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Abstract: Hybrid renewable energy systems, complemented by pumped hydropower storage, have
become increasingly popular amidst the increase in renewable energy penetration. Such configura-
tions are even more prosperous in remote regions that are typically not connected to the mainland
power grid, where the energy independence challenge intensifies. This research focuses on the
design of such systems from the perspective of establishing an optimal mix of renewable sources that
takes advantage of their complementarities and synergies, combined with the versatility of pumped
hydropower storage. However, this design is subject to substantial complexities, due to the multiple
objectives and constraints to fulfill, on the one hand, and the inherent uncertainties, on the other,
which span over all the underlying processes, i.e., external and internal. In this vein, we utilize a
proposed hybrid renewable energy system layout for the Aegean Island of Sifnos, Greece, to develop
and evaluate a comprehensive simulation-optimization scheme in deterministic and, eventually,
stochastic settings, revealing the design problem under the umbrella of uncertainty. In particular, we
account for three major uncertain elements, namely, wind velocity (natural process), energy demand
(anthropogenic process), and wind-to-power conversion (internal process, expressed in terms of
a probabilistic power curve). Emphasis is also given to the decision-making procedure regarding
the system’s key design parameters (reservoir size and solar power capacity), which is achieved by
thoroughly interpreting the uncertainty-aware optimization outcomes. Finally, since the proposed
pumped hydropower storage uses the sea as the lower reservoir, additional technical challenges
are addressed.

Keywords: hybrid renewable energy systems (HRESs); pumped hydropower storage (PHS); water
energy; seawater; internal and external uncertainties; simulation; optimization; stochastics; copulas

1. Introduction

In recent decades, the four pillars of the water–energy–food–land nexus have been
significantly stressed. In an attempt to alleviate these stresses, systems that enable the
development of different resources in the same area have been designed [1]. Hybrid
renewable energy systems (HRESs), which were first introduced in the 1970s, follow the
same concept, since they combine multiple power sources over a limited geographical
region, also sharing a common connection point. These have become an essential part of
global energy production to address the limitations in terms of fuel flexibility, efficiency,
reliability, emissions, and economics [2]. HRESs generate electricity from two or more
energy sources and are capable of switching between them when one is insufficient, thus
reducing the inherited unpredictability of renewables. Moreover, they can also capitalize on
the existing energy infrastructure and add components to help reduce costs, environmental
impacts, and system disruptions [3]. Overall, such systems can generate power based
on the demand at any particular site, depending on the availability of resources, thus
contributing to localized energy generation and supply management, and significantly
reducing grid dependence [4].
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The optimal design of HRESs requires the most fitting, efficient, and reliable mix of
energy technologies to meet users’ needs. However, the asynchronous production of the
intermittent renewable energy sources against the constant, yet highly fluctuating, energy
demand is a major constraint against their large-scale integration in the energy grid [5].
Interestingly, the absence of integrated large energy storage in the grid may result in a
maximum of 80% wind penetration for a 100 kW grid, decreasing dramatically as the size
of the electricity grid increases, diminishing to as low as 20% for a 10 MW grid [6].

For this reason, the rapid development of renewable energy systems and the associated
technological advances (e.g., [7]) has necessitated their coupling with energy storage to
balance the supply and demand. Notably, large energy storage systems have proven to mit-
igate wind power curtailment by 10% [8–11]. Energy storage techniques are distinguished
into four basic categories, according to their applications [12]. Low- and medium-power
applications (i.e., batteries, hydrogen fuel cells, and superconductors) concern isolated
areas and are used in emergency terminals or individual electrical systems. On the other
hand, network connections with peak leveling and power-quality-control applications
(i.e., hydraulic systems, accumulators and flow batteries, and compressed air) are used in
power systems that provide energy for larger regions.

