

EGU23-8740, updated on 12 Jun 2023 https://doi.org/10.5194/egusphere-egu23-8740 EGU General Assembly 2023 © Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License.

Regionalized design rainfall curves for Greece

Theano Iliopoulou¹, Demetris Koutsoyiannis¹, Antonis Koukouvinos¹, Nikolaos Malamos², Nikolaos Tepetidis¹, David Markantonis¹, Panayiotis Dimitriadis¹, and Nikos Mamassis¹ ¹National Technical University of Athens, Department of Water Resources and Environmental Engineering, Greece (tiliopoulou@hydro.ntua.gr)

²Department of Agriculture, University of Patras, Theodoropoulou Terma, GR-272 00 Amaliada, Greece

We perform a large-scale assessment of the probabilistic behaviour of rainfall extremes over the Greek territory aiming to construct a national model for design rainfall. To this aim, we employ multiple sources of rainfall data: from long-term daily records to samples of multi-scale annual maxima, reanalysis rainfall products and satellite information. We identify suitable probability distributions for the multi-scale rainfall extremes useful for design rainfall estimation and regionalize their parameters over Greece using two-dimensional multivariate smoothing techniques. Unique insights are derived regarding the spatio-temporal variability of extreme rainfall over the Greek area, notable for its highly variable topography and climate.