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Abstract:  

Ombrian curves, i.e. mathematic relationships linking average rainfall intensity to time 

scale of averaging and return period, also known as IDF (intensity-duration-frequency) 

curves, are essential tools in hydrology and engineering. Their use is supported by long-

term hydrological experience, yet related formulas remain mostly empirical and lack a 

theoretical basis. As such, they entail several theoretical inconsistencies, particularly over 

large scales, while they cannot be applied in simulation. This Chapter reviews the typical 

form of ombrian curves along with its merits and limitations, and presents a modelling 

framework to overcome the latter by advancing curves to stochastic models of rainfall 

intensity. This is achieved through stochastic modelling of the joint second-order and 

marginal higher-order properties of the parent process. Two variants of the ombrian model 

are presented; a full version valid over time scales spanning multiple orders of magnitude, 

and a simplified relationship applicable over fine scales of the order of common 

applications, i.e. sub-hourly to daily. Specific emphasis is given to the fitting procedure 

combining multiple data sources and addressing bias in the estimation induced by temporal 

dependence. A detailed application of the ombrian model is performed for the rainfall 

station in Bologna (Italy), highlighting the efficiency of the resulting curves over multiple 

scales.  

Key Words:  ombrian curves; rainfall extremes: stochastic rainfall modelling; multi-scale model; 

IDF curves; Pareto distribution 

9.1 Introduction 

Ombrian relationships, from the Greek word ‘όμβρος’, i.e. rainfall, are mathematical 

relationships linking the average rainfall intensity, 𝑥, to time scale of averaging, 𝑘, and 

return period, 𝑇. These relationships are widely known as intensity-duration-frequency 

(IDF) curves, even though the term is a misnomer; ‘duration’ is a misplaced name for time 

scale of averaging, and ‘frequency’ reflects an old tradition of confusing frequency with 

return period. Nonetheless, ombrian curves are an established tool of most hydrological 

and engineering operations requiring design storm estimates, ranging from flood protection 

and urban drainage design, to construction of highways, bridges, etc. Related 



methodologies are part of standard hydrological practice (Eagleson 1970; Chow et al. 

1988), and can be traced back in literature as early as in the works of Sherman (1931) and 

Bernard (1932). Most countries have performed regionalization analysis of ombrian 

curves, producing maps for operational uses; such maps are available for the US since 1961 

(Hershfield, 1961) and now are available or being updated for most parts of the world 

(Hailegeorgis et al., 2013; Koutsoyiannis et al., 1998).  

 The standard modelling procedure consists of fitting a parametric relationship to 

estimates of (𝑥, 𝑘, 𝑇), often of the simple power law (Koutsoyiannis, 2021): 

where 𝜆, 𝜉, 𝜂 are positive parameters with 𝜉 ≤ 𝜂 ≤ 1. Formulas of this type are often 

empirical and sometimes supported by fractal representations of rainfall intensity (e.g. 

Veneziano and Furcolo 2002; Langousis and Veneziano 2007). Even though the derivation 

of common formulas is mostly empirical, they have proven useful in practice and been 

validated by long-term and worldwide hydrological experience. However, there are several 

reasons that now dictate the need of a solid theoretical basis for their derivation.  

First off, the standard empirical approach lacks rigor and entails several theoretical 

inconsistencies (even dimensional inconsistency, as evident from Equation (1); see details 

in Koutsoyiannis, 2021), which become important when one is interested in large return 

periods. A majority of these shortcomings has been exposed and rectified by Koutsoyiannis 

et al. (1998) who first connected the derivation of ombrian curves to the theoretical 

properties of the underlying rainfall process, namely its marginal distribution function and, 

in particular, its tail index. Linking the properties of the curves to their natural basis which 

is the parent process is also the only way to comprehend issues of bias and uncertainty in 

the estimation. Both issues are essential considering the presence of temporal dependence 

in the rainfall process, which induces bias in the estimation of its quantiles. Estimation 

uncertainty is further worsened by the usual lack of long-term reliable rainfall data at fine 

scales. Data scarcity is still a great challenge for many parts of the world (Ayman et al., 

2011) and underlines the need to support ombrian curves estimation by a more powerful 

theoretical approach. 

Even without considering the issue of data scarcity, a solid theoretical basis is 

essential when one is interested in applying simulation. The information conveyed by 

typical ombrian curves on rainfall frequency is usually not sufficient for studying complex 

hydrological problems beyond the ‘design storm’ applications. For instance, hydrosystems 

in which rainfall is only one of the uncertain components of the system, require thorough 

modelling of the involved processes in order to determine the overall probability of failure. 

As a matter of fact, as simulation is increasingly adopted in hydrological problems and the 

traditional ombrian curves have not kept up with such advances, the framework has even, 

unjustly, been seen as outdated. 

 The obvious alternative is to derive the ombrian relationships from simulations by 

models of the rainfall process, so-called rainfall generators. Yet the challenges involved in 

the multi-scale rainfall generation often beat the purposes of simplicity and practicality of 

the traditional curves. Moreover, it is not a given that the synthetic series will preserve the 

empirical ombrian curves, unless if included in the calibration scheme (Willems, 2000).  

𝑥 =
𝜆𝑇𝜉

𝑘𝜂
 (1) 



 To this end, this Chapter presents a two-in-one approach, developed by 

Koutsoyiannis (2021), by which curves are themselves advanced to stochastic models of 

the all-scale rainfall intensity, i.e. ombrian models. The approach allows theoretically 

consistent derivation of ombrian curves, with provision for estimation bias, validity over 

extended range of scales and capability to be directly used for simulation. It is shown that 

these advances can be achieved on the basis of simple stochastic characterizations of the 

parent process, namely of its joint second-order and marginal higher-order properties.  

 The remaining of the Chapter is structured in 4 sub-sections. In particular, the 

following sub-section (9.2) sets the requirements for an ombrian model and is devoted to 

the presentation of the essential stochastic tools for the characterization of the parent 

process. Section 9.3 introduces two variants of the ombrian model, a full version covering 

all the range of time scales and a simplified relationship valid for fine timescales. Particular 

focus is given to the fitting procedure, outlined in Section 9.4, where issues of dependence-

induced bias are also addressed. The entire methodology is illustrated in detail by the case 

study of rainfall in Bologna, in Section 9.5, which stands as a proof of concept of the 

ombrian model’s power. The possibility of taking advantage of possible existence of multi-

source data is also highlighted. Further aspects of the ombrian curves are discussed in 

section 9.6. 

9.2 A stochastic framework for building ombrian models 

In this Section, the stochastic concepts used in the ombrian modelling are presented. A 

stochastic process is an arbitrarily large family of random variables x(𝑡) (Papoulis, 1991). 