In contrast to other renewables, hydroelectric energy, combined with water storage in
reservoirs, enables the regulation of power production, energy recovery across water and
oil transmission networks (e.g., [13,14]), and, even more importantly, energy storage [15].
In fact, pumped hydro-storage (PHS) is the predominant and most reliable energy stor-
age technology, accounting for more than 95% of the global cumulative energy storage
capacity [16]. Among its various benefits, Rehman et al. [17] highlighted several issues
that PHS systems can address, which emerge from the high integration of wind power into
the electricity network, such as (1) handling changes in network impedances due to wind
farm connections to the grid and its effects on remote control signals, (2) the handling of
harmonics created by the addition of wind to the grid, and (3) stability problems that may
occur due to the dynamics behavior of wind farms connected to the grids. PHS systems are
also not significantly influenced by the fluctuation in energy production occurring from the
intermittent nature of renewables [18]. In contrast, other well-established storage systems,
namely, batteries, are prone to self-discharge effects when they remain in a loss power state
for long periods of time, thus reducing their service life. Though PHS systems have been
perceived as prohibitively costly, many studies have suggested their economic feasibility,
especially in remote areas and islandic systems [19–22].

HRESs combined with a PHS system (which is in fact a water energy system) are
mainly applicable in non-interconnected power systems, such as the ones found on is-
lands. These are defined by geographical isolation, which constitutes their underwater
interconnection to the main grid economically unviable, their low power demand, and high
electricity production cost due to the importing of fossil fuels [23]. In particular, Greece can
greatly benefit from the aforementioned systems, since it consists of 29 non-interconnected
islandic complexes [24], while its favorable weather conditions allow for high renewable
energy potential. Moreover, the island’s population increase during the summer leads to
increased peak power demand, which further intensifies the need for energy independence.
To date, only two HRESs have been installed on non-interconnected Greek islands (i.e.,
Ikaria and Tilos), as pilot applications, while there are also a few other systems under
investigation, mainly in the research context (e.g., [25–29]). However, very few of these
studies attempt to handle the major issue of uncertainty within the planning and design of
such systems (e.g., [30]).

In general, PHS systems are configured as either open- or closed-loop systems. The
first option involves the construction of an upper reservoir that is connected to a natural
water source, which plays the role of a lower reservoir. On the other hand, closed-loop PHS
systems refer to equally sized reservoirs without any external hydrological connections,
recycling the same amount of water. When a PHS system is part of an HRES, the storage
capacity of the reservoir system is dictated by the power tradeoff between the highly fluc-
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tuating and uncertain, as well, energy production by other renewables and the associated
demand. Yet, conventional design practices follow much more simplified approaches in
the context of PHS sizing. In particular, they aim at ensuring energy independence for a
given time until the upper reservoir is fully discharged, during which weather conditions
will not be favorable to sufficiently satisfy the power demand. However, this assumption
is too conservative since it considers the worst-case scenario where energy is exclusively
produced from the PHS system. Hence, it is expected to lead to reservoir oversizing, which
in turn may threaten the technoeconomic feasibility of the overall project.

Recently, an HRES combining power production from renewables and energy storage
through a PHS system utilizing seawater was proposed for the island of Sifnos [23]. Its
preliminary design followed the aforementioned conventional approach, resulting in a
quite large reservoir capacity, if compared to the project scale. This case serves as a
proof of concept to further expand a recently proposed stochastic simulation–optimization
framework to the design of an HRES [31].

In this vein, this article aims at addressing a twofold objective. First, we investigate
whether a more comprehensive optimization approach, driven by a detailed simulation
model that accounts for the actual dynamics of water energy fluxes, can reduce the invest-
ment cost of the already proposed solution, by means of a smaller reservoir. Second, we
explore the impacts of three key sources of uncertainty to the design procedure, involving
two model inputs (wind velocity, as a physical process, and load demand, as an anthro-
pogenic one), as well as the conversion of wind to electricity generation, through the power
curves of the associated wind turbines. To our knowledge, there are very few attempts in
the literature that aim to integrate and interpret all these different sources of uncertainty
within the design of HRESs (cf. relevant review by [32]). A parallel objective, originating
from the use of the sea as a lower reservoir, is to reveal the multiple technical challenges
and resulting uncertainties, due to the use of seawater across multiple components of the
PHS system (corrosion of the piping system, pumps and turbines, and risk of groundwater
contamination in case of a leakage).

