scale parameter, λ(k), are functions of the time scale k.
2. Continuous PBF distribution, possibly with discontinuity at zero, for large time scales

(Table 5, Equation (46), right). In this case, a new parameter ζ(k) is introduced,
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which is again a function of time scale. The Pareto distribution is a special case
of the PBF for ζ(k) = 1. In contrast to the Pareto distribution, whose density is a
consistently decreasing function of x, the PBF tends to be bell-shaped for increasing
ζ(k), a property consistent with empirical observation and reason.

3. Constant mean µ of the time-averaged process.
4. Climacogram of type FHK-CD (Equation (24)), where to reduce the number of pa-

rameters it is assumed that M = 1− H, thus getting Equation (48) in Table 5. By
inspection of Equation (48), it is seen that, as k→ ∞ , γ(k)→ 0 , which makes the
process ergodic; for k = 0, γ(0) = γ0 = λ1 + λ2, which is finite, as required for
physical consistency.

5. Probability wet and dry, P(k)
1 = 1 − P(k)

0 , varying with time scale according to
Equation (49) in Table 5. It is clarified that two different expressions are used for
the small and the large scales, where the transition time scale from the Pareto to
the PBF distribution is denoted as k∗. In the Pareto case, P(k)

1 can be determined
directly from the climacogram and the mean (left column of Equation (49) in Table 5).
For the PBF case, an additional equation is required, which has been derived based
on maximum entropy considerations [50] and involves an additional parameter θ
(0 ≤ θ ≤ 1). Continuity of the transition demands that ζ(k∗) = 1.

Table 5. Mathematical relationships of the ombrian model. The ombrian curves per se are given in the last row.

Quantity and Symbol Small Scales, k ≤ k∗ (Pareto) Large Scales, k ≥ k∗ (PBF) Eqn. no.

Distribution function, F(k)(x) 1− P(k)
1

(
1 + ξ x

λ(k)

)−1/ξ

1− P(k)
1

(
1 + ξ ′ζ(k)

(
x

λ(k)

)ζ(k)
)− 1

ξ′ζ(k) (46)

Mean, E
[

x(k)
]

µ (47)

Climacogram, γ(k) λ1

(
1 + k

α

)2H−2
+ λ2

(
1−

(
1 + α

k
)2H−2

)
(48)

Probability wet, P(k)
1

1−ξ
1/2−ξ

µ2

γ(k)+µ2 1−
(

1− P(k∗)
1

)(k/k∗)θ

, (0 ≤ θ ≤ 1) (49)

Lower tail index (inverse),
1

ζ(k)
1

√
(1− 2ξ)

(
P(k)

1 (γ(k)/µ2 + 1)− 1
)

(50)

Upper tail index, ξ ξ ξ ′ = ξ
ζ(k) (51)

Scale parameter (inverse),
1

λ(k)
P(k)

1
µ(1−ξ)

P(k)
1
µ

(
1 + 1

(1−ξ)(ζ(k))2 − 1
(ζ(k))

√
2

)
(52)

Quantile, x λ(k)

(
P(k)

1 T/k
)ξ
−1

ξ λ(k)

((
P(k)

1 T/k
)ξ
−1

ξ

) 1
ζ(k)

(53)

Both the decreasing (Pareto) and the bell-shaped (PBF) types of probability densities
are consistent with natural behaviors for small and large time scales, respectively. It can
be seen that the tail index of the PBF distribution in the form in Table 4, is not ξ but
ξ ′ = ξ/ζ(k) and tends to zero as k→ ∞ . For large time scales, this violates a requirement
of a constant tail index, which is theoretically justified in [2]. The alternative to keep
a constant tail index ξ would result in a finite variance as k→ ∞ (with a coefficient
of variation ξ/

√
1− 2ξ), i.e., in a nonergodic process, which clearly is not an option in

stochastic simulation.
To complete the model, the functions λ(k) and ζ(k) should be determined from the

mean µ and the climacogram γ(k). This has been done in [2] and the results are shown in
Table 5. The final relationships rely on the mean µ, the climacogram γ(k), the probability
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wet P(k)
1 and the tail index ξ. For the precipitation process in Bologna, the following model

parameters have been estimated in [2], while the transition time scale was set k∗ = 96 h:

• Mean intensity, µ = 0.0823 mm/h;
• Intensity scale parameters, λ1 = 0.00110 mm2/h2 , λ2 = 1.43 mm2/h2;
• Time scale parameter, α = 8.74 h;
• Hurst parameter, H = 0.92; fractal (smoothness) parameter, M = 1− H = 0.08;
• Exponent of the expression of probability dry/wet, θ = 0.787;
• Upper tail index, ξ = 0.121.