To distinguish random variables from regular variables, the former are underlined 

following the Dutch convention. These variables are indexed by 𝑡, which represents time, 

either discrete (from the set of integers ℤ, referring to a discrete-time stochastic process), 

or continuous (from the set of real numbers ℝ, resulting in a continuous-time stochastic 

process). A continuous-time stochastic process is herein denoted by 𝑥(𝑡), and a discrete-

time one by 𝑥𝜏. A realization of stochastic process 𝑥(𝑡), i.e. a timeseries, necessarily 

referring to discrete time and denoted by 𝑥𝜏. 

9.2.1 Basic requirements for an ombrian model 

The basic premise of the Chapter is that an ombrian model can be an advance of the classic 

tool of ombrian curves if it achieves greater modelling power and theoretical consistency, 

but preserves the practical and simple character of the classic curves. Below we outline the 

basic requirements for such a model as identified by Koutsoyiannis (2021). 

1. A critical prerequisite is that the ombrian model should be applicable in engineering 

applications without a necessity to perform simulation. Its application should be preferably 

simple as in traditional IDF curves even if the need for theoretical consistency is 

compromised to some extent. 

2. It is straightforward that, as in every stochastic model, the first and second order 

properties of the process of interest, i.e. the temporal average of rainfall intensity 𝑥(𝑘)over 

any time scale 𝑘, should be preserved. Clearly, a constant mean should be preserved for all 



time-scales, although this is often violated in common expressions. An effective 

methodology to preserve the second-order properties at any scale based on the scaling 

properties of the variance (climacogram) is outlined in Section 9.2.2.  

3. The process’s asymptotic variance at 𝑘 → 0 should be finite; the contrary would imply 

that the process requires infinite energy to materialize which is absurd for physical 

processes. In addition, the process’s asymptotic variance at 𝑘→∞ should be zero, in order 

for the process to be ergodic. 

4. The model should deal with the intermittence of rainfall occurrences at fine time scales, 

describing both the probability dry 𝑃0
(𝑘)

≔ 𝑃{𝑥(𝑘) = 0}, and the probability wet, 𝑃1
(𝑘)

≔

𝐹
(𝑘)

(0) = 1 − 𝑃0
(𝑘)

 for any time scale k, including for 𝑘→0.  

5. The principle modelling focus is on rainfall maxima, and hence it is important to preserve 

the high-order properties of the process. 

6. The tail index of the rainfall intensity distribution should be constant for all time scales. 

Theoretical justification of this requirement can be found in Koutsoyiannis (2021).  

7. The Pareto distribution constitutes an optimal choice for small time scales due to its 

simplicity and explicit relationship between the time-averaged intensity and return period. 

Prevalence of the Pareto distribution for rainfall intensities is also supported by worldwide 

empirical evidence (Koutsoyiannis, 2004a; Koutsoyiannis and Papalexiou, 2016). 

9.2.2 Characterization of second-order properties through climacogram  

A comprehensive characterization of a process’s second-order properties can be achieved 

by inspecting the properties of its variance when the process is averaged (or aggregated) 

over multiple scales. The function of the variance of the averaged process versus the scale 

of averaging is called the climacogram, while the function of the cumulative process versus 

the scale is called the cumulative climacogram (Koutsoyiannis, 2010). The climacogram 

of a process 𝑥(𝑡) is defined as: 

where 𝛤(𝑘) is the cumulative climacogram, and 𝛸(𝑘) is the process 𝑥(𝑡) aggregated at 

timescale 𝑘: 

or for a discrete-time process, with climacogram 𝛾𝜅: 

 

𝛾(𝑘) ∶= var [
𝛸(𝑘)

𝑘
] =

𝛤(𝑘)

𝑘2
 (2) 

𝛸(𝑘) ∶= ∫ 𝑥(𝑡)
𝑘

0

d𝑡 (3) 

𝑋𝜅 ∶= 𝑥1 + 𝑥2 + ⋯ + 𝑥𝜅 (4) 



The discrete time scale κ (integer) is related to the continuous-time one k (real number) by 

𝑘 = 𝜅𝐷, with 𝐷 denoting the length of the time step.  

The climacogram estimator is the same for discrete- and continuous-time processes 

and is given as: 

where �̂� ≔ (1/𝑛) ∑ 𝑥𝑖
𝑛
𝑖=1  is the estimator of the true mean. 

The climacogram is theoretically equivalent to other second-order properties, 

namely the autocovariance, autocorrelation and the power-spectrum, but it has superior 

estimation properties in terms of bias, discretization errors, and sampling uncertainty 

(Dimitriadis and Koutsoyiannis, 2015). Therefore, it is the basic tool employed here for 

second-order characterization. 

The theoretical climacogram differs among processes with different second-order 

dependence structure. In case of an independent white-noise process in continuous time, 

the climacogram is inversely proportional to the time scale: 

where 𝜎2 is the variance of the process for 𝑘 = 𝐷. Notice that the variance of the 

instantaneous process is infinite. An extension of the white-noise process, again having 

infinite variance as 𝑘 → 0 but now exhibiting dependence in time, is the Hurst-

Kolmogorov process, which can be defined through its climacogram as: 

where 𝛼 and 𝜆 are scale parameters, with dimensions [𝑡] and[𝑥2] and 𝐻 is the so-called 

Hurst parameter ranging in the interval (0,1). In the case of 𝐻 = 0.5 the white noise is 

recovered. For 0.5 < 𝐻 < 1 the process is persistent and for 0 < 𝐻 < 0.5 antipersistent.  

The infinite variance of these processes when the scale tends to zero makes them 

inappropriate for natural processes, as discussed before. In order to remedy this 

shortcoming, and improve flexibility of the model to describe the dependence in shorter 

time scales, the Filtered Hurst-Kolmogorov (FHK) process is developed with several 

climacogram types (Koutsoyiannis, 2017). The generalized Cauchy-type climacogram 

(FHK-C) is: 

where 𝑀 is an added dimensionless parameter which controls the local scaling of the 

process (fractal behaviour), denoted as 𝑀 in honor of Mandelbrot (Koutsoyiannis et al., 

2018). Values of 𝑀 < 1/2 indicate a rough process, while 𝑀 > 1/2 indicate a smooth 

process.  

𝛾𝜅 ≡ 𝛾(𝑘) ∶=
1

𝑛
∑ (𝑥𝜏

(𝜅)
− �̂�)

2
𝑛

𝜏=1

 (5) 

𝛾(𝑘)  =
𝜎2𝐷

𝑘
 (6) 

𝛾(𝑘)  = 𝜆 (
𝑎

𝑘
)

2−2𝐻

 (7) 

𝛾(𝑘)  = 𝜆1 (1 + (
𝑘

𝑎
)

2𝑀

)

𝐻−1
𝑀

 (8) 



 An alternative flexible type is the composite Cauchy-Dagum-type (FHK-CD) 

climacogram, which for a rough and persistent process, and for the special case 𝑀 = 1 −
 𝐻, can be written as: 

Both these climacogram models have four parameters and thus great flexibility in capturing 

the scaling properties of the variance at all scales. More information on the bounds of 

scaling and on other climacogram-type models are provided in Koutsoyiannis (2017). 

