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A historical example on causal (or acausal?) chains

m The assassination of the Austrian Archduke Franz Ferdinand led Austria-Hungary to
declare war on Serbia and triggered World War 1.

m The assassination is related to a mistake of Archduke’s driver (see map).

m Would the World War | break
out if the driver did not do the  [F-ZEE R

mistake? game

Town Hall

m Would the World War Il occur if bt ook L o e e o 1 b _.______,,
World War | did not? T

m Would the current war (or
special military operation) in e
Ukraine occur if World War Il did e

Franz Joseph Street

n Ot ? _,-"‘ c“m\l‘“‘ On the way to the hospital, the driver of Franz Ferdinand’s car
e -3‘ a‘\dge took the wrong way and turned right at the Latin Bridge into Franz
e @" Joseph Street. When the driver realized his error and stopped the
H I I H k H I d - car, Gavrilo Princip appeared and shot the Archduke and Sophie.
. WI Wa r I n U ra I n e e a to They were both fatally injured, and died by 11:30 a.m.

World War IlI?

https://commons.wikimedia.org/wiki/File:Atentado _de Sarajevo en.png
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Unanswered causality questions on another current drama

m  What caused SARS-CoV-2?
o A natural process in animals?
o Alaboratory leak of a constructed virus?
o A planned political/military action?
m  What does SARS-CoV-2 cause?
2 Avariety of dangerous symptoms?
o High or low mortality?
m  What do the COVID vaccines cause?
o Protection from COVID?
0 Less severe symptoms in case of COVID infection?
o Decreased or increased risk for infection, hospitalization and death?
0 Side effects less or more severe than COVID?
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Difficulties in answering
the questions

m The graphs show that some countries with
larger percentage of vaccinated population
against COVID have also larger percentage
of COVID deaths.

m For legibility of the graph, data for only a
few countries are shown.

m The impression is contrary to expectation.

See original graphs at:

https://ourworldindata.org/explorers/coronavirus-data-
explorer?zoomToSelection=true&facet=none&uniformYAxis=0&hideControls=true&Me
tric=Confirmed+deaths&Interval=Cumulative&Relative+to+Population=true&Color+by+
test+positivity=false&country=GRC~TUR~OWID WRL~RUS~*MDA~ARM~SYR~PER

https://ourworldindata.org/explorers/coronavirus-data-
explorer?zoomToSelection=true&facet=none&uniformYAxis=0&hideControls=true&Me
tric=People+fully+vaccinated&Interval=Cumulative&Relative+to+Population=true&Colo

r+by+test+positivity=false&country=GRC*TUR~OWID WRL~RUS~“MDA~ARM~SYR~PER

Cumulative confirmed COVID-19 deaths per million people
Due to varying protocols and challenges in the attribution of the cause of death, the number of confirmed deaths may not accurately represent the
true number of deaths caused by COVID-19.
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Complete macroscopic picture of death vs. vaxx

The graph shows all countries that
have data in the period from 1 May to
24 June 2022 and population >=1 M.

Each point represents one country with
the latest available data.

0.1

(%)

0.01

total_deaths

Notice the positive correlation

between the percentages of vaccinated 0.001

population and COVID deaths. .
Possible interpretations 0.0001

(where “>” means “causes”): ! 10 100

people_fully vaccinated (%)

A COVID vaccination - COVID death
(difficult to support).

5. COVID death - COVID vaccination.
(more plausible as people are frightened by deaths and get vaccinated).

c.  No causality can be detected; data are spurious
(the most plausible of the three).

Data source: https://ourworldindata.org/explorers/coronavirus-data-explorer
(Click on DOWNLOAD and then on Full data (CSV) — All countries)
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Additional macroscopic _

picture—infection vs.
Vaxx

m Positive correlation is also seen
between the number of COVID cases
vs. percentage of COVID vaccination.

m The graph shows the relationship
between cases per 1 million people
(last 7 days) and percentage of
population fully vaccinated across 68
countries as of September 3, 2021

Cases

m [tis from a peer-reviewed paper.

Subramanian, S.V. and Kumar, A., 2021.

Per 1 Million People (Last 7 Days) %

Population Fully Vaccinated (%) #
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COVID and an unfortunate experiment
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m COVID-caused lockdowns

caused the greatest in
history decrease of CO,
emissions.

