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Abstract. A new method is proposed for decomposing covariance matrices that appear in the 

parameter estimation phase of all multivariate stochastic models in hydrology. This method 

applies not only to positive definite covariance matrices (as do the typical methods of the 

literature) but to indefinite matrices, too, that often appear in stochastic hydrology. It is also 

appropriate for preserving the skewness coefficients of the model variables as it accounts for 

the resulting coefficients of skewness of the auxiliary (noise) variables used by the stochastic 

model, given that the latter coefficients are controlled by the decomposed matrix. The method 

is formulated in an optimization framework with the objective function being composed of 

three components aiming at (a) complete preservation of the variances of variables (b) optimal 

approximation of the covariances of variables, in case that complete preservation is not 

feasible due to inconsistent (i.e., not positive definite) structure of the covariance matrix, and 

(c) preservation of the skewness coefficients of the model variables by keeping the skewness 

of the auxiliary variables as low as possible. Analytical expressions of the derivatives of this 

objective function are derived, which allow the development of an effective nonlinear 

optimization algorithm using the Steepest Descent or the Conjugate Gradient methods. The 

method is illustrated and explored through a real-world application, which indicates a very 

satisfactory performance of the method. 
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1. Introduction 

 In the parameter estimation phase of all multivariate models of stochastic hydrology we 

confront the problem of decomposing  a covariance matrix c into another matrix b such as c = 

b bT (also known as “taking the square root” of c). It is well known that this problem has an 

infinite number of solutions when c is positive definite and no (real) solution otherwise. In the 

era of the first development of the multivariate stochastic models in hydrology, Matalas and 

Wallis [1971] (see also Matalas and Wallis [1976]) first pointed out that multivariate 

stochastic models in hydrology may be inconsistent in the sense that their covariance matrix c, 

estimated by the historical hydrological data, may not be positive definite; in that case the 

“square root matrix” b, which is necessary to express the model itself, does not exist. As it 

will be explained in section 2 below, such inconsistent matrices are encountered either when 

only a subset of the covariances among related variables are explicitly modeled, or when 

missing data affect the parameter estimation. In real world applications, such situations are 

not infrequent (see Grygier and Stedinger, p. 31, and section 5 below). Interestingly, Slack 

[1973] in his article with the emphatic title “I Would If I Could”, showed that multivariate 

synthetic hydrological series may lead to inconsistent (i.e., indefinite) covariance matrix c, 

even if those series were the output of a consistent and simple stochastic model (such as the 

bivariate Markovian model).  

 Hydrologists have not hesitated to provide approximate solutions in cases of 

inconsistent matrices. Various approximate techniques were presented in several works which 

could be titled “I Could If I Should”. Among them are those proposed by Mejía and Millán 

[1974] (also quoted by Bras and Rodriguez-Iturbe [1985, p. 98]), Grygier and Stedinger 

[1990, p. 31-33], Koutsoyiannis [1992], and Koutsoyiannis and Manetas [1996]. These 

techniques are rather empirical and result in more or less significant alteration of the 

covariance matrix c. A more theoretical approach was devised by Rasmussem et al. [1996], 
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who suggested determination of b by numerical constrained optimization, where the objective 

function is the squared difference between the observed covariance of the data and that 

produced by the estimated model, and the constraint is the requirement for a positive definite 

matrix c.  This method was formulated for a two-site case (i.e. for a matrix c with size 2 × 2); 

in this case it is convenient to express the positive-definiteness constraint analytically, but it 

may be difficult to expand to higher dimensional problems.  

Seeking for a more generalized theoretical basis for remedying inconsistent covariance 

matrices, we will assume that, whatever the dimensionality of the problem is, there exists an 

optimal matrix b, that results in the least significant alteration of c, or the best approximation 

of the original c.  Then, the questions arise: (a) How we can objectively quantify the degree of 

approximation, and (b) How we can search systematically to find the optimal solution.  

 In case of a consistent (i.e., positive definite) covariance matrix c there exist two well 

known algorithms for deriving two different solutions b (see. e.g., Bras and Rodriguez-Iturbe 

[1985, p. 96]). The first and simpler algorithm, known as triangular or Cholesky 

decomposition, results in a lower triangular b. The second, known as singular value 

decomposition, results in a full b using the eigenvalues and eigenvectors of c. However, since 

it is known that there exists an infinite number of solutions b, the question arises whether 

there exists an optimal solution, possibly different from these two. The answer to this question 

would be negative if we had no other concern apart from the determination of b. In that case, 

the computationally simpler lower triangular b is the most preferable. However, as we will 

see, there are cases where other concerns must be considered and the answer to this question 

becomes positive. Then, the subsequent questions are (a) How we can quantify this 

optimality, and (b) How we can search systematically to find the optimal solution. Again, we 

have about the same questions for consistent matrices as in the case of inconsistent matrices. 

This enables a unique treatment of the decomposition problem for consistent or inconsistent 

matrices. 
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 Another frequent problem in multivariate stochastic models is encountered when we 

attempt to preserve the coefficients of skewness of the model variables. The auxiliary 

variables associated with the stochastic model, also known as noise variables or innovation 

variables, may potentially have very high coefficients of skewness that are practically 

unachievable. This was first reported by Todini [1980], who encountered a coefficient of 

skewness greater than 30 and was not in position to preserve it. Koutsoyiannis and Manetas 

[1996] related the problem of high skewness with that of the determination of the matrix b, 

since the skewness coefficients are proportional to the inverse of matrix b(3), that is the matrix 

whose elements are the cubes of b. The close relation of these two problems can contribute to 

the quantification of the optimality of matrix b in case of either consistent or inconsistent c. 

That is, we can set the requirement that the matrix b must result in as small coefficient of 

skewness of the auxiliary variables as possible.  

 The purpose of this study is the development of a systematic method to remedy all the 

above described parameter estimation problems for both consistent and inconsistent 

covariance matrices, also answering the questions set above. All problems are resolved in a 

unique manner at the grounds of an optimization framework. A single objective function 

incorporating all concerns about the matrix b is proposed and a procedure is developed for 

finding the optimal b.  This procedure is based on the nonlinear optimization theory and 

utilizes both the objective function and its partial derivatives with respect to b, which are 

analytically derived in this paper. 

 The paper is organized in six sections. Section 2 is devoted to the clarification of 

notation and some introductory aspects of a generalized stochastic model that constitutes the 

basis for further analysis. In section 3 we formulate the conditions that determine an optimal 

matrix b and develop the objective function. In section 4 we develop the numerical procedure 

for determining the optimal b. In section 5 we present a case study to illustrate the method 

and investigate some practical issues. Section 6 is devoted to conclusions and discussion. In 
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addition, there is an appendix where we have placed an essential part of the paper, i.e., the 

analytical derivation of the derivatives of the objective function.  