Therefore, the empirical climacogram is given by estimating the variance over 

scales by Equation (5), whereas Equations (8)-(9) provide different types of the theoretical 

climacograms. Because presence of dependence induces downward bias in the estimation 

of the variance, the two are not directly comparable. To compare them, the bias need to be 

considered, based on the following equation (Koutsoyiannis, 2003, 2021): 

where 𝐿 is the length of the observation period. 

9.2.3 Assigning empirical return periods using order statistics 

Order statistics are a standard tool for dealing with extremes. Below the procedure to apply 

them for assigning return periods to the data is presented.  

Let 𝑥 be a stochastic variable and 𝑥1, 𝑥2, … , 𝑥𝑛 be IID copies of it, forming a sample. 

If we rearrange them by increasing order of magnitude such that 𝑥(𝑖:𝑛) is the ith smallest of 

the 𝑛, i.e.: 

then the stochastic variable 𝑥(𝑖:𝑛) is called the ith order statistic. The minimum and 

maximum values of a sample are then given respectively by the lowest order statistic, 

𝑥(1:𝑛) = min (𝑥1, 𝑥2, … , 𝑥𝑛) and the highest order statistic 𝑥(𝑛:𝑛) = max (𝑥1, 𝑥2, … , 𝑥𝑛). It 

is then well-known (Papoulis 1990) that if we define the stochastic variable 𝑢 ≔ 𝐹(𝑦) =

𝐹(𝑥(𝑖:𝑛)), then its distribution function is the Beta distribution, whose mean is: 

Then an estimate of the return period (in time units 𝐷) for order statistics 𝑇(𝑖:𝑛) ≔ 𝑇(𝑥(𝑖:𝑛))  

is: 

𝛾(𝑘)  = 𝜆1 (1 +
𝑘

𝑎
)

2𝛨−2

+ 𝜆2 (1 − (1 +
𝑎

𝑘
)

2𝛨−2

) (9) 

E [𝛾(𝑘)] = 𝛾(𝑘) − 𝛾(𝐿) (10) 

𝑥(1:𝑛) ≤ 𝑥(2:𝑛) ≤ ⋯ ≤ 𝑥(𝑛:𝑛) (11) 

E[𝑢] = E[𝐹(𝑥
(𝑖:𝑛)

)] =
𝑖

𝑛 + 1
 (12) 

𝑇(𝑖:𝑛)

𝐷
=

1

1 − E [𝐹 (𝑥
(𝑖:𝑛)

)]
=

𝑛 + 1

𝑛 + 1 − 𝑖
 

(13) 



which is the well-known Weibull plotting position. This, however, is not recommended for 

use as it results in high bias in the estimation of the return period of the highest events. 

There are several other formulae for return period all of which are of the form: 

The parameters 𝐴 and 𝐵 depend on the parent distribution of the data. Koutsoyiannis (2021) 

developed various parameterizations as the best approximations for a number of 

distributions and properties of interest. In particular, for distributions belonging to the 

domain of attraction of EV2, such as the Pareto, the parameters 𝐴, 𝐵 are theoretically 

proved to be: 

These can be suggested for use (replacing empirical formulae such as the Weibull plotting 

positions) for assigning return periods to order statistics, assuming independence of the 

data. Yet since independence is mostly an untenable assumption for natural processes, there 

is bias involved in the estimation in this case as well.  

For an explicit account of dependence in assigning return periods, one could use 

knowable moments (Koutsoyiannis, 2019). For simplicity however, the following ad-hoc 

procedure is proposed as an approximation to account for bias for each time scale. 

1. A first estimate of the return period of each nonzero value 𝑥(𝑖:𝑛) appearing in a 

sample sorted in ascending order, is obtained based on the independence assumption from 

Equation (14). This follows the estimation of the coefficients 𝐴 and 𝐵 of Equation (15) 

based on the tail index of the process.  

2. The following approximation for a bias correction factor 𝛩(𝑘, 𝐿, 𝐻) is used 

(Koutsoyiannis, 2021): 

Accordingly, the empirical return periods are corrected as: 

where �̂�1
(𝑘)

= �̂�1/𝑛  is the ratio of the non-zero values to the total values at each scale, else 

the probability wet. 

3. This procedure is repeated for all nonzero values 𝑥(𝑖:𝑛) for each timescale 𝑘, 

yielding a table of empirical values and associated return periods. 

9.3 Building a theoretically consistent ombrian model 

9.3.1 All-scale version 

𝑇(𝑖:𝑛)

𝐷
=

𝑛 + 𝐵

𝑛 − 𝑖 + 𝐴
 (14) 

𝐴 = (Γ(1 − 𝜉))
−1/𝜉

, 𝐵 = (Γ(2 − 𝜉))−1/𝜉 − 1 (15) 

 𝛩(𝑘, 𝐿, 𝐻) ≈ −
𝛾(𝐿)

2𝛾(𝑘)
 (16) 

𝑇′ ≈ min ((2𝛩 + (1 − 2𝛩) (
𝑇�̂�1

(𝑘)

2𝑘
)

(1+𝛩)2

)
2𝑘

�̂�1
(𝑘)

, 𝑇) (17) 



The first version of the ombrian model refers to a model valid over the whole range of 

available scales. To achieve the extension of the typical fine-scale curves to large scales an 

increase in the complexity of the rainfall’s intensity distribution is required. This is 

described by the following assumptions: 

1. At small time scales the rainfall intensity follows a mixed type distribution, with a 

discrete part at the origin described by the probability dry, and a continuous part 

following the Pareto distribution with a constant tail index 𝜉 and a state scale 

parameter 𝜆(𝑘) as a function of the timescale: 

2. At larger time-scales the rainfall intensity follows the Pareto-Burr-Feller (PBF) 

distribution with discontinuity at zero, characterized by an extra parameter 𝜁(𝑘) as 

a function of the timescale:  

The Pareto distribution is obtained for 𝜁(𝑘) = 1. The PBF distribution is chosen 

because, contrary to the Pareto, it becomes bell-shaped for increasing 𝜁(𝑘) which 

is consistent to the behaviour of the rainfall intensity at large time scales (cf. the 

central limit theorem). 

3. The mean of the time-averaged process is constant across all time-scales: 

4. The climacogram follows one of the two four-parameter models introduced in 

Equations (8)-(9). Clearly, both equations satisfy the asymptotic requirements for 

the variance set in 9.2.1. As 𝑘 → ∞, 𝛾(𝑘) → 0, whereas for 𝑘 = 0, both variances 

are finite and equal to 𝛾(0) = 𝛾0 = 𝜆1 in Equation (8) and 𝛾(0) = 𝛾0 = 𝜆1 + 𝜆2 in 

Equation (9).  