The global CO, emissions
were over 5% lower in
the first quarter of 2020
than in that of 2019 (IEA,
2020).

However, the increasing
pattern of atmospheric
CO2 concentration, as
measured in Mauna Loa,
did not change.

Graph from Koutsoyiannis and Kundzewicz (2020); see next page.
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Causal relationship between B si
CO, & temperature:

Atmospheric Temperature and CO»:

‘lap\[lq ﬁ (;‘)6\[;” (“hen or egg?”) Hen-Or-Egg Causality?
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Abstract: It is common knowledge that increasing CO, concentration plays a major role in
enhancement of the greenhouse effect and contributes to global warming. The purpose of this
study is to complement the conventional and established theory, that increased CO; concentration

‘ ! | | due to human emissions causes an increase in temperature, by considering the reverse causality.

Since increased temperature causes an increase in CO, concentration, the relationship of atmospheric
CO; and temperature may qualify as belonging to the category of “hen-or-egg” problems, where it is
not always clear which of two interrelated events is the cause and which the effect. We examine the
relationship of global temperature and atmospheric carbon dioxide concentration in monthly time
steps, covering the time interval 1980-2019 during which reliable instrumental measurements are
available. While both causality directions exist, the results of our study support the hypothesis that
the dominant direction is T — CO,. Changes in CO; follow changes in T by about six months on
a monthly scale, or about one year on an annual scale. We attempt to interpret this mechanism by
involving biochemical reactions as at higher temperatures, soil respiration and, hence, CO; emissions,
are increasing.

)

Keywords: temperature; global warming; greenhouse gases; atmospheric CO; concentration

Tldtepov i Gpvic mpdtepov ¥ 7o @ov eyéveto (Which of the two came first, the hen or the egg?).
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Changes in CO, e

—@— AT - AIn[CO,], monthly
== O= AT - AIn[CO,], annual P

follow changes in § oo o ey
global temperature
Auto- and cross-correlograms of the differenced time series of
temperature (UAH) and logarithm of CO, concentration (Mauna Loa)
-48 -36 -24 -12 0 12 24 36 48
Lag (months)
Which is the cause Maximum cross-correlation coefficient (MCCC) and corresponding time lag in months
. Monthly time Annual time series — Annual time series —
and which the effect? series sliding annual window  fixed annual window
Temperature - CO, series MCCC Lag MCCC Lag MCCC Lag
UAH — Mauna Loa 0.47 5 0.66 8 0.52 12
UAH — Barrow 0.31 11 0.70 14 0.59 12
UAH - South Pole 0.37 6 0.54 10 0.38 12
UAH — Global 0.47 6 0.60 11 0.60 12
Graph and table from Koutsoyiannis and CRUTEM4 — Mauna Loa 0.31 5 0.55 10 0.52 12
ez (0200, CRUTEM4 — Global 033 9 0.55 12 0.55 12
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Development and application of a theoretical framework
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Abstract

Causality is a central concept in science, in philosophy and in life. However, reviewing various
approaches to it over the entire knowledge tree, from philosophy to science and to scientific and
technological applications, we locate several problems, which prevent these approaches from
defining sufficient conditions for the existence of causal links. We thus choose to determine
necessary conditions that are operationally useful in identifying or falsifying causality claims. Our
proposed approach is based on stochastics, in which events are replaced by processes. Starting
from the idea of stochastic causal systems, we extend it to the more general concept of hen-or-
egg causality, which includes as special cases the classic causal, and the potentially causal and
anti-causal systems. Theoretical considerations allow the development of an effective algorithm,
applicable to large-scale open systems, which are neither controllable nor repeatable. The
derivation and details of the algorithm are described in this paper, while in a companion paper
we illustrate and showcase the proposed framework with a number of case studies, some of
which are controlled synthetic examples and others real-world ones arising from interesting
scientific problems.

