
How much time does it take to write tests? A case study
A presentation given at EuroPython, Dublin, 13 July 2022

Antonis Christofides, antonis@antonischristofides.com

1. Introduction

There was a URL, http://openmeteo.org/api/tsdata/855/,
where you could get some data. It doesn't work now, be-
cause the application has changed since then and uses differ-
ent URLs now. But at that time, four years ago, that was the
URL, and this is the code that was running behind the
scenes in order to give you the data:

def get(self, request, pk, format=None):

 timeseries = models.Timeseries.objects.get(pk=int(pk))

 self.check_object_permissions(request, timeseries)

 response = HttpResponse(content_type='text/plain')

 pd2hts.write(timeseries.get_data(), response)

 return response

For some time this worked, until eventually a user got an in-
ternal server error. Django emailed the error and traceback
to me. The error was "Timeseries does not exist", and the lo-
cation was the second line above. Diagnosis was trivial, and
for people who have some experience with Django, the fix is
also trivial:

def get(self, request, pk, format=None):

 try:

 timeseries = models.Timeseries.objects.get(pk=int(pk))

 except Timeseries.DoesNotExist:

 raise 404

 self.check_object_permissions(request, timeseries)

 response = HttpResponse(content_type='text/plain')

 pd2hts.write(timeseries.get_data(), response)

 return response

Attentive readers may notice another issue, that "pk" might
not necessarily be an integer, which might cause a
"ValueError". Either this has already been checked else-
where by the time we get here, or we didn't notice it. It
doesn't matter, this code is obsolete anyway. The point I
want to make is that this was a very easy fix. It likely took
less than 5 minutes to diagnose and fix. But we have the rule
that we pretty much always write tests for our fixes.

So we wrote this test:

def test_get_nonexisting_timeseries_data(self):

 response = self.client.get("/api/tsdata/9999999/")

 self.assertEqual(response.status_code, 404)

It looks easy alright. However, those of you who have done
this know the frustration of having to write tests for such a
trivial fix. You really need to do some context switching in
your brain and put it in testing mode. You need to figure out
the details of how to test. Which file is the test going to be
in? Can you add some tests to an existing test case? Or do
you need to add a new test case? Where is it going to inherit
from? Do you need test data? How will you create them? Do
you already have some test data that you can use? How are
you going to import it? And so on. In fact even this test actu-
ally has a tricky decorator that I removed for this presentat-
ion. And actually it is an unusually easy case. In fact I had

assigned it as a first assignment to a programmer who had no
experience writing tests.

Some people will tell me we should write the tests first, run
them and verify they fail, then write the fix, then check that
the tests pass. I agree. But the point is the same. You have a
trivial fix that takes you five minutes, and you might need to
spend 30 minutes or an hour to write the tests, regardless
whether this is before or after the main code. So, for some
years, I have been wondering: Am I spending too much time
writing tests? Am I spending twice as much time writing
tests as writing main code? Am I overdoing it? Am I too
slow because of this?

So I measured it. When I submitted the application for this
talk I hadn't measured yet and I didn't know what the results
would be. I can tell you I was surprised. Things were not
what I expected.

One of the surprises had to do with the example I showed
you. Trying to find such a simple example I searched and
searched and searched the repository history of several
pieces of software. I thought I would find many examples of
trivial fixes where testing would be the hardest part. But, as
you noticed, I ended up showing you some old obsolete
code, because there aren't nearly as many examples as I
thought. Reality is that, even trivial fixes often need some
refactoring if you want to keep the code readable. Even in
this case, which is almost as trivial as it gets, someone could
argue you'd benefit from some refactoring. So although the
diagnosing and the fixing took maybe less than five minutes,
refactoring the code would take another ten perhaps. So now
the amount of time for the test becomes smaller as a per-
centage of the total time, not to mention the fact that you
practically can't refactor the code without good tests.

2. The case study

The software is called Enhydris. It's available at
https://openmeteo.org/. Here is a screenshot:

1

There are meteorological stations on the map, and each sta-
tion makes measurements. If you go to the detail page for a
station, you can see the variables for which it has data:

And you can also find out what it has measured for each
variable:

It's that simple to begin with, although, as it often happens,
the devil is in the details, so you can't rewrite it overnight.

Enhydris is free software, and all the code I'll show you is
available at https://github.com/openmeteo/enhydris.

Now, the question in our case is how to automatically update
the data, how to acquire the data, that is.