5. The probability wet 𝑃1
(𝑘)

= 1 − 𝑃0
(𝑘)

 and dry 𝑃0
(𝑘)

follow the scaling law: 

where 𝑘∗ is the transition time scale from Pareto to PBF distribution, for which 

𝑃0
(𝑘∗)

> 0 and 𝜁(𝑘∗) = 1 (for continuity of the transition), and 𝜃 is a parameter 

(0 ≤ 𝜃 ≤ 1). This equation was derived by Koutsoyiannis (2006) from an entropy 

maximization framework.  

The introduction of the two different distributions follows from the need to preserve 

the shape of the probability of rainfall, which is highly skewed at small time-scales but 

tends to bell-shape at large scales. However, it is noted in Equation (19) that the tail-index 

of the PBF distribution is not 𝜉 but 𝜉/𝜁(𝑘) and tends to zero as 𝑘→∞. Thus, at large time-

𝐹(𝑘)(𝑥) = 1 − 𝑃1
(𝑘)

(1 + 𝜉
𝑥

𝜆(𝑘)
)

−1/𝜉

 (18) 

𝐹(𝑘)(𝑥) = 1 − 𝑃1
(𝑘)

(1 + 𝜉 (
𝑥

𝜆(𝑘)
)

𝜁(𝑘)

)

−1/𝜉

 

 

(19) 

Ε[𝑥(𝑘)] = 𝜇 (20) 

ln 𝑃0
(𝑘)

= ln 𝑃0
(𝑘∗)

(𝑘/𝑘∗)𝜃 , 𝑘 ≥ 𝑘∗ (21) 



scales the constant tail index requirement is violated. An alternative solution would be to 

replace the PBF with a shape-preserving distribution, yet analytical expressions are too 

involved and defeat the requirement of practicality. Besides, the violation occurs only at 

large time-scales which are less of interest in applications.  

Having assumed the distribution types, it remains to specify the form of the parameters 

𝜆(𝑘) and 𝜁(𝑘) which are derived from the first- and second-order properties, i.e. the mean 

and the climacogram of the process. For the PBF distribution these are given by: 

 

 

For the Pareto distribution, 𝜁(𝑘) = 1, and therefore the probability wet can be explicitly 

derived from Equation (22) as: 

while in this case Equation (23) can be simplified to: 

The special case of 𝑃1
(𝑘)

= 1 denotes the maximum scale till which the Pareto distribution 

is mathematically feasible, thus 𝑘 = 𝑘max 
∗ , and the following hold: 

However, in order to preserve the scaling behaviour of the probabilities dry/wet, as 

specified by Equation (21), the transition scale to the PBF distribution should be chosen 

much smaller than 𝑘max 
∗ , i.e. the Pareto feasibility limit. 

 On the contrary, the PBF is feasible at any scale, while for large scales in which 

𝑃1
(𝑘)

= 1, Equation (22) simplifies to: 

The final version of the ombrian model is obtained by substituting the return period 𝑇 =
1/(1 − 𝐹(𝑘)(𝑥)) in the Equation (19) for the PBF: 

1

𝜁(𝑘)
≈ √(1 − 2𝜉) (𝑃1

(𝑘) 𝛾(𝑘) + 𝜇2

𝜇2
− 1) (22) 

1

𝜆(𝑘)
≈

𝑃1
(𝑘)

𝜇
(1 +

1

(1 − 𝜉)(𝜁(𝑘))2
−

1

(𝜁(𝑘))√2
) (23) 

𝑃1
(𝑘)

=
1 − 𝜉

1 2 − 𝜉⁄

𝜇2

𝛾(𝑘) + 𝜇2
 (24) 

1

𝜆(𝑘)
=

𝑃1
(𝑘)

𝜇(1 − 𝜉)
=

𝜇

(1 2 − 𝜉)(𝛾(𝑘) + 𝜇2)⁄
 (25) 

𝑃1
(𝑘max

∗ )
= 1,

𝛾(𝑘max
∗ )

𝜇2
=

1

1 − 2𝜉
,     𝜆(𝑘max

∗ ) = 𝜇(1 − 𝜉) (26) 

1

𝜁(𝑘)
=

√(1 − 2𝜉)𝛾(𝑘)

𝜇
 

 

(27) 



and for the Pareto (𝜁(𝑘) = 1): 

For 𝜉 = 0, the PBF distribution switches to the Weibull, and the Pareto to the exponential, 

i.e.: 

The final ombrian relationship with its basic properties is summarized in Table 9.1. It is 

evident that the ombrian relationship is given through the mean, the climacogram, the tail 

index of the distribution and the probability wet. The full-range model results in a total of 

seven parameters, depending on the choice of the climacogram model, of four categories: 

(a) the mean intensity parameter 𝜇 with units of [𝑥], i.e. the average of the process, typically 

mm/h, (b) the intensity scale parameter 𝜆1, in case of the FHK-C climacogram model, or 

𝜆1, 𝜆2  in the case of FHK-CD with units of [𝑥2], (c) the time scale parameter α,in units of 

time [t], and (d) the dimensionless parameters ξ (0 < 𝜉 < 0.5), i.e. the tail index, θ (0 <
𝜃 < 1), i.e. the exponent of the expression of probability dry, 𝑀 (0 < 𝑀 < 1), i.e. the 

fractal parameter in case of the FHK-C climacogram, and 𝐻 (0 < 𝐻 < 1), i.e. the Hurst 

parameter. Note that if the FHK-CD climacogram model (Equation (9)) is used, then the 

fractal parameter is derived as 𝑀 = 1 − 𝐻, and thus it is not an extra parameter. 

It is worth noting that typical ombrian curves involve five parameters, yet the gains 

of including the extra parameters are manifold. In addition to the recovered mathematical 

and physical consistency, the model yields a better representation of fine scales (through 

fractal 𝑀 parameter) and arbitrarily large scales (through 𝐻 parameter), while precisely 

preserving the mean, climacogram and probability dry/wet of the process. In principle, this 

version of the model has the advantage of being valid over all timescales. Yet if only fine 

time-scales are of interest, then a less parameterized and simpler version can be used 

instead. This is discussed next. 

𝑥 = 𝜆(𝑘) (
(𝑃1

(𝑘)
𝑇 ⁄ 𝑘)𝜉 − 1

𝜉
)

1/𝜁(𝑘)

 (28) 

𝑥 = 𝜆(𝑘)
(𝑃1

(𝑘)
𝑇 ⁄ 𝑘)𝜉 − 1

𝜉
 (29) 

𝑥 = 𝜆(𝑘) (ln(𝑃1
(𝑘)

𝑇/𝑘))
1/𝜁(𝑘)

, 𝑥 = 𝜆(𝑘) ln(𝑃1
(𝑘)

𝑇 ⁄ 𝑘) (30) 



Table 9.1 Ombrian models for the full range of scales and the small scales and their basic 

properties, i.e. mean, climacogram, probability wet, shape scale parameter and state scale 

parameter. 