2. The stochastic model 

 In the following analysis we will consider a general type of linear model which is 

typical in stochastic hydrology, that is 

 Y = a Z + b V (1) 

where Y is a vector of n stochastic variables to be generated, Z is a vector of m stochastic 

variables with known values (n and m may be equal or not), V is a vector of n random variates 

with unit variance, mutually independent, and also independent with Z (often called noise, 

innovation, or auxiliary variables), and a and b are matrices of coefficients with sizes n × m 

and m × m, respectively. (In this paper we use uppercase letters for random variables and 

lowercase letters for values of variables or coefficients; also we use bold letters for matrices 

or vectors and regular letters for scalars). Generally, the elements of Y represent specific 

hydrologic processes (rainfall, runoff, etc.) at some locations specified by an index l = 1, …, 

n, at a specific time period, whereas the elements of Z represent the same or other related 

hydrologic processes at the same or other locations, generally at a previous time period. The 

variables Y, Z and V are not necessarily standardized to have zero mean and unit variance 

although this is the case in most common models; however, V have by definition unit 

variance. Also, the variables Y, Z and V are not necessarily Gaussian. 

 For example, in the case of the stationary AR(1) model we set Y ≡ Xt and Z ≡ Xt – 1, 

where Xt represents hydrologic variables at n sites at the time period (typically year) t and (1) 

writes 

 Xt = a Xt – 1 + b Vt (2) 
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Similarly, in the case of the seasonal AR(1) (or PAR(1)) model (1) writes  

 Xs = as Xs – 1 + bs Vs (3) 

where now the matrices of coefficients depend on the season (typically month) s. In both 

these examples the vectors Y and Z have the same dimension n = m. In case of the AR(2) we 

have Y ≡ Xt and Z ≡ [(Xt – 1)T, (Xt – 2)T]T (where the exponent T denotes the transpose of a 

matrix or vector), so that m = 2 n. Similar is the situation for the PAR(2) model. In another 

example, the Valencia and Schaake’s [1972, 1973] disaggregation model, Y represents the n 

= 12 m monthly hydrologic variables at m sites whereas Z represents the m annual values at 

the same locations. Some other disaggregation models can be also reduced in the form (1) 

after appropriate assignments of the variables Y and Z. 

The model parameters a and b are typically determined by the moment estimators that 

are  

 a = Cov[Y, Z] {Cov[Z, Z]}–1 (4) 

 b bT = Cov[Y, Y] – a Cov[Z, Z] aT (5) 

where Cov[Ξ, Ψ] denotes the covariance matrix of any two random vectors Ξ and Ψ, i.e., 

Cov[Ξ, Ψ] := E{(Ξ – E[Ξ]) (ΨΤ – E[Ψ]Τ)} with E[ ] denoting expected value (the symbol := 

stands for equality by definition). These equations are direct generalizations for the model (1) 

of the equations of the AR and PAR models given by Matalas and Wallis [1976, p. 63], Salas 

et al. [1988, p. 381], Salas [1993, p. 19.31], and Koutsoyiannis and Manetas [1996], among 

others. 

 Another group of model parameters are the moments of the auxiliary variables V. The 

first moments (means) are directly obtained from (1) by taking expected values, i.e., 

 E[V] =b –1 {E[Y] – a E[Z]} (6) 
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The variances are by definition 1, i.e., 

 Var[V] = [1, …, 1]T (7) 

The third moments are obtained by cubing both sides of (1), where previously we have 

subtracted the means, and then taking expected values. Observing that, because of the 

independence of Z and V, joint third order terms of (Zk – E[Zk]) and (Vl − E[Vl]) have zero 

expected values, and similarly, because of the mutual independence of V, joint third order 

terms of (Vk – E[Vk]) and (Vl − E[Vl]) also have zero expected values, we get 

 µ3[V] = ( )b(3)
–1

 {µ3[Υ] – µ3[a Z]} (8) 

where µ3[Ξ] denotes the third central moments of any random vector Ξ, i.e., µ3[Ξ] := 

E{(Ξ − E[Ξ])3} and b(3) denotes the matrix whose elements are the cubes of b. (Throughout 

this paper we will extend this notation, i.e., u(k) for any matrix or vector u and any power k). 

Equation (8) is a generalization of those given by Matalas and Wallis [1976, p. 64], Todini 

[1980], and Koutsoyiannis and Manetas [1996]. Moments of order greater than three are not 

used nor they can be estimated in a similar manner. 

 The set of equations (4) to (8) determine completely the model parameters with an 

exception for (5), which does not estimate the parameter matrix b but the product b bT. This 

has to be decomposed, as it will be discussed in the next section. Generally, all parameter 

estimation equations involve only moments of the original variables Y and Z, either marginal 

of order 1 to 3, or joint of order 2. There is an exception in (8), which involves third moments 

of a linear combination of Zk (i.e., a Z) which cannot be estimated in terms of the marginal 

third moments of Zk (in fact, third order joint moments of Zk are involved, which are 

impractical to use). Thus, the solution is to estimate µ3[a Z] from the available data for Z after 

estimating a and performing the linear transformation a Z. However, this is an inconvenient 
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situation that can be avoided only if each row of a contains only one non-zero element (for m 

≤ n), in which case (8) reduces to  

 µ3[V] = ( )b(3)
–1

 {µ3[Υ] – a(3) µ3[Z]} (9) 

Apparently, (4) is not appropriate to construct such an a (i.e., with one non-zero element in 

each row), and therefore it must be replaced by a simplified form so that, if aij is the only non-

zero element for row i, then 

 aik = 
⎩⎪
⎨
⎪⎧Cov[Yi, Zj] / Var[Zj] k = j

           0 k ≠ j
 (10) 

As a consequence, covariances among Y and Z apart from Cov[Yi, Zj] are not preserved in 

this case. All other parameter estimation equations are still valid in their form written above 

with (8) replaced by its simplified form (9). This special case is met, for example, in the so 

called contemporaneous AR(1) and contemporaneous PAR(1) model [Matalas and Wallis, 

1976, p. 63; Salas, 1993, p. 19.31]. In both these models a is diagonal; for example in the 

latter model 

 a = diag (Cov[X s
1 , X s – 1

1 ] / Var[X s – 1
1 ], …, Cov[X s

n , X s – 1
n ] / Var[X s – 1

n ]) (11) 

 Having expressed all basic equations for parameter estimation, we can return to the 

discussion of the introduction (section 1) for the situations leading to inconsistent matrices c = 

b bT. We must emphasize that the model (1) with parameter estimators (4) and (5) and 

complete data sets for estimation, always results in positive definite, i.e. consistent, c.  The 

only cases in which inconsistencies may appear are (a) the trivial case with one series of equal 

values (resulting in a covariance matrix column with all zeroes); (b) when different items of 

the covariance matrices are estimated using records of different lengths due to missing data; 

and (c) when a simplified form of the matrix a is adopted, such as in (10) (instead of the 

complete form (4)). To the case (b) we must incorporate a rather usual practice followed in 
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AR models (e.g., when Y ≡ Xt and Z ≡ Xt – 1), which may cause inconsistencies even in case 

of using the complete form of a and having no missing data: This occurs when the 

contemporaneous covariances matrices (e.g. Cov [Xt, Xt]) are estimated using the complete 

series of length k whereas lagged covariance matrices (e.g. Cov [Xt, Xt – 1]) are estimated 

using (unavoidably) smaller lengths (e.g., k – 1). 

