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Causality: contemporary approaches
I Henry Mehlberg (1904-1979)

Causal Theory of Time: No causal process (1.e., such that of two
consecutive phases, one 1s always the cause of the other) can be reversible

— [rreversibility

Patrick Suppes (1922-2014)
An event By [occurring at time t'] is a prima facie cause of the event At [occurring at
time t] if and only if
()t <t
(ii) P(Bt’) > 0,
(iii) P(A(|Byr) > P(A,).
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Causality: contemporary approaches
I Henry Mehlberg (1904-1979)

Causal Theory of Time: No causal process (1.e., such that of two
consecutive phases, one 1s always the cause of the other) can be reversible

—

An event By [occurring at time t'] is a prima facie cause of the event At [occurring at
time t] if and only if

Brian Skyrms (1938-)

()¢ <t
(ii) P(Bt’) >0,

(i) P(A¢|B,") > P(Ac|B.") : _
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Causality: contemporary approaches
Henry Mehlberg (1904-1979)

Causal Theory of Time: No causal process (1.e., such that of two
consecutive phases, one 1s always the cause of the other) can be reversible

—

An event By [occurring at time t'] is a prima facie cause of the event At [occurring at
time t] if and only if

David Cox (1924-2022)

()¢ <t
(ii) P(Bt’) >0,

(i) P(A¢|B,") > P(Ac|B.") : _

(iv’) there is no event C, at time t"" < t’ < t which “screens off” B, from A, such

that P(A,|B,/C,r) = P(A,|C,). [
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Causality: from probabilities to stochastics

0 Probabilistic characterisations of causality are fine for reproducible events. This

means that they are useful for:

* events that are controlled within the environment of a laboratory or

* events that are described sufficiently broadly that they actually re-occur (e.g.
storm, flood,...)

O If a more precise quantification of events that occur in open systems is required,

it will be the case that:

* several causal factors over which we have no control will be involved

* the events are not reproducible

0 This suggests seeking necessary conditions:

* for one among many other possibly unknown causes;

* that apply to time-series of events.

m




Imperial College
London
A popular option: Granger causality

0 Clive Granger (1934-2009) devised a statistical test for the claim /
that time-series {X;} has information useful to predict {¥;} or “Granger-causes” Y;.

0 The null hypothesis of no-Granger causality is:
b, =bpy1 =-"=Dby =0
where:
Yi=ao+X21a; Y + Z?:,g bi Xe—i + W,
This 1s tested with an F-test.

0 It is questionable whether causality is best detected as what, additionally to a
signal’s correlation structure, improves forecasting. The method we propose below

does not therefore include any autoregressive terms.
Motivation




Imperial College
London

From first principles to a necessary condition (1)
0 As starting point, we take the key requirements that causality (1) is /aw-governed

and (11) defines an irreversible temporal order. For quantities X and Y for which
time-series of observations are available, the first causes the second only if:

0y(t) = frn(ox(t — h))Ah
where h = 0 (irreversibility) and Ah represents the time during which the causal
effect is brought about and f; is some function that will define the causal law and
for which, assuming a single cause: f,(0) = 0
¢ By Taylor expansion:

8y(t) = 6x(t — b) L2 (0)Ah + o(8x(t — h))Ah

and if we define g(h) = C;—];h (0), we obtain:
dy(t) = dx(t — h)g(h)Ah + o(6x(t — h))Ah

m
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From first principles to a necessary condition (2)

0 Representing the negligible terms as random terms W (h);, we get:
Y(t) = X(t — h) g(h)Ah + W(h);Ah

¢ Assuming now that X over a range of past times causes Y, by integration:

Y(t) = jooX(t — h) g(h)dh + V(t)
0

for some r.v. V(t). Function g is the Impulse Response Function (IRF).

m
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The task is to identify function g such that Y (t) = f_oo X(t—h)g(h)ydh +V(t),
. . . 1 Var(V)
The explained variance is e = 1 Var(D)
==a==Potentially causal =4 Potentially anticausal
Necessary COndlthnS =—4=—Potentially hen-or-egg causal === Noncausal

0 (X,Y) is potentially causalif g(h)=0 for
any h<0 and e is non negligible;
0 (X,Y) is potentially anti-causalit g(h)=0 &
for any #>0 and e is non-negligible

(= (Y, X) is potentially causal );
0 (X,Y) is potentially hen-or-egg (HOE) cau
if g(h)#0 for some h>0 and some /<0,
and e is non-negligible; e T
0 (X,Y) is non-causal if e is negligible Time lag

Background Motivation Conditions. Estimation
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There are infinitely many IRFs satisfying Y (t) = fjozo X(t—h)g(h)dh +V(t) so
additional requirements are added for the identification of g.