THE ROYAL SOCIETY

PUBLISHING

= |

comoD | 2

\ All Journals v ‘

PROCEEDINGS OF THE ROYAL
SOCIETY A

MATHEMATICAL, PHYSICAL AND ENGINEERING SCIENCES

Research articles
Revisiting causality using stochastics: 2. Applications

Demetris Koutsoyiannis &, Christian Onof, Antonis Christofidis and Zbigniew W. Kundzewicz

Published: 25 May 2022 https://doi.org/10.1098/rspa.2021.0836

an Review history

Abstract

In a companion paper, we develop the theoretical background of a stochastic approach to
causality with the objective of formulating necessary conditions that are operationally useful in
identifying or falsifying causality claims. Starting from the idea of stochastic causal systems, the
approach extends it to the more general concept of hen-or-egg causality, which includes as
special cases the classic causal, and the potentially causal and anti-causal systems. The
framework developed is applicable to large-scale open systems, which are neither controllable
nor repeatable. In this paper, we illustrate and showcase the proposed framework in a number of
case studies. Some of them are controlled synthetic examples and are conducted as a proof of
applicability of the theoretical concept, to test the methodology with a priori known system
properties. Others are real-world studies on interesting scientific problems in geophysics, and in
particular hydrology and climatology.
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Aristotle (384 — 322 BC; Image
source: Visconti, 1817):

David Hume (1711- 1776;
Scottish Enlightenment

that which when present is the philosopher):

cause of something, when
absent we sometimes consider
to be the cause of the contrary.

the concept of a cause is
merely a way we use to
describe regularities.

Plutarch (AD 46 —119; Greek
Middle Platonist philosopher):

First posed the hen or the egg
type of causality as a
philosophical problem:
“Motepov n dpvic mpotepoV 1} TO
wov gyévetro” (MAoutapyog,
HBkA, Zupumnootaka B,
MNpoBAnua I).

Immanuel Kant (1724-1804,
German Enlightenment
philosopher):

(a) causality is understood in
terms of rule-
governedness;

(b) the temporal causal
order is irreversible.
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Theoretical probabilistic approaches to causality

Patrick Suppes (1922 —2014; American philosopher—Stanford Univ.)
Definition: An event B,  [occurring at time t'] is a prima facie cause of the event
A, [occurring at time t] if and only if (i) t’ <, (ii) P(B,r) > O, (iii) P(4¢|B;r) >
P(At) Suppes (1970)
Our note: The definition is not very useful as it almost identifies causality with

dependence: In fact it says that any two events that are neither synchronous
nor independent establish a (prima facie) causal relationship.

David Cox (1924 —2022; British statistician—Oxford)
To the above three conditions of the definition he added a fourth: (iv) there is
no event C.in at time t"' < t' < t such that P(A;|B;1C;11) = P(A¢|B1Cyr1). cox(1992)

Our note: While this addition is certainly a theoretical advance, it is impractical:
One cannot enumerate all events that happened before time t’ and calculate
their related conditional probabilities.
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Applied probabilistic approaches to causality

Clive Granger (1934 — 2009; British-American econometrician—Univ. Nottingham
and Univ. California, San Diego; Nobel in Economics, 2003)

Mostly known for the so-called “Granger causality test”, based on the linear

regression equation yr = 2]_1 ajyr—j+ 2] 1 bjx,_j+ &. If the coefficients b;

are nonzero, the interpretation is that the process xT causes yr. Granger (1969)

Our notes: We find the framework problematic, both formally and logically:

o Formally testing hypotheses in geophysics can be inaccurate (by orders of
magnitude) due to time dependence.

o The test is about prediction, which is fundamentally different from causality.

Judea Pearl (born 1936; Israeli-American computer scientist and philosopher)

He proposed a framework for causality combining probability with graph
theory. Pearl (2009); Pearl et al. (2016)

Our notes: We find the framework problematic, both formally and logically:

o In using conditional probability, the chain rule is used inappropriately.

0 Itis based on the assumption that we already have a causal graph—a way of
identifying causes.

D. Koutsoyiannis, Revisiting causality using stochastics 14



Premises of the developed methodology

Our framework is for open systems (in particular, geophysical systems), in which:

o External influences cannot be controlled or excluded.

o Only a single realization is possible.

o There is dependence in time.

Our framework is not formulated on the basis of events, but of stochastic processes.

It is understood that only necessary conditions of causality can be investigated using
stochastics. The usefulness of this objective lies in its ability:

o to falsify an assumed causality and

0 to add statistical evidence, in an inductive context, for potential causality and its
direction.