2. Study Area and Proposed Layout

Sifnos is a Greek island located in the Western Aegean Sea, Greece, in the Cycladic
complex, with an area of 74 km2 and a permanent population of 2755 residents, as per
the 2021 census conducted by the Hellenic Statistical Authority. Sifnos attracts an average
of 100,000 tourists during the summer months. Its energy needs are mainly covered by
a 9.0 MW oil power plant, while renewables have a small share in the island’s energy
mix. Specifically, there is a 1.20 MW wind park and two photovoltaic parks of 0.20 MW
cumulative installed power. According to an analysis of the island’s energy profile for
2020, performed by the Hellenic Electricity Distribution Network Operator, the total energy
demand was 17.3 GWh, while the hourly peak demand was 5.4 MW, occurring during the
summer months.

A recent research study [23] investigated the development of an HRES in the northern
part of the island (Figure 1) and its techno-economic perspectives. In particular, they
represented the operation of an indicative layout, with different combinations of solar
photovoltaic (PV) and wind turbine systems, combined with a PHS that utilized seawater.
The upper reservoir was sited in a plateau, at an elevation of +320 m. This configuration
was ideal, as there were no physical obstacles hindering the power production by the wind
turbines and the PVs. Moreover, the favorable topography (i.e., steep, yet constant, terrain
slope) facilitated the works concerning the conveyance system and the pumping station,
thus requiring minimal technical interventions. Lastly, as social acceptance has a pivotal
role in the implementation of renewable energy projects [33], we highlighted that the siting
location was secluded, with the nearest settlement being 4 km away.
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eral assumptions of the underlying simulation model. The overall layout followed the one 
of [23], which was specified further after a preliminary analysis. Its components are illus-
trated in the schematic sketch of Figure 2, while its key characteristics are also summa-
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active depth and the number of PV modules, which are considered to be subject to the 
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A key outcome of the preliminary design analysis was the sizing of the PHS system,
resulting in quite a large storage capacity of 1,100,000 m3. This capacity ensured energy
autonomy for up to consecutive 16 days, starting from a fully charged state and without
storing any excess energy during that time span.

Keeping the main layout of the aforementioned proposal, we attempted to revise
some design quantities, and particularly the reservoir size, following a more integrated
simulation–optimization procedure (Section 3). Furthermore, we embedded the key sources
of uncertainty within the design procedure, which was formalized in stochastic terms
(Section 4).

3. HRES Simulation and Optimization
3.1. Configuration and Key Assumptions of the Simulation

This sub-section aims to specify the configuration of the HRES and outline the gen-
eral assumptions of the underlying simulation model. The overall layout followed the
one of [23], which was specified further after a preliminary analysis. Its components
are illustrated in the schematic sketch of Figure 2, while its key characteristics are also
summarized in Table 1. All essential design properties are specified, except for the reser-
voir’s active depth and the number of PV modules, which are considered to be subject to
the optimization.
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Table 1. Wind turbine and solar PV properties.

Wind Turbines

Model Enercon E-44 Enercon E-70 E4

Rated power (kW) 900.0 2300.0
Minimum power (kW) 4.0 2.0

Cut-in wind speed (m/s) 3.0 2.5
Rated wind speed (m/s) 16.5 15.0

Cut-out wind speed (m/s) 34.0 34.0
Tower height (m) 55.0 113.0

Rotor diameter (m) 44.0 71.0

Solar panels

Surface area (m2) 1.94
Nominal power (W) 340.0

Efficiency (%) 17.5

The wind turbines’ tower height determined the wind speed values at the hub, which
ere logarithmically distributed with respect to the elevation from the ground. Thus, two
different wind turbines were chosen in order to minimize wind power curtailing due to
cut-offs (either from very small or very large wind values). However, it was expected that
the interaction between the large and small wind turbines (e.g., due to turbulence effects)
would reduce the wind speed at the hub of the latter. The adjusted speed is calculated
through the formula [34]:

Vwind = V0

1 − 2a(
1 + 2kL

DL

)2

 (1)

where V0 is the freestream wind speed at the hub height level, a is an induction factor, k
is a decay coefficient, L is the distance between the turbines, and DL is the large turbine’s
blade diameter. The a and k values are set equal to 0.10 and 0.038, respectively, as suggested
in [34]. In our case, we considered the use of four wind turbines, i.e., two large ones with
2.3 MW and two small ones with 0.9 MW of nominal power, respectively, distanced at
400 m. It is important to remark that the greater distance between the turbines might
initially seem ideal, since the associated wind speed reduction is reduced; however, it does
not necessarily result in optimal layouts [35].

The wind power production for a given wind speed value is calculated by the analyti-
cal formula, introduced by Sakki et al. [36]:

Pwind = Pmin
+

(
1 −

(
1 −

(
Vwind−Vmin
Vmax−Vmin

)a)b
)
(P max − Pmin) (2)

where Pmin is the minimum power produced during cut-in conditions, Pmax is the rated
power, Vwind is the actual wind speed, Vmin is the cut-in wind speed, Vmax is the cut-out
wind speed, and a and b are the shape parameters. The two parameters were calibrated
against the empirically derived power curve data provided by the manufacturer. For
the wind turbine types used in our simulation, we obtained a = 2.25 and b = 20. The
aforementioned formula can accurately describe the wind speed-to-power conversion
process, as it considers turbine-specific characteristics, unlike the high polynomial order
formulas that are commonly used to describe the wind power curve [37–39].

The following assumptions were also made for the PHS system:

• The reservoir has a trapezoidal shape, and thus the storage and area curves are linear
functions of elevation;
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• The intake is set to an elevation of 1.2 m from the upper reservoir’s bottom to ensure
sufficient capacity for deposit management;

• The pump’s power capacity is 6.0 MW and equal to the maximum potential surplus
estimated as the difference between the total capacity of wind turbines (6.4 MW) and
the minimum hourly demand (0.4 MW), occurring in winter during the night;

• The turbine’s power capacity is also 6.0 MW, which is slightly higher than the maxi-
mum hourly load (5.4 MW) in order to account for uncertainties, as discussed later;

• The total efficiency values of the turbines and pumps are considered constant and
equal to 0.85 and 0.80, respectively;

• The penstock’s length and diameter are 910 and 1.0 m, respectively, as specified in our
preliminary design analysis.

3.2. Breakdown of the Simulation Model

The simulation model represents the system’s operation in hourly time intervals, and
is explained through a flowchart in Figure 3. At each time step, power accounting was
performed by contrasting the power production by the two renewables (wind and solar)
to the actual demand. If there were energy surpluses (PNet > 0), the PHS system was set
to its charging phase, thus pumping water from the sea to the upper reservoir, provided
that there was a sufficient storage capacity (Stotal < Smax). Similarly, if there were energy
deficits (PNet < 0), the discharge phase was begun and the water was released downstream
through the turbine, thus generating electrical energy, provided that there was available
water stored in the upper reservoir (Stotal > Vdead). This process was repeated until the final
step equaled the simulation length, which, in our case, was 20 years (which is the typical
economic life of such projects).
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Notably, there was an ample amount of HRES analysis tools, whose functionalities
were thoroughly explained in the comprehensive review of Sinha et al. [40]. In our case,
we formulated the entire computational procedure from scratch in the freeware RStudio
programming environment (version 4.2.2). This allowed for embedding the specific pecu-
liarities of the suggested layout and formalizing the simulation–optimization model in a
stochastic (Monte Carlo) context.