 All-scale ombrian model Simplified model 

 
Small scales (Pareto) 

𝑘 ≤ 𝑘∗ ≪ 𝑘max
∗  

Large scales (PBF) 

𝑘 ≥ 𝑘∗ 

Small scales (Pareto) 

𝑘 ≪ 𝛽 

 
𝑥 𝑓𝑜𝑟  
𝜉 > 0 

𝜆(𝑘)
(𝑃1

(𝑘)
𝑇 ⁄ 𝑘)𝜉 − 1

𝜉
 𝜆(𝑘) (

(𝑃1
(𝑘)

𝑇 ⁄ 𝑘)𝜉 − 1

𝜉
)

1/𝜁(𝑘)

 
𝜆

((𝛵 𝛽⁄ )𝜉 − 1)

(1 + 𝑘 𝛼⁄ )𝜂
 

 

𝑥 𝑓𝑜𝑟  
𝜉 = 0 

𝜆(𝑘) ln (𝑃1
(𝑘)

𝑇 ⁄ 𝑘) 𝜆(𝑘)(ln(𝑃1
(𝑘)

𝑇 𝑘⁄ ))
1/𝜁(𝑘)

 𝜆
ln(𝑇 𝛽⁄ )

(1 + 𝑘 𝛼⁄ )𝜂
 

Properties 

𝛦[𝑥(𝑘)] 𝜇 
(inconsistent –  

not constant) 

𝛾(𝑘) 

𝜆1(1 + (𝑘 𝛼⁄ )2𝑀)
𝐻−1

𝑀  

or  
𝜆1(1 + 𝑘 𝛼⁄ )2𝛨−2 + 𝜆2(1 − (1 + 𝑎 𝑘⁄ )2𝛨−2) 

 

𝜆(1 + 𝑘 𝛼⁄ )2𝐻−2 
 

𝑃1
(𝑘)

 

1 − 𝜉

1 2 − 𝜉⁄

𝜇2

𝛾(𝑘) + 𝜇2
 

 
1 − (1 − 𝑃1

(𝑘∗)
)(

𝑘
𝑘∗)

𝜃

 

𝑘

𝛽
 

1

𝜁(𝑘)
 1 √(1 − 2𝜉) (𝑃1

(𝑘) 𝛾(𝑘) + 𝜇2

𝜇2
− 1) (not applicable) 

1

𝜆(𝑘)
 

𝑃1
(𝑘)

𝜇(1 − 𝜉)
 

𝑃1
(𝑘)

𝜇
(1 +

1

(1 − 𝜉)(𝜁(𝑘))2
−

1

(𝜁(𝑘))√2
) (not applicable) 

 

9.3.2 Simplified model for small scales 

It is possible to simplify the Pareto ombrian relationship (Equation (29)) which is valid for 

small scales, 𝑘 ≤ 𝑘max 
∗ , and can be written as: 

where 𝛽(𝑘) is a function of the time scale with units of time, 𝛽(𝑘) ≔ 𝑘 𝑃1
(𝑘)⁄ . Then by 

virtue of Equation (25), the ombrian relationship yields: 

For small scales we may introduce a series of simplifying assumptions: 

𝑥 = 𝜆(𝑘)
(𝑇 ⁄ 𝛽(𝑘))𝜉 − 1

𝜉
 (31) 

𝑥 =
(1/2 − 𝜉)(𝛾(𝑘) + 𝜇2)

𝜉𝜇
((

𝑇

𝛽(𝑘)
)

𝜉

− 1) 

 

(32) 



1) We assume that 𝑃1
(𝑘)

∝ 𝑘, which is an acceptable approximation for small scales, 

thus that 𝛽(𝑘) = 𝛽 = constant. 
2) Noting that for small scales 𝛾(𝑘) ≫ 𝜇2, we neglect the second term in the sum of 

Equation (32). 

3) We assume an FHK-C climacogram (Equation (8)) with a neutral value for 𝑀 =
0.5 

By application of these three assumptions to Equation (32), we get: 

which is an ombrian relationship of the form: 

Thus, obtaining the rainfall intensity as a quotient of a function of the time scale and the 

return period. This facilitates estimation. The function 𝑎(𝑘) is given as: 

while the parameter 𝜆 and the function 𝑏(𝛵) are dependent on 𝜉 as follows. For 𝜉 > 0: 

and for 𝜉 = 0: 

This simplification results in a total of five parameters, of three categories: (a) 𝜆 with units 

of 𝑥, i.e. typically mm/h, (b) the scale parameters 𝛼 and 𝛽 with units of time, and (c) the 

dimensionless parameters 𝜉 (0 < 𝜉 < 0.5 ), i.e. the tail index, and 𝜂 (0 < 𝜂 < 1), which 

is related to the Hurst parameter of the process. Any value of 𝜂 < 1 corresponds to a 

process with persistence, 𝐻 > 0.5, while 𝜂 = 1 (which in reality is never the case) would 

correspond to 𝐻 = 0.5, a process with purely random behaviour. The model is also 

summarized in Table 9.1 along with its basic properties. 

 It can be seen that the simplified version sacrifices some of the requirements set at 

the beginning, mostly importantly instead of a constant mean, it yields a mean increasing 

with time-scale (Table 9.1). However, the inconsistencies are negligible if one restricts the 

range of timescales using as a lower bound the smallest value of the observed data and 

choosing an upper bound sufficiently below 𝛽. Therefore, the model is applicable over this 

range of observed scales, but if simulation is of interest then the all-scale version should 

be used instead. 

𝑥 = 𝜆1

(1/2 − 𝜉)

𝜉𝜇
(1 +

𝑘

𝛼
)

2𝐻−2

((
𝑇

𝛽
)

𝜉

− 1) 

 

(33) 

𝑥 = 𝜆
𝑏(𝑇)

𝑎(𝑘)
 (34) 

𝑎(𝑘) = (1 +
𝑘

𝛼
)

𝜂

, 𝜂 ≔ 2 − 2𝐻 (35) 

𝜆 =
(1/2 − 𝜉)𝜆1

𝜉𝜇
, 𝑏(𝑇) = (

𝑇

𝛽
)

𝜉

− 1 (36) 

𝜆 =
𝜆1

2𝜇
, 𝑏(𝑇) = ln (

𝑇

𝛽
) (37) 



9.4 Model fitting procedure 

9.4.1 All-scale version 

By assuming an initial parameterization of the all-scale ombrian model we can obtain a 

theoretical estimate of: (a) the climacogram 𝛾(𝑘), (b) the probability wet vs the time scale 

𝑃1
(𝑘)

 and (c) the rainfall intensity as a function of the timescale and the return period, i.e. 

the ombrian model 𝑥(𝑘, 𝑇), using the equations summarized in Table 9.1. From the 

empirical series, we also may obtain the empirical estimates of these three relationships as 

follows. To obtain an estimate of the climacogram 𝛾(𝑘), we use Equation (5), following 

the procedure in Section 9.2.1. To estimate the probability wet, we estimate the ratio 

�̂�1
(𝑘)

= �̂�1 𝑛⁄  where �̂�1 is the number of nonzero observations, and 𝑛 the total number of 

observations in the series. Then to assign a return period to each rainfall observation at 

each scale, thus estimate 𝑥(𝑘, 𝑇), we use the order statistics method, as presented in Section 

9.2.3.  