 Given all above equations for the model parameters we will focus on the estimation of b 

which also affects both E[V] and µ3[V], as it follows from (6)-(9). 

3. Formulation of the conditions determining an optimal matrix b 

 As stated in the introduction, the purpose of this paper is the quantification of the 

performance of the parameter matrix b through an appropriate objective function that 

incorporates all concerns about that matrix. Given that objective function we can then develop 

an algorithm to find an optimal b. 

 As an initial step for a more convenient formulation of the method for determining an 

optimal matrix b we perform a standardization of b and the other matrices and vectors 

associated with it. We call c the known right hand term of (5), i.e.,  

 c := Cov[Y, Y] – a Cov[Z, Z] aT (12) 

The matrix c is in fact the variance-covariance matrix of the vector Y – a Z, and thus all its 

diagonal elements are positive (they represents the variances of the vector components). Thus, 

we can standardize c using the diagonal matrix 

 h := diag( )1 / c11, …,  1 / cnn  (13) 

so that  

 c΄ := h c h (14) 
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has all its diagonal elements equal to 1 and the off-diagonal elements between –1 and 1 (The 

off-diagonal elements may slightly violate this rule if a is constructed by (10) or (11) instead 

of (4)). If we define 

 b΄ := h b (15) 

then it is easily shown that (5) becomes  

 b´ b´T = c΄  (16) 

and if we also define the vectors 

 φ := h(3) {µ3[Υ] – µ3[a Z]} (17) 

 ξ := µ3[V] (18) 

then (8) becomes 

 ξ = (b´(3))–1 φ (19) 

 The matrices h and c´ and the vector φ are known whereas b΄ and ξ have to be 

determined; specifically ξ depends on b΄. Equations (16) and (19) constitute the basis for the 

proposed method. Since (16) does not always have a real solution we set  

 d := b´ b´T – c΄ (20) 

and demand that all elements of d be as close to zero as possible. This requirement can be 

expressed mathematically as  

 minimize     ||d||2 := ∑
i = 1

n
 ∑
j = 1

n
 d2

ij  (21) 

Here we have used the notation ||d|| for the norm, as if d were a vector rather than a matrix. (If 

it were a vector then ||d|| would be its Euclidean or standard norm; see, e.g., Marlow [1993, p. 
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59]). We have used the square of this norm ||d||2, instead of ||d||, for two reasons: first because 

the computations are simpler, as we will see in the next section, and second, because it was 

found that the convergence of the optimization procedure is faster for ||d||2 rather than for ||d||. 

 In addition, we must set a restriction that all diagonal elements of d should be exactly 

zero. To justify this requirement we observe that if the diagonal elements of d are zero, then 

all diagonal elements of b bT will equal those of c. In turn, this will result in preservation of 

the diagonal elements of Cov[Y, Y] (as implied from (5) and (12)), i.e., in preservation of the 

variances of all elements of Y. The preservation of the variances must have priority against 

that of covariances because the former is related to the preservation of the marginal 

distribution functions of the components of Y. To express mathematically this requirement we 

introduce the diagonal matrix 

 d* := diag(d11, …, dnn) (22) 

and demand that 

 ||d*||2 = 0 (23) 

 Another restriction arises when we consider the preservation of the coefficients of 

skewness of Y. The coefficients of skewness of V (i.e., ξ) that preserve the coefficients of 

skewness of Y are those obtained by (19). However, (19) may result in arbitrary high 

elements of ξ if no relevant provision for b is sought. Nevertheless, in the model application 

phase (i.e. the generation of synthetic data), an arbitrary high coefficient of skewness is hardly 

achievable. Specifically, it is well known that in a finite sample of size k the coefficient of 

skewness is bounded [Wallis et al., 1974; Kirby, 1974; Todini, 1980] between –ξub and ξub, 

where 

 ξub = 
k – 2
k – 1

 ≈ k (24) 
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In particular, a series of generated values vr (r = 1, …, k) will have skewness ±ξub only if all 

but one values of the series are equal. Apparently, this is not an accepted arrangement of the 

generated series, and thus an acceptable coefficient of skewness ξacc must be much less than 

ξub (e.g., ξacc = 0.5 ξub; for k = 1000, ξacc = 0.5 × 10000.5 ≈ 16). Consequently, we must set the 

restriction that all n auxiliary variables Vi (i = 1, …, n) have coefficients of skewness less than 

ξacc, i.e., 

 max {|ξi|, i = 1, …, n} ≤ ξacc (25) 

 The handling of (25) in an optimization problem is not mathematically convenient, 

especially when we wish to calculate derivatives, as is the case in the procedure that we will 

develop. However, we recall that if 

 ||ξ|| p := 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

∑
i = 1

n
  |ξi| p

1 / p

 (26) 

is the pth norm of ξ, then ||ξ|| p → max {|ξi|, i = 1, …, n}when p → ∞ (see, e.g., Marlow [1993, 

p. 59]). Therefore, (25) can be replaced by 

 ||ξ|| 2
 
p ≤ ξ 2

acc  (27) 

where we have squared the norm as we already did in (21) and (23). To avoid the absolute 

values within the right-hand side of (26) it suffices to use an even p. Specifically, we have 

adopted the value p = 8, which it was numerically proved to be adequately high for ||ξ|| p to 

approach max {|ξi|, i = 1, …, n}.  