Additional requirements

O0g(h)=0forallh € H

0 The smoothness of the IRF, defined as E = f_-l_ozo(g”(h))z dh

must be smaller than some pre-defined value E

¢ Var(V) must be minimal

Background Motivation Conditions. Estimation
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Y(t) = ] +OOX(t — h) g(h)dh + V(b

— Q00
1s then discretised as:

+00
Yt = ZXt_j g] + Vt

This 1s estimated through:
+J

Vi = Ext—j gj t Wy
—J
where W,, ensures that the estimation is unbiased. The IRF is then estimated from:
Min {var(y; — yt)}
st. E < Eg; (Vj)g;j =0

Background Motivation Conditions. Estimation Artificial Examples Application
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Artificial Examples

We construct artificial systems by using the equation:

Y, =Y a;X,_; + Uy, with U;~N(0,0.5%)

where Iy varies according to the application and X; is defined as:
X, =Y a;w._; where w,~N(0,1), I = 1024; (Vi) a; = a_; from an FHK-C

i=—I
Causal system #1 I e -
{Iy = 20; no constraints; ] = 20} 7 004 j
Left: x - y (e = 0.94) - M'M,/\A 1T g 02 e
Right: y— x (e = 0.97 N A AL ML R -
lg t: y X (e . ) 02 VVV v -0.02 \/

Time lag Time lag
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IRF, theoretical =——IRF

, Causal system #2 [ -
:fgﬁ(e;g?]l College {Iy = 20; non-negativity; £ o
no roughness constraint; ] = 20}
a Left: x > y (e = 0.94) . |
| Right: y— x (e = 0.94) L e
. - Causal system #3 o ; +=
{Iy = 20; non-negativity; .
’“ roughness constraint ; /] = 20}
Left: x > y (e = 0.94) |
Right: y— x (e = 0.94) O M
, . Causal system #4 o i N
N . {Iy = 20; non-negativity; . o \
roughness constraint; ; | = 20; e} )
i Left: x —> y (e = 0.32) . o i

 Right: y= x (e = 0.43) L

Time lag Time lag
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Precipitation and Runoff ~ ° =

{non-negativity; roughness :

constraint; /] = 20} , | v i

Left: P - R (e = 0.17) : ; . 4

-20 -10 o 10 20 -20 =10 [i] 10 20

nght R — P (e - 0.04‘) Time lag {3-hours) Time lag (3-hours)

Problem: * Time-step: 3 hours ...

700 .-t 0013

NOD— 600 :- '. 0.012 ;
llneal‘lty .:..: :'_-'.'. Lo : yo 16,490+ 20,154 ‘LOVO_M ....... 4

5 P
300 :.- * . ‘ P’ = ] (1 + _) ’ R’ -
Sgear e Wl P el

15 (M/s)

Y
y =0.0018x + 0.0101
R?=0.0337

15 20 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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Precipitation and runoff j —Twiwe ——
(continued) : o mre| o | R el
{non-negativity; roughness s / 0.0005
constraint; | = 20; 40} g 4 \\-—\\\J % o.0004 '\_/
Left: x = y untransformed : | o i |

2 : 0.0002 :
(e = 0.17; 0.26) N ! — :
Right: x — y transformed 0 5 0 '

i 10 20 30 4 o] 10 20 o 40

(e — 068; 071) Time lag (3-hours) Time lag (3-hours)

Note the effect of taking a longer window (x40 instead of £20) for the definition
of the IRF.
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Concluding remarks

* We have proposed conditions that need to be fulfilled to claim that there 1s causality in
non-oscillatory open systems.

* These are necessary but not sufficient and there is a degree of subjectivity in the
conclusions since no statistical test has been developed

* More information and examples are found in our papers
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