Meteorological stations are often installed in remote areas
and they aren't connected to the power network or to the
fixed telephone network. They are usually powered with a
battery and a solar panel, and they have some means of
communication. At the other end of this communication
there's usually a computer, usually with Windows, that runs
some kind of software, usually provided by the manufacturer

of the station, and this periodically downloads the data from
the station and stores it in files.

So we've written accompanying command line software and
we run it on that computer with cron or with Windows
Scheduler. We give it a configuration file that tells it where
the data files are and to which station and time series they
correspond, so that it can upload them. You might not be
able to read the configuration file if it's too small, but it
doesn't really matter; it's in INI format. It specifies the URL
to which the data should be uploaded, with what credentials,
which file contains the data, the correspondence of columns
in the file to time series ids in the database, and some details
about how the file is formatted.

But this way of communication has been changing in the last
few years. More and more often, the data somehow end up
being served by an API.

In some setups there's a specialized computer, the size of an
aDSL router, at the end of the link, and that computer offers
the data with an API. In some other setups it's more or less
the same as the old setup, but the manufacturer's software
that runs on the computer will upload the data to a service
that in turns offer the data with an API. So it's going to be
both more reliable and simpler for users if we just give them
a form where they can configure such API access and have
Enhydris occasionally connect to the API and pull the data,

2

rather than having software that must be installed elsewhere
and push the data to Enhydris.

So, last November I decided to add this feature to Enhydris.
I can show you how it ended up. Station administrators got
this little button which they can press and configure teleme-
try:

Then they get a form:

Different manufacturers have different APIs. So the first
thing you need to do is choose what type of API you have.
So far I've implemented only a single API, which is called
Meteoview2. And in the first form of this wizard you also
tell it some details about how often you want to fetch data
and about the time zone of the data. After that you get forms
that are different for each API. This one first asks you to lo-
gin:

After you login, it finds out what data is available on the API
and asks you to match the data on the API to the time series
that you have defined on Enhydris:

And after you configure all that it's going to work in the
background and keep fetching data from the API. That is
much easier for the user than having to install and configure
the command line program and it's much more reliable.

It doesn't really matter if you don't understand all this
clearly. What matters is that I had a specific problem to
solve, a specific new functionality to develop. And I also had
to write tests for this new functionality.

Now, some people will tell you to use test-driven developm-
ent. Test-driven development has three rules:

• You may not write production code until you have
written a failing unit test.

• You may not write more of a unit test than is suffi-
cient to fail.

• You may not write more production code than is
sufficient to pass the currently failing test.

These are from the excellent book "Clean Code" by Robert
C. Martin, 2009, page 122. The second rule, rephrased says
that the test that you are writing must be the simplest possi-
ble and should test just a single thing.

It's hard to grasp the implications of these three rules until
you follow them. Just try then for a week and you'll see how
different your coding is going to be.

I think that test-driven development is a good idea, and I of-
ten program like this. But not always. The problem is that
test-driven development works when you have a clear idea of
what code you are going to write. But very often when I
program I don't really know how I'm going to approach the
problem. I need to experiment much, and I don't know be-

3

forehand how to break the new functionality into units that I
can test.

In this case, I needed to develop a system that supports many
different APIs. I used the word "driver" here. So I needed to
develop a system where drivers for different APIs could be
added. How would this work? Would a driver be a subclass
of some base class? Would it be a file that offers an entry
point? Would it be a module? What would the base class
look like? What would the module or the entry point look
like? And many more details.

So I thought about it and made some design and wrote it
down, like this:

This is part of the finished documentation, it's not what I ini-
tially wrote. After I wrote a few lines of code I realized it
doesn't work and I changed the entire design. Then I
changed it again, and I kept changing it and changing it. I
can't imagine how I could have done test-driven develop-
ment in such a heavily experimental process. So I didn't
write any tests at all. I wrote the base stuff, I wrote the first
driver, Meteoview2, more or less at the same time, and
when I finished and it was working, and I hadn't yet written
the unit tests, I wanted to submit a proposal for a talk to this
conference, and I thought about delivering this talk. Actually
it was a neat trick because I didn't have any deadlines or any
kind of pressure about continuing to work on this, so
promising to deliver the talk actually helped me sit down and
write these tests.

3. Results

As I said, results surprised me.

I spent about a third of my time testing, and the other two
thirds on all the rest together, including coding, designing,
redesigning and documenting. I thought testing would be
more than the rest, but it turns out it was half, and for me
this is a real bargain.