 In this formulation, the problem of determining b΄ becomes a constrained optimization 

problem with three elements: (a) the objective function (21) to be minimized, (b) the equality 

constraint (23) and (c) the inequality constraint (27). Note that (27) is related to b΄ through 

(19). In terms of the Lagrangian method, the objective function and the constraints can be 

combined into the unconstrained minimization problem 
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 minimize   θ 2(b΄, λ2, λ3) := ||d(b΄)||2  + λ2 ||d*(b΄)||2 + λ3 ⎝⎜

⎛
⎠⎟
⎞||ξ(b΄)|| 2

 
p – ξ 2

acc   (28) 

where λ2 and λ3 are Lagrangian multipliers for the equality constraint (23) and the inequality 

constraint (27), respectively. A general theoretical framework for solving this problem might 

consist of two steps: In the first step we assume that λ3 = 0 (i.e., ignore the inequality 

constraint) and determine b΄ by minimizing θ 2(b΄, λ2, 0). (This step may be avoided if c΄ is 

positive definite, in which case b΄ can be determined by the typical decomposition methods.) 

If the solution b΄ of this step satisfies (27), then this solution is the optimal one. Otherwise, 

we proceed to the second step, where we perform the optimization of the complete function 

(28) (i.e., with λ3 ≠ 0) to simultaneously determine b΄, λ2 and λ3. For this optimization the 

Kuhn-Tucker optimality conditions (see, e.g., Marlow [1993, p. 271]), must be satisfied. 

 Apparently, due to the complexity of the problem equations, an analytical solution of 

equations is not attainable and a numerical optimization scheme must be established. Initial 

attempt to establish a numerical procedure for (28) (using typical available solvers for 

multivariate constrained optimization) indicated that it is not easy to optimize it 

simultaneously for the parameters b΄ and the Lagrange multipliers. Particularly, it was 

observed that the initially assumed values of the Lagrange multipliers do not advance towards 

an optimal solution but remain almost constant through the consecutive steps of numerical 

optimization. At the same time, the objective function itself has a decreasing trajectory 

through the consecutive steps, owing to the appropriate modification of parameters b΄. This 

indicates that the formulation of the problem in terms of (28) is not effective in practice.  

 A direct alternative is the introduction of penalties for the constraints [e.g., Pierre, 

1986, pp. 21, 333-340]. This alternative is similar with the Lagrangian formulation as it 

combines the objective function and the constraints into a simple unconstrained objective 

function; as we will see, this function can be very similar with (28). The essential difference 

between the two formulations is the fact that in the second method the coefficients λ2 and λ3 

are preset weighting factors of the penalizing terms, no more determined by the optimization 
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procedure. However, given the preliminary numerical results discussed in the previous 

paragraph (i.e., the constancy of coefficients λ through consecutive steps) this difference does 

not have any practical meaning for the problem examined. 

 To formulate the problem in terms of penalty functions, we observe that the equality 

constraint (23) is easily incorporated into the objective function (21) by the addition of the 

penalty term λ2 ||d*||2, where λ2 is assigned a large value so that even a slight departure of 

||d*||2 from zero results in a significant “penalty”. The inequality constraint (27) can be treated 

in several ways, of which the simplest is the addition of the penalty term λ3 ||ξ||
 2
 p into the 

objective function (21), where λ3 is a weighting factor appropriately chosen so that the penalty 

term be small enough when ||ξ||p ≤ ξacc. The resulting objective function in this case is 

 minimize   θ 2(b΄) := 
λ1
n2 ||d(b΄)||2  + 

λ2
 n  ||d

*(b΄)||2 + λ3 ||ξ(b΄)||
 2
 p (29) 

Here, we have divided ||d||2 by n2, the number of elements of d, to convert the total “square 

error” ||d||2 into an average square error for each element of d; similarly we have divided ||d*||2 

by n because d* is diagonal so that the number of nonzero elements is n. The coefficient λ1 in 

the first term of the right-hand side of (29) may be considered equal to 1 unless specified 

different (see the case study in section 5). We observe that (29) is similar with (28) from a 

practical point of view: As discussed before, the theoretical difference that the parameters λ 

are preset constants in (29) has not any practical implication; also the omission in (29) of ξ 2
acc, 

which is a constant, apparently does not affect the minimization process. 

 A reasonable choice for λ2 to ensure that ||d*||2 will be very close to zero (so that 

constraint (23) will hold), is λ2 = 103; this value assigns a weight of the average square error 

of the diagonal elements three orders of magnitude higher than that of the off-diagonal ones. 

For the choice of an appropriate value of λ3 let us assume that an acceptable value of ||d||2 / n2 

(the first term of the right-hand side of (29)) will be of the order of 10–3 (recall that c is 

standardized so that its off-diagonal elements are less than 1) whereas an acceptable value of 



15 

λ3 ||ξ||
 2
 p, as it results from (24) and the subsequent discussion, will be (λ3 k / 4), where k is the 

size of the synthetic record to be generated. Assuming that the acceptable values of the first 

and the third term are of the same order of magnitude, so that both terms have about the same 

significance in the objective function (29), we conclude that λ3 k / 4 ≈ 10–3 or λ3 ≈ 4 × 10–3 / k. 

We may assume that in typical generation problems of stochastic hydrology k does exceed 40, 

so that a maximum value of λ3 must be about 10–4. We may use a smaller value of λ3 (e.g., 

10−5 - 10−6) either if the sample size is of higher order of magnitude or if we wish to give a 

greater importance to the preservation of covariances rather than to that of the coefficients of 

skewness.  

 The establishment of a numerical procedure for minimizing the objective function (29) 

is given in the next section. 

4. Optimization procedure 

 To establish an effective optimization algorithm for (29) we need first to determine the 

partial derivatives of all components of θ2 with respect to the unknown parameters b΄ij. This 

may seem a difficult task to accomplish analytically. However, it is not at all intractable. For 

the convenience of the reader we have placed all calculations of the derivatives in the 

Appendix and we present here only the final results of the calculations, which are very simple. 

In these results, given any scalar a we use the notation  

 
dα
d b΄ := 

⎣⎢
⎢
⎢
⎢
⎢⎡

⎦⎥
⎥
⎥
⎥
⎥⎤

∂α
∂b΄11

∂α
∂b΄12

L
∂α
∂b΄1n

∂α
∂b΄21

∂α
∂b΄22

L
∂α
∂b΄2n

   M   M O   M

∂α
∂b΄n1

∂α
∂b΄n2

L
∂α
∂b΄nn

 (30) 
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for the matrix of its partial derivatives with respect to all b΄ij; this is an extension of the 

notation used for vectors [e.g., Marlow, 1993, p. 208]. 