3.3. Setup of the Optimization Problem

Techno-economic optimization is a crucial step within the development of complex
systems, as it helps assess their feasibility and viability. This procedure involves systemati-
cally examining numerous technical, economic, and financial aspects, which can often be
conflicting [41–43].

As already mentioned in Section 3.1, we considered as design variables of the system
the active depth of the reservoir and the number of PV modules. The optimization of
these variables was formulated as a multi-objective problem, by accounting for different
performance criteria that were expressed in financial terms and weighted properly, in order
to ensure the well-balanced operation of the hybrid renewable energy system.

Specifically, the overall performance measure sought to contrast the revenues from
the electricity production with the costs of construction, purchase, installation, and mainte-
nance. All the economic quantities were expressed in terms of the equivalent annual cost
by considering a depreciation period equal to 20 years. The project implementation costs
that were accounted for in the economic evaluation were associated with:

• The civil engineering works (excavations, roadworks, etc.);
• The purchase, installation, and maintenance of the electromechanical equipment (wind

turbines, PVs, pumps, and turbines) and the conveyance system (GRP pipes);
• Specific works associated with reservoir waterproofing.

A thorough cost breakdown for the HRES’s construction and operation is presented in
Table 2. Regarding the civil engineering works, their costs followed the typical pricing of
respective projects in Greece. On the other hand, the cost of the pumps and turbines are
calculated through the formula introduced by Aggidis et al. [44]:

C = C0 PaHβ (3)

where C0 = EUR 14,400, a = 0.56, β = −0.112, P is the nominal power and H is the gross
head. By setting a power capacity of 6.0 MW (the same for the turbines and pumps) and a
gross head of 320 m, we obtained a fixed total cost for the electromechanical components of
the PHS system of about EUR 3,940,000. Finally, the maintenance costs of all individual
works were set as 1% of the associated investment costs.

Table 2. Unit economic data used in the simulation.

Unit Cost (EUR) Unit of Measurement

Excavations 6.00 m3

Waterproofing membranes 1.50 m2

Conveyance system 25.0 m
Installed wind power 1,200,000 MW
Installed solar power 1,100,000 MW

Energy profit 300 MWh
Energy penalty 350 MWh

A crucial requirement of electricity production systems is their reliability, which is a
probabilistic concept, defined here as the frequency of load demand satisfaction. In our
approach, we utilized the complementary definition of reliability, i.e., failure probability,
which was quantified in economic terms and embedded in the optimization by means
of an empirical penalty function. As illustrated in Figure 4, this function has a negative
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logarithmic shape and has been formulated after preliminary analyses, in order to ensure a
desirable level of reliability. In this respect, the optimization aims at ensuring a financially
attractive and technically sound investment.
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For the optimization, we utilized the evolutionary annealing-simplex algorithm
(EAS) [45], which was a probabilistic heuristic global optimization technique that combined
the robustness of simulated annealing in rough response surfaces with the efficiency of
hill-climbing methods in convex areas. EAS is a well-established algorithm [46] that has
been successfully utilized in a number of challenging optimization problems in the broader
domain of water energy systems.

3.4. Results: Benchmark Scenario

The design optimization procedure results in an active depth of the reservoir equal
to 2.88 m (total 4.08 m, by adding the freeboard of 1.20 m), and thus a storage capacity
of 315,195 m3 and a PV power capacity of 1.09 MW. Furthermore, the key metrics of the
optimized benchmark scenario are presented in Table 3. We observed that the proposed
solution ensured a quite satisfactory reliability level of approximately 95%; thus, the existing
oil station will only have a complementary role in the island’s energy mix by operating 5%
of the time. We also underlined that the small capacity factor of the hydropower station
(actual vs. potential energy production) did not indicate a reduced performance. In contrast,
it revealed its pivotal supporting role in fulfilling the deficits by the other two renewables,
especially during peak energy demand periods. As far as the other renewables’ capacity
factors were concerned, they were in line with the climatic regime of the study area.

