

AGU 14/12/2022

A stochastic approach to causality

Demetris Koutsoyiannis*. Christian Onof**, Antonis Cristofides*, Zbyszek Kundzewicz*** *: National Technical University of Athens, **: Imperial College London, ***: Poznan University of Life Sciences

Outline

- 1. Some background and probabilistic conceptions of causality
- 2. Motivating a stochastic approach to necessary conditions
- 3. The response function characterization of causality
- 4. How it works: artificial examples
- 5. Application

Causality: contemporary approaches

Henry Mehlberg (1904-1979)

Causal Theory of Time: *No causal process (i.e., such that of two consecutive phases, one is always the cause of the other) can be reversible*

Patrick Suppes (1922-2014)

Irreversibility

An event $B_{t'}$ [occurring at time t'] is a prima facie cause of the event A_t [occurring at time t] if and only if

(i) t' < t, (ii) $P(B_{t'}) > 0$, (iii) $P(A_t|B_{t'}) > P(A_t)$.

		-		
Background	Motivation	Conditions. Estimation	Artificial Examples	Application

Imperial College London Causality: contemporary approaches

Henry Mehlberg (1904-1979)

Causal Theory of Time: *No causal process (i.e., such that of two consecutive phases, one is always the cause of the other) can be reversible*

Brian Skyrms (1938-)

Irreversibility

An event $B_{t'}$ [occurring at time t'] is a prima facie cause of the event A_t [occurring at time t] if and only if

(i) t' < t, (ii) $P(B_{t'}) > 0$, (iii) $P(A_t|B_{t'}) > P(A_t|\overline{B}_{t'})$

Imperial College London Causality: contemporary approaches

Henry Mehlberg (1904–1979)

Causal Theory of Time: *No causal process (i.e., such that of two consecutive phases, one is always the cause of the other) can be reversible*

David Cox (1924-2022)

Irreversibility

Probabilistic Law

Application

An event $B_{t'}$ [occurring at time t'] is a prima facie cause of the event A_t [occurring at time t] if and only if

(i) t' < t, (ii) $P(B_{t'}) > 0$, (iii) $P(A_t|B_{t'}) > P(A_t|\overline{B}_{t'})$

(iv') there is no event $C_{t''}$ at time t'' < t < t which "screens off" $B_{t'}$ from A_t such that $P(A_t|B_{t'}C_{t''}) = P(A_t|C_{t''})$.

Background

Causality: from probabilities to stochastics

 \Diamond Probabilistic characterisations of causality are fine for reproducible events. This means that they are useful for:

- events that are controlled within the environment of a laboratory or
- events that are described sufficiently broadly that they actually re-occur (e.g. storm, flood,...)
- ◊ If a *more precise* quantification of events that occur in *open systems* is required, it will be the case that:
- several causal factors over which we have no control will be involved
- the events are not reproducible

 \Diamond This suggests seeking necessary conditions:

- for one among many other possibly unknown causes;
- that apply to time-series of events.

A popular option: Granger causality \diamond Clive Granger (1934-2009) devised a statistical test for the claim that time-series { X_t } has information useful to predict { Y_t } or "Granger-causes" Y_t .

♦ The null hypothesis of no-Granger causality is:

$$b_p = b_{p+1} = \dots = b_q = 0$$

where:

$$Y_{t} = a_{0} + \sum_{i=1}^{m} a_{i} Y_{t-i} + \sum_{i=p}^{q} b_{i} X_{t-i} + W_{t}$$

This is tested with an F-test.

◊ It is questionable whether causality is best detected as what, *additionally* to a signal's correlation structure, improves forecasting. The method we propose below does not therefore include any autoregressive terms.

Background

From first principles to a necessary condition (1)

 \diamond As starting point, we take the key requirements that causality (i) is *law-governed* and (ii) defines an *irreversible* temporal order. For quantities X and Y for which time-series of observations are available, the first causes the second only if:

$$\delta y(t) = f_h(\delta x(t-h))\Delta h$$

where $h \ge 0$ (*irreversibility*) and Δh represents the time during which the causal effect is brought about and f_h is some function that will define the *causal law* and for which, assuming a single cause: $f_h(0) = 0$ \Diamond By Taylor expansion:

$$\delta y(t) = \delta x(t-h) \frac{df_h}{dx}(0) \Delta h + o(\delta x(t-h)) \Delta h$$

and if we define $g(h) = \frac{df_h}{dx}(0)$, we obtain:
 $\delta y(t) = \delta x(t-h)g(h) \Delta h + o(\delta x(t-h)) \Delta h$

From first principles to a necessary condition (2)

 \Diamond Representing the negligible terms as random terms $W(h)_t$, we get:

$$Y(t) = X(t-h) g(h)\Delta h + W(h)_t \Delta h$$

 \diamond Assuming now that X over a range of past times causes Y, by integration:

$$Y(t) = \int_0^\infty X(t-h) g(h) dh + V(t)$$

for some r.v. V(t). Function g is the *Impulse Response Function* (IRF).