 As shown in the Appendix, the derivatives of all components of θ2 are  

 
d ||d||2

d b΄  = 4 d b΄  (31) 

 
d ||d*||2

d b΄  = 4 d* b΄  (32) 

 
d ||ξ||

2
p

d b΄  = –6 ||ξ||2 – p
p  w (33) 

where w is a matrix with elements 

 wij := b΄2ij ξj ψi (34) 

and ψ is a vector defined by 

 ψ := [(b´(3))–1]
Τ
 ξ(p – 1) (35) 

 Thus, the required matrix of derivatives of θ2 with respect to the unknown parameters 

b΄ij is 

 
dθ2

db΄ = 
4 λ1
 n2  d b´ + 

4 λ2
 n  d* b´ – 6 λ3 ||ξ||

 2 – p
 p  w (36) 

 It is apparent from the objective function (29) and its derivatives (36) that we have a 

typical nonlinear optimization problem, whose solution can be achieved by iterations, starting 

with an initial matrix b´ [0]. In the lth iteration we start with a known b´ [l] and we find an 

“improved” matrix b´ [l + 1]; we repeat this procedure until the solution converges. Several 

algorithms are known in the literature for advancing from b´ [l] to b´ [l + 1] (see Mays and Tung 

[1996, p. 6.12], among others, who summarize the most common ones). Among them, the 

most suitable for our case are those of the Steepest Descend and Fletcher-Reeves Conjugate 
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Gradient methods. These are chosen for their mathematical simplicity and convenience, and 

their low memory requirements. Specifically, the mathematical formulation of both methods, 

which typically assume a vector arrangement of the unknown parameters, can be directly 

adapted for our case, which uses a matrix arrangement of the unknown parameters. 

Furthermore, the memory requirements are of great importance because in the problem 

examined the number of unknown parameters is large, i.e., n2; the amount of memory 

locations for both chosen methods is of the order of n2 whereas for other methods such as 

quasi-Newton methods would be n4.  

 Both these methods are described by the following common expression, adapted from 

the typical expression given in the literature for vector-arranged variables [e.g., Mays and 

Tung, 1996, p. 6.12; Press et al., 1992, p. 422], 

 b´ [l + 1] = b´ [l] – β [l + 1] 
⎣
⎢
⎡

⎦
⎥
⎤

⎝⎜
⎛

⎠⎟
⎞dθ2

db΄

[l]
  + γ [l] ⎝⎜

⎛
⎠⎟
⎞dθ2

db΄

[l – 1]

 (37) 

where 

 γ [l]  = 

⎩⎪
⎨
⎪⎧

0                  for Steepest Descent method

⎪
⎪
⎪ ⎪⎪⎪ ⎝⎜⎛ ⎠⎟

⎞dθ2

d b΄

[l]

⎪
⎪
⎪ ⎪⎪⎪ 

2

 / 
⎪
⎪
⎪ ⎪⎪⎪ ⎝⎜⎛ ⎠⎟

⎞dθ2

 d b΄

[l – 1]

⎪
⎪
⎪ ⎪⎪⎪ 

2

 for Fletcher-Reeves method
 (38) 

and β [l + 1] is a scalar whose value is obtained by a line search algorithm for each iteration l. 

For l = 0 (first step) the Fletcher-Reeves method cannot be used because (dθ2
 / db΄)[ – 1] is not 

defined and, thus, we must use the Steepest Descent method (i.e., γ [0] = 0). For the other steps, 

the numerical applications have indicated that the Fletcher-Reeves method is faster and thus 

preferable. However, it was observed that in some instances during the iteration procedure the 

Fletcher-Reeves method may become too slow; in such instances the procedure is accelerated 

if we perform one iteration with the Steepest Descent method and then continue again with 

the Fletcher-Reeves method. 
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 What it remains is a procedure to construct an initial matrix b´ [0]. This is not quite 

important because, as demonstrated in the case study below (section 5), the method is very 

fast in the first phase of the iteration procedure. Even if we start with a b´ [0] leading to an 

unrealistically high value of the objective function, this value is dramatically reduced in the 

first few iterations. The general idea for the construction of the initial matrix b´ [0] is to start 

decomposing the matrix c΄ by triangular decomposition, which is the simplest of all 

procedures [Press et al., 1992, p. 97], and occasionally performing some corrections when 

this procedure fails. This will be demonstrated more clearly in the case study below (section 

5). 

5. Case study 

To illustrate the developed method we present a part of a real-world case study. This case 

study aims at the generation of simultaneous monthly rainfall and runoff at three basins 

namely Evinos, Mornos and Yliki, supplying water to Athens, Greece [Nalbantis and 

Koutsoyiannis, 1997]. This constitutes a multivariate generation problem with 6 locations (2 

variables × 3 basins). As a general framework for the generation, the Simple Disaggregation 

Model [Koutsoyiannis and Manetas, 1996] was adopted. Specifically, at a first step the annual 

variables for all locations are generated using a multivariate AR(1) model. Then, the annual 

quantities are disaggregated into monthly ones, using a combination of a multivariate 

contemporaneous seasonal AR(1) (or PAR(1)) model and an accurate adjusting procedure, as 

described by Koutsoyiannis and Manetas [1996]. Here we focus on the PAR(1) model, 

described by (3), which generates the vector of random variables Xs at the six locations for 

each month s, given those of the previous month Xs – 1. The model parameters are given by 

(11), (5), (6), (7), and (9), in which Y and Z must be replaced with Xs and Xs – 1, respectively.  

 In Table 1 we display the sample statistics of the monthly rainfall and runoff data that 

are necessary for estimating the contemporaneous PAR(1) model parameters for subperiod 
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(month) s = 8 (May; note that hydrologic year starts in October). These are the first three 

marginal moments at all locations (represented by the means, standard deviations, and 

coefficients of skewness) and the matrices of cross correlations for all locations for both 

subperiods s = 8 and s – 1 = 7; the autocorrelations among subperiods s = 8 and s – 1 = 7 for 

each location are also needed and given in Table 1. Note that the autocorrelation of rainfall 

was found statistically insignificant and thus the autocorrelation coefficient were set zero; on 

the contrary, the autocorrelation of runoff is significant for all three basins. To increase 

readability and understandability of the data, the form of the statistics given in Table 1 differs 

from that displayed in the equations (e.g., coefficients of skewness instead of third moments; 

matrices of correlation coefficients instead of covariance matrices); the transformation 

between the two forms is direct and given in textbooks.  

 There seems to be nothing strange about the statistics given in Table 1 as the cross-

correlations and autocorrelations are not too high; the skewnesses are not zero and also are not 

too high (they do not exceed 1.75). However, the matrix c of (12) (and c΄ of (14)) is not 

positive definite, and thus there does not exist an exact solution for b (or b΄). Notably, the 

absence of positive definiteness is met in 10 out of 12 cases (months) for the monthly PAR(1) 

model as well as in the annual AR(1) model, in the case study examined. This indicates that 

the problem studied in this paper might be quite frequent in multivariate stochastic simulation 

problems.  