Table 3. Simulation metrics for the benchmark (i.e., deterministic optimization) scenario.

Mean annual production from wind turbines and
solar panels (GWh) 24.98

Mean annual production from PHS system (GWh) 4.69
Reliability (%) 94.76

Mean annual profit (EUR) 789,131
Investment cost (EUR) 15,526,518

Ordinary annuity (EUR) 1,814,222

Payback period (years) 5.90

Capacity factors

Photovoltaics 0.207
Small wind turbines 0.304
Large wind turbines 0.424
Hydropower station 0.108
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Interestingly, the optimized reservoir size equaled less than a third of the one suggested
in [23]. However, the two solutions were not fully comparable since different assumptions
were made in the overall modeling approach. This analysis will be used as the benchmark
to formulate our stochastic optimization approach.

4. Issues of Uncertainty in Hybrid Renewable Energy Systems

Uncertainty has been a long-lasting issue in the planning, design, assessment, and
real-time operation of HRESs, deriving from multiple drivers. Sakki et al. [31] divided such
uncertainties into two main categories, i.e., exogenous (external) and endogenous (internal).
The former category mainly refers to the inherent uncertainty of the system’s drivers,
whereas the latter refers to conversion processes and underlying modeling assumptions. In
this vein, our study utilized the aforementioned stochastic optimization framework and
applied it to the case of Sifnos by embedding three key sources of uncertainty (i.e., wind
process, energy demand, and wind speed-to-power conversion). These uncertainties are
briefly described in the following sub-sections, while the computational implementation is
thoroughly explained in Section 5.

4.1. Wind Process Uncertainty

Hydrometeorological processes are considered one of the main exogenous uncertain-
ties of HRESs due to the intermittent nature of renewables. Specifically, these concern wind
processes (i.e., wind velocity and wind direction) that involve Aeolic systems, hydrological
processes (i.e., precipitation, streamflow, etc.) that are associated with hydropower systems
of all scales (from large reservoirs to small run-off-river plants), as well as solar-related pro-
cesses (i.e., solar radiation, cloud cover, etc.) that are associated with photovoltaic energy.

Regarding wind power, which was one of the key components of our uncertainty
analysis, the mainstream approach to represent the variability of wind velocity was to
generate synthetic data at coarse time scales (e.g., monthly or daily) by applying theoretical
distribution functions following the statistical regime of the historical data. However, it is
well known that wind speed exhibits significant fluctuations, even across very small scales,
thus requiring a much finer modeling resolution. Furthermore, simple statistical tools fail
to capture a key aspect of all hydrometeorological processes, namely, the dependencies
on time and space. In this respect, the most appropriate approach for representing the
full regime of such processes (including wind) are stochastic models, applied at fine scales
(typically hourly).

In this context, several researchers performed comprehensive analyses of hydrom-
eteorological data worldwide and proposed suitable stochastic methods for simulating
the input drivers of renewable energy systems. For instance, Palma et al. [47] presented a
novel methodology to facilitate the selection of a proper time-series generation model for
renewable energy sources, providing a set of indicators to verify the selected model’s accu-
racy. Furthermore, other studies also emphasized another key property of such processes,
which was referred to as long-term persistence and was associated with the changing
climate [48–50].

4.2. Energy Demand Uncertainty

Energy demand is an even more complex source of exogenous uncertainty, as it does
not only depend on physical climatic processes (mainly temperature), but also on highly
unpredictable environmental and socioeconomic factors [51]. Uncertainty in electricity
demands, both for simulation and forecasting purposes, is a topic of high interest in
the literature. For instance, a study conducted by Cabeza et al. [52] showed that past
energy projections for the energy demand of OECD countries were either consistently
overestimated or underestimated. This phenomenon intensified even more on the islands
due to the intensive seasonal power demand variations. Thus, it is essential to accurately
represent energy demand in probabilistic terms while designing HRESs. Warren et al. [53]
also highlighted three main constituents of uncertainty in energy demands: (1) inherent
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randomness in the way electricity is consumed, (2) modeling and estimation errors, and
(3) uncertainty in the model inputs. Finally, Islam et al. [54] presented various models for
short-, medium-, and long-term energy demand modeling practices under uncertainties
and metrics to effectively evaluate their accuracies.