The only “hard” requirement kept from previous studies is the time precedence of the
cause from the effect.
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Mathematical representation

m Any two stochastic processes x(t) and y(t) can be related by

y(© = [, 9(Wx(t — hydh + v(t)
where g(h) is the Impulse Response Function (IRF) and v(t) is another process uncorrelated to
x ().
m There exist infinitely many pairs (g(h), v(t)) of which we find the least squares solution—LSS:
that resulting in the min Var[y(t)], or the max explained variance e := 1 — Var[g(t)]/var[z(t)].

m Assuming that the LSS g(h) has been determined, the system (x(t), y(t)) is:

1. potentially causal if g(h) = 0 for any h < 0, while the explained variance is non negligible;

2. potentially anticausal if g(h) = 0 for any h > 0, while the explained variance is non
negligible (this means that the system (y(t), x(t)) is potentially causal);

3. potentially hen-or-egg (HOE) causal if g(h) # 0 for some h > 0 and some h < 0, while the
explained variance is non negligible;

2. noncausal if the explained variance is negligible.

m The framework of causality identification is constructed for case 3, with all other three cases
resulting as special cases.
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lllustration

—e— Potentially causal —A— Potentially anticausal
Of the four —o— Potentially hen-or-egg causal —=— Noncausal
different
cases of
potential &
causality

RF

<0 0 >0
Time lag
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Additional mathematical considerations

We also set additional desiderata for
(a) an adequate time span lh of i (the causal action is not instant);
(b) anonnegative g(h) = 0 for all h € T (replacing x(t) with —x(t) for negative correlation);
(c) a smooth g(h) assured by a constraint E < E,, where E is determined in terms of the

second derivative of g(h) (E = fjooo(g”(h))zdh) and Ej is a positive number.

Although the theoretical framework is formulated in terms of natural (continuous) time, the
estimation of the IRF relies on data in an inductive manner, and data are only available in
discrete time. Conversion of the continuous- to a discrete-time framework results in

Vo = Njt—cJjXe—j + Vs
where the sequence g; can be determined accurately from the function g(h).

Furthermore, any data set is finite and allows only a finite number of g; terms to be estimated.
Therefore, in the applications the summation limits too are replaced by +/, assuming that g; = 0
for |j| > J, where, ] should be chosen much lower than the length of the dataset.

A solver can be used to resolve the constrained optimization problem: The determination of g; is
based on the minimization of var[g(t)] subject to the constraints.
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Application to the temperature — [CO,] problem

Treating the system (7,[CO,]) as potentially HOE Treating the system ([CO], T) as potentially HOE

causal, we conclude that it is potentially causal causal, we conclude that it is potentially anticausal
(mono-directional) with explained variance 31% (counter-directional) with explained variance 23%
0.0007 ——mm —_— 12—
—@— |RF —o— |RF
0.0006 = === Mean 10 - —--- Mean
——————— Median ------- Median
0.0005
8
0.0004
& = 6
0.0003
4
0.0002
0.0001 2
0 : ! 0 e OO OO OO OO OO0 00
-20 -10 0 10 20 10 20
Time lag (months) Time lag (months)

Conclusion: The common perception that increasing [CO,] causes increased T can be excluded as it
violates the necessary condition for this causality direction.
In contrast, the causality direction T - [CO,] is plausible.
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Additional evidence

Cross-correlation function of the causal system
(T,[CO,]) obtained from its IRF and the
autocorrelation function of T.
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Conclusion: The causal system (7,[CO.]) is more consistent to reality than the anticausal system
([CO3], T). This adds evidence that the actual causality direction is T - [CO,].
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More additional
evidence

m For those fearing that our
algorithm may produce
incorrect results, a different
algorithm was additionally used,
whose results are shown in the
graphs on the right.

m  Namely a parametric IRF was
constructed based on alpha
basis functions (4 in upper
graph, just one in lower graph).

m These results confirm that (7,
[CO,]) is potentially causal and
([CO;], T) potentially anticausal.

m This adds evidence that the
causality direction is T = [CO,].
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Conclusions

Causality is a central concept in science, philosophy and life, with very high
economic importance.

Recently causal inference has become an arena of enormous interest.

Yet our review of various approaches to causality over the entire knowledge
tree, from philosophy to science and to scientific, technological and socio-
political application, locates major problems that are unsolved.

Our method posits a more modest objective: To determine necessary (not
sufficient) conditions that are operationally useful in identifying or falsifying
causality claims.

It also replaces events with stochastic processes.

Application of the method to climate suggests that the increase of
temperature potentially causes increased CO, concentration, despite the
common perception for the opposite causality direction, for which the
necessary condition of causality is violated.
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