 To start remedying the problem for s = 8 we need an initial solution b΄[0]. To this aim 

we apply the Lane’s [1979] procedure, which is appropriate for positive semidefinite matrices 

(see also Salas et al. [1988, p. 87]; Lane and Frevert [1990, p. V-15]). This procedure derives 

a lower triangular b΄ given the matrix c΄, first calculating the first matrix column, then the 

second, third, etc. When the matrix c΄ is not positive definite (as in our case), at some column 

(in our case at column 5) the procedure assigns all matrix elements equal to zero and, besides, 

the estimated matrix b΄ no longer obeys b΄ b΄T = c΄. Furthermore, a zero column within b΄ is 
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also transferred in b΄(3) so that (b´(3))–1 that appears in (19) does not exist. Thus, the vector of 

the skewness coefficients of the auxiliary variables, ξ, becomes infinite. To avoid this, it 

suffices to set the diagonal element of the column with zero elements equal to some arbitrary 

value b΄min (so that 0 < b΄min < 1). There is no reason to investigate thoroughly what would be 

the most appropriate value of b΄min because this is used to establish an initial solution only; 

this initial solution is then modified by the optimization procedure. Here we have used b΄min = 

0.05 and the derived solution is thereafter referred to as initial solution 0. The elements of b΄ 

for that solution are shown graphically in Figure 1(a). The resulting values of the objective 

function and its three components are shown in Table 2 (where for the sake of readability we 

display the square roots of the components). We observe that for the initial solution 0 the 

maximum coefficient of skewness of the auxiliary variables is extremely high, i.e., maxj(ξj) ≈ 

||ξ|| = 29089.50. Apparently, such skewness cannot be reached in any generated sample. Also, 

we observe that ||d|| is not zero and it could not be so because c΄ is not positive definite; also 

||d*|| is not zero. 

 For comparison we have also determined another initial solution referred to as initial 

solution 0a, and also shown graphically in Figure 1(b). For this solution we have used a more 

complicated procedure outlined by Koutsoyiannis [1992]. This procedure imposes a lower 

limit in each diagonal element of b΄ to avoid extremely high skewness coefficients, assures 

the preservation of the diagonal elements of c΄ (so that ||d*|| ≈ 0), and also attempts to preserve 

the highest cross-correlation coefficient in each matrix row simultaneously reducing the other 

cross-correlation coefficients. As shown in Table 2, the maximum coefficient of skewness of 

the initial solution 0a has been reduced to 18.31, a value quite less than 29089.50 of the initial 

solution 0; ||d*|| is almost zero in the initial solution 0a whereas ||d|| unavoidably remains 

positive.  

 Given the initial solutions 0 and 0a we can directly proceed to the optimization 

procedure described in section 4. To this aim we use the objective function (29) and its 
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derivatives (36) with weights λ1 = 1, λ2 = 103, λ3 = 10–5 as explained in section 3. The 

evolution of the objective function and its three components for the first forty iterations are 

shown in Figure 2 for both initial solutions 0 and 0a. We observe in Figure 2 that the 

unreasonable value of ||ξ|| = 29089.50 of the initial solution 0 reduces rapidly in the first 5-10 

iterations towards more reasonable values. Also the positive value of ||d*|| of the initial 

solution 0 reduces rapidly in the first 4 iterations to a value close to zero. As expected, the 

performance of the evolution of the initial solution 0a seems better than that of the initial 

solution 0 at the same iteration number. However, the finally obtained values of the objective 

function and its components are the same for both initial solutions. This indicates that there is 

no need to use a complicated procedure to obtain an initial solution b΄[0]. It suffices to use the 

simple Lane’s [1979] procedure with the modification that the diagonal elements of b΄ are not 

allowed to take values smaller than b΄min. In the initial solution 0 of this example we assumed 

that b΄min = 0.05; however, we suggest a much higher value, e.g., b΄min = 0.5, to avoid 

unreasonably high initial skewness coefficients and accelerate convergence.  

  The final solutions b΄, referred to as final solutions 1 and 1a, which were obtained by 

the optimization procedure starting with the initial solutions 0 and 0a, respectively, are shown 

graphically in Figure 1(c, d). They are almost indistinguishable but they are not exactly the 

same. The resulting values of the objective function and its components, shown in Table 2, 

are the same for both final solutions 1 and 1a (in a normal computer precision). This may 

mean that there are (at least) two close local minima of the objective function. It may also be 

interpreted differently, that is, both obtained solutions are approximations of a single global 

minimum that cannot be located exactly due to computer precision limitations. Nevertheless, 

the exact theoretical meaning of the nature of the two solutions is not important; what is 

important is that we have one or more reasonable matrices b΄ and other related parameters 

that can be used directly for stochastic simulation. This simulation will preserve the variances 

of the variables because ||d*|| = 0, as well as their coefficients of skewness, because the 
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obtained maxj(ξj) = 5.37 is low enough to be achieved for the auxiliary variables (assuming 

that the synthetic sample size will have length greater than about 50). However, the 

simulation will not preserve exactly the cross-correlation coefficients (since ||d|| = 0.1404 > 

0), but this is an unavoidable consequence of the absence of positive definiteness of c΄. To 

have an indication of how large the errors in preserving these cross-correlation coefficients 

are, we have performed the inverse calculations, i.e., given b΄ we solved (12) for Cov[Y, Y] 

(where Y ≡ Xs) also replacing c with (h–1 b΄ b΄T h–1). The resulting cross-correlation 

coefficients are shown in Table 3 among with their differences from the “correct” values of 

Table 1, as the latter were estimated from the historical data. We observe that errors are 

almost negligible (i.e. within ±0.03).  

 To acquire an indication of how low could ultimately be the error in preserving the 

cross-correlations if we ignore completely the preservation of skewness, we performed 

another optimization setting λ3 = 0 in the objective function. The resulting final solution 2 is 

shown graphically in Figure 1(e) and the relevant values of the objective function and its 

components are shown in Table 2. We observe that the further reduction in ||d|| is not 

impressive (||d|| = 0.1386 against ||d|| = 0.1404 of final solution 1).  

 As a further investigation, we also accessed the ultimate lowest value of the coefficient 

of skewness maxj(ξj) by ignoring the error in preserving cross-covariances. Thus, we 

performed another minimization of the objective function setting λ1 = 0, λ2 = 103, λ3 = 10–5. 

The resulting final solution 3 is shown graphically in Figure 1(f) and the relevant values of the 

objective function and its components are shown in Table 2. Again, the further reduction in 

maxj(ξj) is not impressive (maxj(ξj) = 4.57 against maxj(ξj) = 5.37 of final solution 1).  

 The results of the above investigations indicate that there is no strong conflict between 

the objectives of preserving the coefficient of skewness and the cross-correlation coefficients. 