For the hourly time scale, the resulting distribution is Pareto (Tables 4 and 5) with a dis-
continuity at zero, P0 := P{x = 0} = 1− P1 and parameters ξ = 0.121, λ = 2.046 mm/h,
P1 = 0.0354. The FHK-CD climacogram is shown in Figure 6b (marked as “theoretical”),
while the resulting autocorrelation function is shown in Figure 6c. The cumulants of
the process xτ are shown in Figure 6a, along with the cumulants of vτ determined from
Equation (38). The coefficients aj, needed to evaluate κ

(v)
p in Equation (38), are determined

from an AMA (asymmetric) generation scheme (Equation (31)) with J = 1024 and phases ϑ
generated randomly (this contributes to a realistic shape of generated rainfall events).
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Figure 6. Graphical depiction of the results of the simulation application for a real-world case study for the precipitation
process in Bologna at the hourly time scale, modelled as a persistent FHK process with Pareto distribution with discontinuity
at zero: (a) cumulants; (b) climacogram; (c) autocorrelogram; (d) marginal distribution.
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For the approximation v′τ of vτ , we use a single Pareto distribution and allow a
discontinuity P1 at v′ = 0. For mathematical consistency, the tail index of v′τ should
necessarily be ξ = 0.121, so that the moments of order beyond 1/ξ = 8.2 be infinite as
is the case with the moments of xτ . The other parameters of the Pareto distribution of
v′τ are calculated by minimizing e2 in Equation (41), setting pmax = 8, and are found to

be λ(v′) = 3.681, P(v′)
1 = 0.0171, while the required shift of Equation (42) is negligible

(c = 0). The cumulants of v′τ are also plotted in Figure 6a, where it can be seen that they
are indistinguishable from those of vτ and thus the achieved approximation is very good.

Because of the very small value of P(v′)
1 , a very large number of v′τ (98.3%) will be

zero. The nonzero values will determine the locations of rainfall events, i.e., sequences of
non-zero xτ . It is not reasonable to make these locations purely random and for this reason

we devised the following procedure. A first model run is done with P(v′)
1 = 1 (no zeros).

Subsequently, we find a threshold c0 so that the fraction of values xτ that are greater than

c0 equal P(v′)
1 . In a second model run we set v′τ = 0 at those τ where in the first run xτ < c0.

For the remaining τ, we generate v′τ from the continuous part of v′τ . This procedure allows
clustering of the precipitation events, as typically happens in reality.

The values xτ in the second run will unavoidably be nonzero, because the generating
Equation (29) involves a linear combination of very many v′τ and this can hardly result in
zero values. Therefore, post-processing of the generated time series is required, in order to
reinstate the required number of zeros. This consists of replacing xτ by x′τ , determined as:

x′τ =

{
0, xτ < c1

l(xτ − c1)
m, xτ ≥ c1

(54)

where c1, l and m are the parameters of the post-processing phase. These are determined by
minimizing the total error (in effect making it zero) in preserving the probability wet, and
the first and second cumulants of the distribution. In our application, the post-processing
parameters have been found to be c0 = 3.18mm/h, c1 = 1.15 mm/h, l = 1.877, m = 0.832.

Comparisons of the theoretical statistical characteristics of the distribution of xτ to the
empirical ones of the generated sample, both before and after post-processing, are shown
in the panels of Figure 6. The empirical climacogram is shown in Figure 6b. Before post-
processing, there is a marked difference of the empirical climacogram from the theoretical.
This does not indicate a weakness of the algorithm. It just reflects the fact that, with a Hurst
parameter as high as H = 0.92, there is high uncertainty and variability, while a sample of
n = 10 000 is too short to eliminate this uncertainty; note that the equivalent sample size
(which indicates the sampling variability) in this case is n′ := γ(1)/γ(n) ≈ 7 instead of
n = 10 000. Interestingly, the post-processing substantially decreases the difference from
the theoretical curve. The improvement due to post-processing is spectacular in panel (d),
which shows a comparison of the theoretical and empirical marginal distribution of xτ .
Before post-processing, even though the cumulants are preserved, the initially generated
small values are problematic as no zero values are generated. This is fully remedied by
the post-processing technique. Finally, panel (c) shows that the autocorrelations are well
preserved both before and after post-processing.