The model is fitted to the empirical estimates, after bias is accounted for, by 

minimizing the error between the two through a nonlinear solver, available even in any 

computational (e.g. spreadsheet) environment. Specifically, the error that should be 

minimized to fit the climacogram adjusted for bias is of the form: 

where 𝑤𝛾(𝑘) is a weighting function of scale. The logarithm is introduced to account for 

the different orders of magnitude that the climacogram spans. By minimizing Equation 

(38) we obtain all the climacogram-related parameters. 

 Likewise, the error for the probability wet is defined as: 

where 𝑤𝑃(𝑘) is the weight, which can be chosen as a function of scale. Since the expression 

for the probability wet, involves all parameters of the ombrian model, Equation (39) could 

be used to specify the full version of the model. However, this would give more weight to 

the representation of the probability dry, than to the extreme values, which are the ones of 

interest. To this aim, it is better to obtain the parameters directly from the distribution 

quantiles 𝑥(𝑘, 𝑇). The total fitting error in this case is given as: 

where 𝑤𝑥(𝑇) is a weighting function of the return period and 𝑛𝑘 is the number of 𝑥 values 

at each scale 𝑘. The total mean square error over the entire set of return periods is further 

normalized by the climacogram 𝛾(𝑘). 

In so doing, we have determined the full parameterization of the ombrian model 

also accounting for dependence-induced bias. It is also possible to optimize the parameters 

𝐸𝛾 ≔ ∑ 𝑤𝛾(𝑘)(ln( 𝛾(𝑘) − 𝛾(𝐿)) −

𝑘

ln 𝛾(𝑘))2   
(38) 

𝐸𝑃 ≔ ∑ 𝑤𝑃(𝑘)(𝑃1
(𝑘) − �̂�1

(𝑘)
)2

𝑘

 
(39) 

𝐸𝑥 ≔ ∑
1

𝛾(𝑘)

1

𝑛𝑘
∑ 𝑤𝑥(𝑇)(𝑥(𝑘, 𝑇) − �̂�(𝑘, 𝑇))2

𝑇𝑘

 
(40) 



of the model by formulating an objective function that includes, as a weighted sum, all 

three errors defined above: 

where 𝑎𝛾, 𝑎𝑃, 𝑎𝑥 the weights for the three errors. 

9.4.2 Simplified version 

The simplified version of the ombrian model also allows for a simplified fitting procedure, 

adjusting the steps previously outlined. In fact, by observing the separability of functions 

𝑎(𝑘) and 𝑏(𝑇) in this version an independent, two-step fitting approach can be used, 

introduced by Koutsoyiannis (1998). Equation (34) can be expressed as: 

We note that the timescale 𝑘 is not a stochastic variable as it takes values from a fixed set, 

depending on data availability, whereas 𝑎(𝑘) is a deterministic function thereof. The right-

hand side of the equation is in fact an expression of the Pareto distribution, independent of 

timescale 𝑘. Substituting Equations (35)-(36) in the above equation, yields: 

Now, it is easy to see that for the different timescales 𝑘𝑗 the stochastic variables 𝑦𝑗 ≔

𝑎(𝑘𝑗)𝑥 = (1 + 𝑘 𝛼)⁄ 𝜂
𝑥 have a common distribution function, with the 𝑦𝑗 for the different 

𝑘𝑗 being samples of it. Let then, 𝑦𝑗𝑖 ≔ 𝑎(𝑘𝑗)𝑥𝑗𝑖 of length 𝑛 = ∑ 𝑛𝑗𝑗  denote the merged 

sample of all sub-samples 𝑥𝑗𝑖 of size 𝑛𝑗  corresponding to timescale 𝑘𝑗. Let also 𝑟𝑗𝑖denote 

the rank of each sub-sample 𝑥𝑗𝑖 in the merged sample 𝑦𝑗𝑖 so that the mean rank of each 

sub-sample is given as 𝑟𝑗 = ∑ 𝑟𝑗𝑖/𝑛𝑗𝑖 . Replacing all 𝑟𝑗𝑖 with the mean rank value 𝑟𝑗 we get 

a sample of 𝑛 values, with 𝑛1equal to 𝑟1, 𝑛2 equal to 𝑟2 etc. Then the mean and variance 

estimators are, respectively: 

If no ties are present among the different ranks, then 𝑟 = (𝑛 + 1)/2. 

 Following the assumption that the samples are from the same distribution, given by 

the right-hand side of Equation (43), then each 𝑟𝑗 should be close to the mean 𝑟 while the 

variance should be minimal. Therefore, we can find the parameters 𝛼 and 𝜂 as the values 

that minimize the estimate of the variance 𝛾𝑟 from the observations 𝑥𝑗𝑖. The original values 

𝐸 ≔ 𝑎𝛾𝐸𝛾 + 𝑎𝑃𝐸𝑃 + 𝑎𝑥𝐸𝑥 (41) 

𝑎(𝑘)𝑥 = 𝜆𝑏(𝑇) (42) 

(1 +
𝑘

𝛼
)

𝜂

 𝑥 = 𝜆 ( (
𝑇

𝛽
)

𝜉

− 1) (43) 

𝑟 ≔
1

𝑛
∑ 𝑛𝑗

𝑗

𝑟𝑗  
(44) 

𝛾𝑟 ≔  
1

𝑛
∑ 𝑛𝑗

𝑗

(𝑟𝑗 − 𝑟)
2

 
(45) 



𝑦𝑗𝑖 could be used as well instead of the ranks, yet the use of the ranks makes the estimation 

process more robust to outliers. In order to improve the fit to the higher quantile region, we 

could also use a part of the data of each sample, belonging to the highest 1/2 or 1/3 of the 

data (Koutsoyiannis, 1998). 

 Having estimated the 𝛼 and 𝜂 parameters, it remains to specify the parameters of 

the function 𝑏(𝑇). Following the same rationale, i.e. of a single distribution function, we 

merge all 𝑘 sub-samples into a single sample and we estimate the parameters of the Pareto 

distribution, which fully determines the form of 𝑏(𝑇). 