The same indication is also acquired from Figure 1, where we observe that all final solutions 
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1, 1a, 2, and 3 are similar with each other although they differ significantly from the initial 

solutions 0 and 0a.  

6. Summary, conclusions and discussion 

 A new method is proposed for decomposing covariance matrices that appear in the 

parameter estimation phase of all multivariate stochastic models in hydrology. This method 

applies not only to positive definite covariance matrices (as do the typical methods of the 

literature) but to indefinite matrices, too, that often appear in stochastic hydrology. It is also 

appropriate for preserving the skewness coefficients of the model variables as it accounts for 

the resulting coefficients of skewness of the auxiliary (noise) variables used by the stochastic 

model. The method is formulated in an optimization framework with the objective function 

being composed of three components aiming at (a) complete preservation of the variances of 

variables (b) optimal approximation of the covariances of variables, in case that complete 

preservation is not feasible due to inconsistent (i.e., not positive definite) structure of the 

covariance matrix, and (c) preservation of the skewness coefficients of the model variables by 

keeping the skewness of the auxiliary variables as low as possible. Analytical expressions for 

the derivatives of this objective function are derived, which allow the development of an 

effective nonlinear optimization algorithm using the Steepest Descent or the Conjugate 

Gradient methods.  

 An advantage of the method is its unique formulation, applicable on both positive 

definite or indefinite matrices, and symmetric or skewed distributions of variables. Besides, 

the weighting factors incorporated in the objective function allow for giving more or less 

emphasis to each one of its three components. In case of a consistent (positive definite) 

covariance matrix of variables having symmetric (e.g., Gaussian) distributions, the method 

will result in the triangular decomposition of the matrix, which is the simplest among all 

solutions. If the covariance matrix is indefinite whereas the variables have still symmetric 
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distributions, the method will result in a decomposed (square root) matrix, which corresponds 

to least significant alteration, or the best approximation, of the original covariance matrix. If 

the distributions of variables are skewed, then the method solution (either for consistent or 

inconsistent covariance matrices) will be appropriately modified to simultaneously account 

for avoiding too high coefficients of skewness of the auxiliary variables. 

 The real-world application examined for the sake of illustration and numerical 

exploration of the method indicates its very satisfactory performance both in approaching the 

covariances of an inconsistent matrix and in yielding low coefficients of skewness of the 

auxiliary variables, although the initial coefficients of skewness were extremely and 

unreasonably high. Moreover, it reveals that there is no strong conflict between the objectives 

of preserving the covariances and the coefficients of skewness. Finally, it indicates a stable 

behavior of the optimizing algorithm.  

 The stochastic model that was used as a ground for the development of the method 

(section 2) is generalized so as to represent many of the typical models of the literature. 

However, it does not cover explicitly all possible multivariate models, for example, the 

ARMA and PARMA models [Stedinger et al., 1985; Salas, 1993; among others]. In these 

types of models the problem of decomposing covariance matrices still appears [Salas, 1993, 

pp. 19.29-19.30], and the proposed method may also be used. Some adaptations of the 

equations are needed, mainly those regarding the coefficients of skewness. Generally, the 

method allows of adaptations not only in cases of different types of models but also in 

situations where different conditions arise for the solution matrix. As a simplified example for 

a conditional rearrangement of the method, let us consider the case where the model variable 

of one location has known value (e.g., given as an output of another model). Obviously, this 

implies a linear constraint for the elements of a single row of the decomposed matrix. This 

constrained can be easily incorporated in the optimization framework, the simplest way being 

the appending of a penalty term into the objective function.  
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Appendix: Proof of equations (31)-(33) 

 From (20) we have 

 dkl = ∑
r = 1

n

  b΄kr b΄lr – c΄kl  (A1) 

so that 

 
∂dkl

∂b΄ij
 = ∑

r = 1

n

  b΄kr 
∂b΄lr
∂b΄ij

 + ∑
r = 1

n

  ∂b΄kr

∂b΄ij
 b´lr  (A2) 

Clearly, 

 
∂b΄lr
∂b΄ij

 = δli δrj (A3) 

where 

 δij := 
⎩⎪
⎨
⎪⎧0 i ≠ j

1 i = j
 (A4) 

Therefore, 

 
∂dkl

∂b΄ij
 = ∑

r = 1

n

  b΄kr δli δrj + ∑
r = 1

n

  b´lr δki δrj  (A5) 

which results in  

 
∂dkl

∂b΄ij
 = b΄kj δli + b´lj δki  (A6) 

 The partial derivative of ||d||2 with respect to b´ij will be 

 
∂||d||2

∂b´ij
 = ∑

k = 1

n

  ∑
l = 1

n

 2 dkl 
∂dkl

∂b´ij
 = 2 ∑

k = 1

n

  ∑
l = 1

n

 dkl (b´kj δli + b´lj δki)  (A7) 

or 
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∂||d||2

∂b´ij
 = 2 ∑

k = 1

n

 dki b´kj + 2 ∑
l = 1

n

 dil b´lj  (A8) 

and, because d is symmetric, 

 
∂||d||2

∂b´ij
 = 4 ∑

k = 1

n

  dik b´kj (A9) 

We observe that the sum in the right-hand side of (A9) is the (i, j)th element of the matrix d b 

and, thus, this proves (31).  

 In a similar manner (and also considering (22)), the partial derivative of ||d*||2 with 

respect to b´ij is 

 
∂||d*||2

∂b´ij
 = ∑

k = 1

n

 2 dkk 
∂dkk

∂b´ij
 = 2 ∑

k = 1

n

 dkk (b´kj δki + b´kj δki) = 4 ∑
k = 1

n

 dkk b´kj δki= 4 dii b´ij (A10) 

which proves (32). 