Testing was pretty much exhaustive. I did the next best thing
to test-driven development. I commented out all my code.
Then I followed the three rules of the poor man's test-driven
development:

• You may not uncomment production code until you
have written a failing unit test.

• You may not write more of a unit test than is suffi-
cient to fail.

• You may not uncomment more production code
than is sufficient to pass the currently failing test.

They are pretty much the same as those of test-driven devel-
opment, except that I've changed two words—it used to say
"write", and I made it "uncomment". They are not as good
as the real thing, but they're better than nothing.

Now, there are some caveats. The first is that every case is
different. This was the test writing cost in this particular
case. I won't be surprised if it's very different in other cases.

The second caveat has to do with how experienced the pro-
grammers are. I am experienced enough, but programmers
relatively inexperienced in testing might write the main code
faster and the tests slower. I have an example from myself.
For many years, mocking has been a pain for me. I had un-
derstood the concepts of mocking, but each time I was
mocking something it refused to work and I was working for
hours trying to make the damn thing work. The worst thing
is that years went by and things weren't becoming any better.
In the end I settled with the fact that I'll always suck in
mocking. I was afraid of this case because it's about fetching
data from an external API and therefore I'd have lots of
mocking to do. But, and here's another surprise, the mocks I
wrote for this particular case worked without serious prob-
lems. I mean, they didn't work right away, but I was getting
errors that I could immediately understand and say "oh, this
mock needs a comma there and that mock needs this little
fix there", and I made the mocks work reasonably easy. My
2019 self would have had much more trouble writing these
mocks. Nothing would work and I would need to read the
mocking documentation again, and add breakpoints, and see
why the mocks don't do what I thought they should do, and
experiment, and start getting nerves, and then break some
things, and so on. So maybe at last I'm becoming better at
mocking just after I had lost hope. But you see that testing is
yet another thing the programmer must learn, and mocking
is yet another thing the programmer must learn. So I expect
this result to vary based not only on the particulars of each
case, but also on the experience and the abilities of each
programmer.

4

But in any case, what is the alternative? Can we do without
tests? We've already seen how a straightforward method
with five lines of code and no control stuctures became
slightly more complicated, and it won't be long before it
eventually becomes unreadable and unmanageable.

The next step, now that I have the tests, is to refactor the
code. In the right column I show you the worst method in
the case study (it's just in order to give you an idea of how
bad it is; some parts are redacted to make it not wrap as the
width here is too small). There are another two or three
methods that need refactoring. It's maybe two hours of
work, enabled by the 20-or-so hours spent in writing tests.

So my conclusion is: write tests, it's a bargain.

This document is available at https://itia.ntua.gr/2223

© 2022 Antonis Christofides, except for the screenshots, the code
extracts, the software documentation extract, and the three rules of test-
driven development. Subject to these exceptions, permission is granted to
reproduce this document under the terms of the Creative Commons
Attribution 3.0 License. For the screenshots, the code extracts, and the
software documentation extract, see the software's license at
https://github.com/openmeteo/enhydris. The three rules of test-driven
development have been copied verbatim from Robert C. Martin's book
"Clean Code", 2009.

def dispatch_other_step(self):

 station_id = self.station_id

 configuration = self.request.session.get(

 f"telemetry_{station_id}_configuration",

 {"station_id": station_id},

)

 Form = self.telemetry.wizard_steps[self.seq - 2]

 if self.request.method == "POST":

 form = Form(self.request.POST)

 if form.is_valid():

 configuration.update(form.cleaned_data)

 self.request.session[

 f"telemetry_{station_id}_configuration"

] = configuration

 if self.seq <= len(self.telemetry.wizard_steps):

 kwargs = {"station_id": self.[...]}

 target = reverse("telemetry_wizard", [...])

 else:

 T[...].filter(station=self.station).delete()

 kwargs = self.[...]()

 T[...](station=self.station, **kwargs).save()

 msg = _("Telemetry has been configured")

 messages.add_message([...])

 target = reverse("station_detail", [...])

 return HttpResponseRedirect(target)

 else:

 form = Form(initial=configuration)

 return render(

 self.request,

 "enhydris/telemetry/wizard_step.html",

 {

 "station": self.station,

 "form": form,

 "seq": self.seq,

 "prev_seq": self.seq - 1,

 "max_seq": len(self.telemetry.wizard_steps) + 1,

 },

)

5