 The two-step fitting procedure has an attractive flexibility in using different sources 

of data. Namely, a reliable determination of parameters 𝛼 and 𝜂 requires sub-hourly and 

sub-daily data, respectively, whereas, on the contrary, the parameters of the function 𝑏(𝑇) 

are better inferred from daily rain-gauge data. Particularly, the most uncertain and critical 

parameter is the tail-index of the distribution, which requires long timeseries to be reliably 

estimated. In the absence of long observational rain-gauge records, the tail index of the 

Pareto should be estimated from regional analysis or be assumed independently of the data, 

based on local hydrological experience. 

9.5 Development of an ombrian model for Bologna in Italy  

The all-scale ombrian model is applied to the rainfall of Bologna in Italy, which has one of 

the longest daily rainfall records worldwide spanning 206 years. The time series of daily 

observations is available online in the frame of the Global Historical Climatology Network 

– Daily (GHCN-Daily). Hourly rainfall data from the Dext3r repository (made available 

by Lombardo et al. 2019) are also employed, covering the entire period 1990-2013, with 

the exception of the missing year 2008. To take advantage of the availability of the two 

data sources, the ombrian model is fitted to both rainfall series simultaneously. 

 As a first step, the data of both series are aggregated at larger time-scales. 

Specifically, the hourly rainfall data are aggregated at timescales of 2, 4, 6, 12, 24, 48 and 

96 h, thus the modelling scales extend from 1 h to 4 d. The longer daily rainfall data are 

aggregated at timescales of 2, 4, 8, 16, 32, 64, 128, 182, 365, 730, 1460, and 5840 d, thus 

in this case, the range of scales extends from 1 d to 16 years. Longer timescales are studied 

for the daily data due to both their longer length and their higher reliability for the 

estimation of long-term properties compared to the hourly series. Therefore, the combined 

series spans from 1 h to 16 years (140 256 h). 

 The model is fitted according to the procedure outlined in Section 9.4.1. First, the 

climacogram is graphically inspected in order to choose the most suitable form of the 

climacogram-models given (Table 9.1). This is shown in Figure 9.1. It is evident that the 

behaviour of the variances switches over larger scales, which makes a type FHK-CD 

climacogram (Equation (9)) more suitable. Next, in order to account for estimation bias, 

initial theoretical values of the 7 parameters are assumed, namely of 𝜇 (mm/h), 𝜆1 

(mm2/h2), 𝜆2 (mm2/h2), 𝛼 (h), 𝐻, 𝜃, and 𝜉. Once the parameters are assumed, the theoretical 

values of the variance, the probability wet and the empirical quantiles are known for all 

scales by virtue of equations shown in Table 9.1. The empirical properties at each 

timescale, i.e. the variance, the probability wet and the return periods of the non-zero 

rainfall values, are also estimated. The transition time scale 𝑘∗ is chosen as 96 h (= 4 d) by 

inspection of the probability wet, in Figure 9.2. 



 
Figure 9.1 Fitting of the ombrian model to the empirical estimates of the climacogram (Equation 

(9)) and the climacospectrum for Bologna. The empirical estimates for time scales smaller than or 

greater than 1000 h (~42 d) are taken from the hourly and daily series, respectively. Note that the 

climacospectrum is defined through the climacogram as 𝜓(𝑘) ≔ 𝑘(𝛾(𝑘) − 𝛾(2𝑘)) ln 2⁄  and is 

most appropriate for visualization of the process behaviour at small time scales. Source: 

Koutsoyiannis (2021).  

 

 The model is fitted employing four different optimization procedures with the latter 

three including all the model parameters, i.e. with optimization targeting in minimizing the 

(a) error in the climacogram, (b) error in the probability wet, (c) error in the rainfall 

quantiles and (c) combined error in all previous. Optimization scheme (a), yielding the four 

parameters of the climacogram model, uses Equation (38) with all scales given equal 

weight, 𝑤𝛾(𝑘) = 1. Optimization scheme (b) is based on Equation (39), assuming equal 

weights for all scales, 𝑤𝑃(𝑘) = 1, whereas optimization scheme (c) is based on Equation 

(40). In this case, using equal weights would result to a model fit biased in favour of lower 

return periods, which are more frequent in our dataset. To improve the fit to the higher 

return periods, which are typically the ones of interest, we use a weighting function 

increasing with return period, i.e. 𝑤𝑥(𝑘) ∝ √𝑇. Optimization scheme (d) is done using 



Equation (41) with weights 𝑎𝛾 = 0.1, 𝑎𝑃 = 100, 𝑎𝑥 = 1. (Note that the chosen high value of 

𝑎𝑃 counterbalances the fact that 𝐸𝑃 is much smaller than the other error components.)  

 
Figure 9.2 Fitting of the ombrian model (Equations (21) and (24)) to the empirical estimates of 

probability wet and dry of Bologna. Source: Koutsoyiannis (2021). 

 

Results from the optimization are shown in Table 9.2. It is interesting to note the 

high 𝐻 parameters resulting from all optimization schemes, which yield considerable bias 

in the climacogram estimation (Figure 9.1). The ombrian model resulting from the 

combined optimization is shown in Figure 9.3, along with the hourly and daily empirical 

estimates. In this plot, the bias-adjusted results are plotted in order to be comparable to the 

empirical estimates; therefore, the true theoretical intensity is higher for scales 𝑘 > 1000 h 

or about 40 d. Overall, the power of the ombrian model is impressive over the whole range 

of scales spanning 5 orders of magnitude, i.e. from 1 h to 16 years (Figure 9.3). 



Table 9.2 Parameters of the ombrian model of Bologna from the four optimization schemes (table 

adapted from Koutsoyiannis, 2021).  

Optimization 

scheme 

𝜇 

(mm/h) 

𝜆1 

(mm2/h2) 

𝜆2  

(mm2/h2) 

𝛼  

(h) 

𝐻  

(-) 

𝜃  

(-) 

𝜉  

(-) 

(a) Climacogram  -  0.000864  1.51  16.4  0.95  -  -  

(b) Probability wet  0.0773  0.00775  0.836  14.15  0.95  0.795  0.121  

(c) Quantiles  0.0788  0.00407  1.60  7.70  0.93  0.693  0.125  

(d) Combined  0.0823  0.00110  1.43  8.74  0.92  0.787  0.121  

 
Figure 9.3 Ombrian curves derived from the ombrian model for Bologna for time scales spanning 

5 orders of magnitude (1 h to 16 years = 140256 h). The empirical points are estimated from order 

statistics. The ombrian model results are plotted for bias-adapted variance in order to be comparable 

with empirical plots (thus, for 𝑘 > 1000 h or about 40 d, the true intensity resulting from the model 

is higher than what is shown in the graph). The abbreviation “y” stands for year. Source: 

Koutsoyiannis (2021). 

9.6 Discussion and further aspects 

This Section provides an overview of wider research topics within the ombrian modelling 

framework in light of recent advances in stochastic modelling. Detailed information on 

these topics can be found in Koutsoyiannis (2021). 