Further information on the form of the generated time series is provided in Figure 7,
this time showing not the statistical characteristics, but the time series per se. The plot,
covering a period of 2000 h (83 d; panel (a)) with a focus on the first 200 h (~8 d; panel (b)),
indicates that the time series resemble the form of natural rainfall events.

3.5. Simulating the Precipitation Process at the Annual Time Scale

The same precipitation model as in the previous subsection was used for generation
at the annual scale. Now the distribution is no longer Pareto but PBF, whose treatment is
more laborious. On the other hand, the probability dry at the annual scale is zero, and thus
the distribution is continuous. This makes the generation simpler as no post-processing is
required.
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While at the hourly scale all cumulants are positive, tending fast to infinity (Figure 6a),
at the annual scale, some of the cumulants (most notably the fourth) are negative (Figure 8a).
According to the model, again the cumulants tend to infinity, but for much higher p (>33)
as now ξ ′ = 0.030. The other parameters of the PBF distribution are ζ(v) = 4.00 and
λ(v) = 0.089 mm/h. The approximation v′τ of vτ is made by another PBF distribution with
slightly different parameters, ζ(v

′) = 4.01 and λ(v′) = 0.098 mm/h. As seen in Figure 8a, the
achieved approximation is good, except for a substantial difference in the first cumulants
of v′τ and vτ , so that the required shift of Equation (42) is not negligible, c = 0.0871 mm/h.

Comparisons of the theoretical statistical characteristics of the distribution of xτ to the
empirical ones of the generated sample are shown in the panels of Figure 8. In all panels,
the agreement between theoretical and empirical characteristics is very good.
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Figure 7. Plots of generated time series of precipitation in Bologna at hourly time scale: (a) for a
period of 2000 h (83 d); (b) focus on the first 200 h (~8 d).
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Figure 8. Graphical depiction of the results of the simulation application for a real-world case study for the precipitation
process in Bologna at the annual time scale, modelled as a persistent FHK process with PBF distribution: (a) cumulants; (b)
climacogram; (c) autocorrelogram; (d) marginal distribution.

4. Discussion and Conclusions

Stochastic simulation of complex processes necessarily relies on approximations of
distribution functions. Typically, these approximations are made with reference to the nor-
mal distribution, e.g., the Gram–Charlier series, the Edgeworth approximation, etc. [37,51].
These, however, are not good for simulation as no generic random number generation
algorithms are available for such type of approximations. They can also be too complicated.
Here, we provide more general and more powerful approximations of distribution func-
tions based on cumulants. These are quite flexible and can have several forms, such as (a)
the sum of a few (e.g., two or even just one) stochastic variables with typical distributions of
an appropriate type (such as those contained in Tables 2–4); (b) the occasional involvement
of discontinuities in constituent distributions (usually at their lower bounds); and (c) the
discretization of the stochastic variable, in the case that its domain is bounded from both
above and below. As random number generation algorithms are readily available for these
typical distributions, the proposed approximation is useful in stochastic simulation.

The approximation of a distribution via cumulants turns out to provide very powerful
means for stochastic simulation of processes of any type, with short- and long-range
dependence. The combination of this approximation with the asymmetric (AMA) or
symmetric (SMA) moving average generation schemes can tackle demanding simulation
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problems. The genuine stochastic simulation approach that is studied, which does not
perform transformations of the stochastic variables involved, is useful, convenient, and
powerful. This is particularly the case for problems where time directionality is important;
it is reminded that a Gaussian process, even when (back) transformed to non-Gaussian by
any nonlinear transformation, cannot provide a process with time asymmetry.

The case studies conducted confirm the excellent performance of the method for a
variety of demanding problems and a variety of distributions and time scales. In particular,
the long-range dependence, however high, as well as the antipersistence, do not entail any
difficulty in applying the method. In contrast, some characteristics of the marginal distri-
bution, such as single or double boundedness, and especially the possible intermittence,
may cause difficulties. For this reason, all case studies conducted involve non-Gaussian
marginal distributions that are bounded, thus making the problems more challenging.
These include distributions double-bounded, such as uniform, and single-bounded, such as
exponential, Pareto and PBF, with the Pareto distribution also having a discontinuity at the
origin (intermittence). The examples studied show how the problems of boundedness and
discontinuity can be handled through simple post-processing procedures, thus achieving
an overall satisfactory performance.