The task is to <u>identify function</u> g such that $Y(t) = \int_{-\infty}^{+\infty} X(t-h) g(h) dh + V(t)$,

The explained variance is $e = 1 - \frac{Var(V)}{Var(Y)}$

Necessary conditions: (X, Y) is potentially causal if g(h)=0 for any *h*<0 and *e* is non negligible; (X, Y) is potentially anti-causal if g(h)=0for any h>0 and e is non-negligible $(\Rightarrow (Y, X) \text{ is potentially causal});$ (X, Y) is potentially hen-or-egg (HOE) cau if $g(h) \neq 0$ for some h > 0 and some h < 0, and *e* is non-negligible; (X, Y) is *non-causal* if *e* is negligible

There are infinitely many IRFs satisfying $Y(t) = \int_{-\infty}^{+\infty} X(t-h) g(h) dh + V(t)$ so additional requirements are added for the identification of g.

Additional requirements

 $\label{eq:ghamma} \Diamond \, g(h) \geq 0 \text{ for all } h \in \mathcal{H}$

◊ The smoothness of the IRF, defined as $E = \int_{-\infty}^{+\infty} (g''(h))^2 dh$ must be smaller than some pre-defined value E_0

◊ Var(V) must be minimal

$$Y(t) = \int_{-\infty}^{+\infty} X(t-h) g(h) dh + V(t)$$

is then discretised as:

$$Y_t = \sum_{-\infty}^{+\infty} X_{t-j} g_j + V_t$$

This is estimated through:

$$\widehat{y_t} = \sum_{-J}^{+J} x_{t-j} g_j + \mu_v$$

where μ_{ν} ensures that the estimation is unbiased. The IRF is then estimated from:

 $\begin{array}{l} \min \left\{ \operatorname{var}(\widehat{y_t} - y_t) \right\} \\ \text{s.t. } E \leq E_0; \ (\forall j) \ g_j \geq 0 \end{array} \end{array}$

Background

Artificial Examples

We construct artificial systems by using the equation:

$$Y_t = \sum_{i=0}^{+I_H} a_i X_{t-i} + U_t$$
, with $U_t \sim N(0, 0.5^2)$

where I_H varies according to the application and X_t is defined as:

 $X_t = \sum_{i=-I}^{+I} a_i w_{t-i}$ where $w_t \sim N(0,1), I = 1024$; $(\forall i) a_i = a_{-i}$ from an FHK-C

Causal system #1 { $I_H = 20$; no constraints; J = 20} Left: $x \rightarrow y (e = 0.94)$ Right: $y \rightarrow x (e = 0.97)$

Causal system #2 { $I_H = 20$; non-negativity; no roughness constraint; J = 20} Left: $x \rightarrow y$ (e = 0.94) Right: $y \rightarrow x$ (e = 0.94)

Causal system #3 { $I_H = 20$; non-negativity; roughness constraint; J = 20} Left: $x \rightarrow y$ (e = 0.94) Right: $y \rightarrow x$ (e = 0.94)

Causal system #4 { $I_H = 20$; non-negativity; roughness constraint; ; J = 20; e^y } Left: $x \rightarrow y$ (e = 0.32) Right: $y \rightarrow x$ (e = 0.43)

Application

Application **Precipitation and Runoff**

{non-negativity; roughness constraint; J = 20} Left: $P \rightarrow R \ (e = 0.17)$ Right: $R \rightarrow P (e = 0.04)$

Time-step: 3 hours

Precipitation and runoff

(continued) {non-negativity; roughness constraint; J = 20; 40} Left: $x \rightarrow y$ untransformed (e = 0.17; 0.26) Right: $x \rightarrow y$ transformed (e = 0.68; 0.71)

Note the effect of taking a longer window (± 40 instead of ± 20) for the definition of the IRF.

		-		
Background	Motivation	Conditions. Estimation	Artificial Examples	Application

Concluding remarks

- We have proposed conditions that need to be fulfilled to claim that there is causality in non-oscillatory open systems.
- These are necessary but not sufficient and there is a degree of subjectivity in the conclusions since no statistical test has been developed
- More information and examples are found in our papers

<u>References</u>

Koutsoyiannis, D., Onof, C., Christofides, A., & Kundzewicz, Z. W. (2022). Revisiting causality using stochastics: 1. Theory. *Proceedings of the Royal Society A*, 478(2261), 20210835

Koutsoyiannis, D., Onof, C., Christofides, A., & Kundzewicz, Z. W. (2022). Revisiting causality using stochastics: 2. Applications. *Proceedings of the Royal Society A*, 478(2261), 20210836.

Bacl	round
Duci	Si Cuila