9.6.1. On the use of all data 

It is strongly suggested within the ombrian model approach to exploit and combine all 

available sources of information, particularly when these are available at different time 

scales. This approach was first proposed in Koutsoyiannis et al. (1998) on the basis that 

daily records are usually of higher reliability compared to the shorter sub-hourly series, 

which are also subjected to larger measurement uncertainty. The exploitation of 

information from different metering devices is exemplified by the case study of rainfall in 

Bologna. 

Another basic premise of the proposed methodology is to infer the rainfall 

properties from the whole parent timeseries. This approach may seem at odds with the 

common practice of using block maxima or a certain amount of values over threshold, yet 

it is sounder in terms of retained information on the process properties. Series of extremes 

tend to hide the persistence of the parent process (Iliopoulou and Koutsoyiannis, 2019), 

while discarding the body of the distribution, in favour of modelling its tails, has been 

criticized as wasteful usage of data (Volpi et al., 2019). Current approaches promote the 

use of the parent process as the natural basis for estimating design quantities in 

hydrological design. Issues of estimation uncertainty related to classic estimators of higher-

order properties (Lombardo et al., 2014) may also be resolved by reliable higher-order 

estimators of the form of knowable moments (Koutsoyiannis, 2019). It is however often 

the case that only a part of the series is available for some records, for instance the annual 

maxima. In such cases, the EV2 distribution which corresponds to a Pareto tail, should be 

used instead for fitting the data. Yet the final model should again be formulated for the 

Pareto distribution (Koutsoyiannis et al., 1998). 

9.6.2 On the estimation of the tail-index 

The tail index of the process is one of the most important properties of extremes and also 

the hardest to estimate from data. In the Bologna case study, the timeseries was long and 

could support the estimation from the data, yet this is not the case for typical record lengths 

< 50 years. In such record lengths, the Gumbel distribution may be falsely supported from 

the data, even when the true distribution is of the EV2 type (Koutsoyiannis, 2004b, 2004a). 

This may lead to severe underestimation of risk. It is therefore useful to seek longer 

timeseries from using data from other stations in the region, or even refer to published 

results from global or large-scale analyses (Koutsoyiannis, 2004b, Papalexiou and 

Koutsoyiannis, 2013). The latter analyses provided global-scale evidence of the prevalence 

of a positive shape parameter, with a mean value of 𝜉 = 0.15 and 0.114, respectively. It 

is also stressed that estimates yielding negative shape parameter, which correspond to a 

process bounded from above, should be discarded as physically unrealistic, and instead 

replaced by either the Gumbel distribution, or preferably an EV2 type with a regionally-

estimated shape parameter. 

9.6.3 On the use of a Hershfield coefficient 

The study of a statistical property of a timeseries over multiple scales involves some 

procedure of aggregation of its values for different scales. Typically, the choice of the 



starting point for the aggregation is arbitrary, and a change thereof likely results to a 

different estimate. When studying extremes, it is a common hydrological practice, to either 

take the maximum estimate resulting from all possible positions of the starting point, or 

‘inflate’ the given estimate by a specific factor, known as the Hershfield coefficient 

(Hershfield and Wilson, 1957). This practice aims to safer estimates from an engineering 

point of view. However, it is noted here that when the behaviour of a process is studied in 

stochastic terms, all realizations are stochastically equivalent and there is no theoretical 

basis to ‘correct’ them. In fact, by correcting the series, we distort its stochastic properties 

by studying, instead of the behaviour of 𝑥𝜏
(𝑘), the behaviour of 𝑦𝜏

(𝑘): = max
𝑗

(𝑥𝜏+𝑗
(𝑘)

 , 𝑗 =

0, … 𝑘 − 1), which is a different stochastic process. 

9.6.4 Area-reduction of point ombrian curves 

So far, the estimation of ombrian curves has been presented for the case of point rainfall. 

However, many hydrological applications, especially the estimation of the streamflow 

process, require estimates of areal rainfall. To account for the spatial variability of point 

rainfall within a generally homogeneous climatic region, hydrologists have long used the 

concept of area-reduction factors (ARF). An ARF is defined as the ratio of areally averaged 

precipitation depth over a certain area 𝐴 for a specified return period 𝑇 and time scale 𝑘 to 

the precipitation depth over any point of the area (assumed to be climatically 

homogeneous) for the same return period and time scale (Flammini et al., 2022). To 

estimate this ratio, samples of both areal precipitation and point precipitation are needed 

for several scales and return periods. Moreover, according to this definition, samples of 

areal precipitation should be derived and stochastically analysed for the entire period, 

rather than calculating ARF values for isolated events, as sometimes performed in the 

literature. (A comprehensive review on other empirical approaches and definitions of the 

ARF concept is provided by Svensson and Jones, 2010 and Flammini et al., 2022.) 

 Extensive investigation on ARF were conducted by the UK by NERC (1975) which 

resulted to tabulated values of ARF for a wide range of areas (1 to 30 000 km2) and time 

scales (1 min to 25 days), ignoring the effect of the return period. Koutsoyiannis and 

Xanthopoulos (1999, p54) fitted the following relationship to these values: 

where A is the area given in km2 and k is in h. This relationship has been validated by 

results from the US by Hershfield and Wilson (1957) for the eastern USA and from the 

U.S. Weather Bureau (1960) for the western USA. Therefore, it could support ARF 

estimation in other regions as well. 

9.7 Conclusions 

Ombrian curves widely known under the misnomer IDF curves are central design tools for 

a majority of hydrological and engineering tasks. Most of their applications have been 

based on empirical evidence and hydrological experience. Yet empirically-derived curves 

𝜑 = max (0.25,1 −
0.048𝐴0.36−0.01 𝑙𝑛 𝐴

𝑘0.35
) (46) 



entail prominent theoretical inconsistencies and cannot support simulation beyond the 

range of observed scales. This Chapter presented the traditional tool of ombrian curves and 

outlined a methodology to traverse their limitations toward building consistent and more 

powerful stochastic models of rainfall intensity, i.e. ombrian models. Going from ombrian 

curves to models requires understanding the assumptions that are implicit in traditional 

curves and revisiting thereof through stochastic modelling of the parent process.  

Two modelling versions are provided; a simplified relationship valid for small-

scales, and an all-scale ombrian model, i.e., covering all the range of available scales. 

Particular emphasis is devoted to the fitting procedure in which issues of bias and data 

uncertainty are discussed and addressed. It is shown how to account for the effect of 

dependence-induced bias and further how to combine information from multiple data 

sources. The entire methodology is illustrated by the case study of rainfall in Bologna, 

which also stands as a proof of concept of the exceptional performance of the ombrian 

model from hourly to 16-years scale. 

Advancing empirically-derived ombrian curves to theoretically-consistent ombrian 

models, allows the user to address bias and estimation uncertainty, extrapolate results to 

longer timescales and perform simulation for complex hydrological systems. These 

theoretical and practical gains are manifold, while the operational character of traditional 

ombrian curves is preserved.  
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