In conclusion, the method seems promising and expandable to several future research
directions, such as multivariate stochastic modelling, downscaling, disaggregation, and
stochastic modelling of two or more processes simultaneously, particularly in cases where
time directionality is important (e.g., rainfall-runoff modelling at small time scales).

Stochastic simulation has recently acquired tremendous importance, as conventional
energy sources are being replaced with renewables, whose nature is stochastic and, thus,
their assessment needs stochastic tools. Its utility should now be appreciated more than
ever, after various spectacular failures of aspirations to achieve satisfactory predictions
of geophysical processes in deterministic terms, and after reconciliation with the fact that
uncertainty is an intrinsic characteristic of nature, not subject to elimination.
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Appendix A Comparison with a Conventional Approach

This Appendix A (not contained in version 1 of our paper) was added, following
a suggestion by an anonymous reviewer that it would be good if the paper contained
comparisons with traditional approaches, which include transformations from Gaussian
processes. As a traditional approach we choose the ARMA(1,1) model, and as a case study,
we use the one presented in Section 3.1, which deals with the exponential distribution. (The
case studies of the Sections 3.2–3.5 can hardly be dealt with using traditional approaches).
As the exponential distribution assumed in this case study is a special case of the gamma
distribution, we use the traditional Wilson–Hilferty–Kirby transformation [52], which
transforms a standard Gaussian variable z to a variable w with approximately (three-



Sci 2021, 3, 34 23 of 26

parameter) gamma distribution with mean 0, standard deviation 1 and coefficient of
skewness Cs. In its original (Wilson–Hilferty) form, the transformation is:

w =
2

Cs

(1−
(

Cs

6

)2
+

Cs

6
z

)3

− 1

 (A1)

Kirby [52] gave a better approximation by modifying the transformation in the following
form:

wM = A

max

(
C, 1−

(
D
6

)2
+

D
6

z

)3

− B

 (A2)

where A, B, C, D are coefficients depending on Cs, given by Kirby [52] in tabulated form,
except for C, which is calculated as

C =

(
B− 2

Cs

1
A

) 1
3

(A3)

Plugging C in Equation (A2) we see that if the value of z is too low (strongly negative),
then the lowest admissive value of wM is −2/Cs. For the exponential distribution, Cs = 2
and the tabulated values are A = 1.03571, B = 0.99968, D = 1.93606, while C is calculated
to 0.32446. We note that the so-calculated variable wM has lower bound −1, and hence to
achieve the standard exponential distribution we have to take wM + 1.

The ARMA(1,1) model for the Gaussian process zτ is

zτ = azτ−1 + vτ + bvτ−1 (A4)

where vτ is Gaussian white noise with mean 0 and variance σ2
v , and a and b are model

parameters. Given the model parameters, the autocovariance cη of the process is given as
follows [2]:

c0 =

(
1 +

(a + b)2

1− a2

)
σ2

v , c1 = ac0 + bσ2
v , cη = aη−1c1, η ≥ 1 (A5)

In our case study, we have c0 = 1, c1 = 0.701, c2 = 0.509, while the model cannot
preserve autocovariances for lag higher than 2. The resulting model parameters (obtained
by a solver) are σ2

v = 0.509, a = 0.727, b = −0.0517.
We expect that the approximate transformation (A2), by construction, will give vari-

ance 1, which in the case study is equal to c0. However, there is no guarantee that the values
of c1, c2 will be preserved after applying the transformation. An analytical calculation of
the values of c1, c2 after the transformation is not possible and therefore, we have to resort
to numerical methods [19–24], of which a Monte Carlo method is the easiest. However, for
simplicity here we assume that the changes in the autocorrelations, ρ1 = c1/c0, ρ2 = c2/c0
are negligible. With this assumption, we easily run the model to generate 10 000 synthetic
values, from which we constructed Figure A1. This should be viewed in comparison to
Figure 1. One can see in Figure A1c that the transformation is satisfactory in preserving the
marginal distribution. The problems appear in the climacogram and the autocorrelogram.
Clearly, the conventional ARMA model cannot reproduce the LRD. On the other hand, the
autocorrelations ρ1, ρ2 are preserved and indeed the changes due to the transformation are
negligible, which confirms the validity of our assumption. We note though that there exist
more sophisticated methods, relying on transformations to Gaussian, which can preserve
the LRD (e.g., [24]), but these do not classify as conventional approaches. Yet the method
proposed here, which is quite generic and preserves high order moments in a genuine
manner, enables potential application in even more demanding cases, such as when the
time’s arrow is important to handle, as already mentioned in the introduction.
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