 To determine the partial derivatives of ||ξ|| 2 p we must first find the partial derivatives of 

ξ. We denote 

 g := (b´(3))–1  (A11) 

so that (19) becomes 

 ξ = g φ  (A12) 

Since φ is a vector of constants we have  

 
∂ξ
∂b´ij

 = 
∂g
∂b´ij

 φ  (A13) 

(A11) can be written as  

 g b´(3) = I (A14) 



27 

where I is the identity matrix. Therefore, 

 
∂g
∂b´ij

 b´(3) + g 
∂b´(3)

∂b´ij
 = O  (A15) 

where O is the zero matrix (i.e., with all its elements zero), and thus 

 
∂g
∂b´ij

 = –g 
∂b´(3)

∂b´ij
 (b´(3))–1 = –g 

∂b´(3)

∂b´ij
 g (A16) 

Combining (A13), (A16), and (A12) we get 

 
∂ξ
∂b´ij

 = –g 
∂b´(3)

∂b´ij
 g φ = –g 

∂b´(3)

∂b´ij
 ξ (A17) 

Consequently, 

 
∂ξk

∂b´ij
 = – ∑

r = 1

 n
  ∑

s = 1

 n
 gks 

∂b´3
sr

∂b´ij
 ξr  (A18) 

and since  

 
∂b´3

sr

∂b´ij
 = 3 b´2

sr δsi δrj (A19) 

we get 

 
∂ξk

∂b´ij
 = –3 ∑

r = 1

 n
  ∑

s = 1

 n
 gks b´2

sr δsi δrj ξr (A20) 

or 

 
∂ξk

∂b´ij
 = –3 ∑

r = 1

 n
 gki b´2

ir δrj ξr (A21) 

and finally, 

 
∂ξk

∂b´ij
 = –3 gki b´2

ij ξj (A22) 



28 

 Now we can proceed to the calculation of the derivatives of ||ξ|| 2 p. Assuming that p is 

even (26) writes 

 ||ξ|| 2 p = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

∑
k = 1

n
  ξ p

 
k

2 / p

 (A23) 

so that 

 
∂||ξ|| 2 p

∂b´ij
 = 

2
 p  

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

∑
k = 1

 n
 ξ p

k

2 / p – 1

 
∂

∂b´ij
 ∑
k = 1

 n
 ξ p

k  = 
2
 p  ||ξ||

2 – p 
 p  p ∑

k = 1

 n
 ξ p – 1

k  
∂ξk

∂b´ij
 (A24) 

Combining (A22) and (A24) we get 

 
∂||ξ|| 2 p

∂b´ij
 = –6 ||ξ||2 – p 

 p  b´ij
2 ξj ∑

k = 1

 n
  ξ p – 1

k  gki  (A25) 

whereas combining (A11) and (35) we have 

 ∑
k = 1

 n
  ξ p – 1

k  gki = ψi (A26) 

Also considering (34) we get  

 b´ij
2 ξj ∑

k = 1

 n
  ξ p – 1

k  gki = b´ij
2 ξj ψi = wij  (A27) 

so that, finally,  

 
∂||ξ|| 2 p

∂b´ij
 = –6 ||ξ||2 – p 

 p  wij  (A28) 

which proves (33). 
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Table 1 Sample statistics of the monthly rainfall and runoff data used for the case study for 

subperiods s = 8 (May) and s – 1 = 7 (April) 

Location  i = 1 

(Evinos 

runoff)

2 

(Evinos 

rainfall)

3 

(Mornos 

runoff)

4 

(Mornos 

rainfall)

5 

(Yliki 

runoff) 

6 

(Yliki 

rainfall)

Means        

E[X
 s – 1
 i ]  97.3 111.2  59.8 100.4  20.1  31.5

E[X
 s
 i]  53.1  69.5  43.2  65.3  9.4  19.3

Standard deviations      

StDev[X
 s – 1
 i ]  35.0 57.6 17.4 53.6 10.7 27.1

StDev[X
 s
 i]  20.2 30.8 18.8 26.5 7.2 14.4

Coefficients of skewness      

CS[X
 s – 1
 i ]  0.72 1.04 0.58 1.07 1.06 1.72

CS[X
 s
 i]  0.76 0.89 0.87 0.81 1.53 1.49

Cross-correlation coefficients      

Corr[X
 s – 1
 i , X

 s – 1
 j ] j = 1 1.00 0.76 0.85 0.56 0.22 0.16

 2 0.76 1.00 0.67 0.90 0.30 0.43

 3 0.85 0.67 1.00 0.58 0.69 0.14

 4 0.56 0.90 0.58 1.00 0.37 0.50

 5 0.22 0.30 0.69 0.37 1.00 0.83

 6 0.16 0.43 0.14 0.50 0.83 1.00

Corr[X
 s
 i , X

 s
 j] j = 1 1.00 0.54 0.76 0.53 0.57 0.49

 2 0.54 1.00 0.29 0.81 0.15 0.67

 3 0.76 0.29 1.00 0.20 0.75 0.23

 4 0.53 0.81 0.20 1.00 0.27 0.45

 5 0.57 0.15 0.75 0.27 1.00 0.22

 6 0.49 0.67 0.23 0.45 0.22 1.00

Autocorrelation coefficients      

Corr[X
 s
 i , X

 s – 1
 i ]  0.60 0 0.78 0 0.80 0
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Table 2 Values of the square root of the objective function θ and its three components ||d||, 

||d*||, and ||ξ|| (also, in comparison with maxj(ξj)) for the initial and final solutions of the case 

study examined. 

 Initial 

solution 0 

Initial 

solution 0a 

Final solutions 1 and 

1a – Optimum for the 

combination of ||d|| 

and ||ξ||p (λ1 = 1, 

λ2 = 103, λ3 = 10–5) 

Final solution 2 

Optimum for ||d|| 

(λ1 = 1, λ2 = 103, 

λ3 = 0)  

Final solution 3 

Optimum for ||ξ||p 

(λ1 = 0, λ2 = 103, λ3 

= 10–5) 

||d*|| 0.3238 0.0012 0.0000 0.0000 0.0000 

||d|| 0.3297 0.6394 0.1404 0.1386 0.8136 

||ξ|| 29089.50 18.31 5.50 7.94 4.58 

maxj(ξj) 29089.50 18.31 5.37 7.19 4.57 

θ 4.1806 0.1076 0.0292 0.0231 0.0145 
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Table 3 Cross-correlation coefficients Corr[X
 s
 i, X

 s
 j] resulting from b΄ of the final solution 1a. 

The values in parentheses are the differences from the corresponding values of Table 1. 

 i = 1 2 3 4 5 6 

j = 1 1.00 (0.00) 0.51 (–0.03) 0.77 (0.01) 0.54 (0.01) 0.54 (–0.03) 0.49 (0.00) 

2 0.51 (–0.03) 1.00 (0.00) 0.28 (–0.01) 0.80 (–0.01) 0.17 (0.02) 0.67 (0.00) 

3 0.77 (0.01) 0.28 (–0.01) 1.00 (0.00) 0.20 (0.00) 0.74 (–0.01) 0.23 (0.00) 

4 0.54 (0.01) 0.80 (–0.01) 0.20 (0.00) 1.00 (0.00) 0.26 (–0.01) 0.45 (0.00) 

5 0.54 (–0.03) 0.17 (0.02) 0.74 (–0.01) 0.26 (–0.01) 1.00 (0.00) 0.22 (0.00) 

6 0.49 (0.00) 0.67 (0.00) 0.23 (0.00) 0.45 (0.00) 0.22 (0.00) 1.00 (0.00) 
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