4.3. Wind-to-Power Conversion Uncertainty

As the penetration of wind power in energy systems increases, several concerns about
the uncertainty in wind power generation have been raised. Uncertainty in wind power
system operations can be categorized between discrete and continuous disturbances [55].
The discrete disturbances causing equipment failure, involving generators and transmission
lines, were accurately demonstrated in an analysis performed on wind turbine generators
by Rezamand et al. [56]. The results indicate that the reliability of wind turbine generators
(WTGs) can decline to as low as 67.9% after seven years of operation. The continuous dis-
turbances, which include parameters of the unit commitment problem that vary smoothly
(e.g., electricity demand and wind power production), were described in the previous
sub-section.

Another type of uncertainty to be considered, which is also emphasized in our study,
involves the wind turbine power curves (WTPCs), which have a pivotal role in the context
of wind power simulation and forecasting, wind turbine condition monitoring, and in
the estimation of wind energy potential [57]. Given that wind turbines are commercial
products, WTPCs are provided by the manufacturers as a graph or a set of points with a
typical wind speed discretization of 0.5 m/s. In fact, these are theoretical relationships
exhibiting a wind turbine’s standard and experimental behavior [58]. However, a wind
turbine operates in complex and variable conditions, which deviate significantly from the
stable experimental conditions under which manufacturers test them. Thus, the herein
referred to as “theoretical” WTPCs cannot accurately represent the actual behavior of wind
turbines that operate in the field [59]. The deviation of wind turbine on-site behavior from
the theoretical power curve was thoroughly analyzed in the work of Antoniou et al. [60],
whilst several real-world examples were also presented in [61]. For this reason, an ample
number of deterministic and probabilistic models were developed to produce WTPCs that
resembled actual operating conditions. Recently, the focus has shifted towards the latter
since deterministic models provide fixed relationships between wind speed and power
generation, failing to reveal the variating and dynamic power generation process [62]. A
novel probabilistic WTPC model worth mentioning is the one developed by Yan et al. [63],
which considers various model inputs (pitch angle and wind direction) based on three
non-parametric algorithms.

A major issue of uncertainty involves the operation of wind turbines in a high-wind-
speed region. According to the theoretical model, the turbines are forced to interrupt
their operation in the so-called cut-off wind speed of 25 m/s to prevent damage due
to extreme mechanical loads. The turbines start operating only after the average wind
speed reaches a value lower than the cut-off speed, a process which is also referred to as
hysteresis [64]. However, due to the stochastic nature of wind and the uncertainty of the
theoretical WTPCs, it is not realistic to consider the threshold of 25 m/s as a strict rule
for estimating the downtime of turbines [65]. Thus, to prevent frequent shutdowns and
restarts, the soft cut-out strategy was implemented by extending the maximum admissible
wind speed up to 30–32 m/s, without an abrupt shutdown, through controlling the pitch
and generator in order to gradually decrease energy production [66]. Multiple studies have
addressed the optimal control of wind turbines during high wind speeds to minimize the
uncertainties derived from the wind. Jelavic et al. [67] produced a soft cut-out strategy
worst-case scenario algorithm that did not significantly increase the fatigue loads. Astolfi
et al. [68] performed a SCADA data analysis, extending the power curve of a wind turbine
farm in the high-speed region, and concluded that the simulated energy improvement
was 0.62%, which equaled 1.80% of the wind farm’s total production. Lastly, Castellani
et al. [66] extracted operational data from a 2.3 MW wind turbine, which was then simulated
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to work with the soft cut-out strategy, producing 1.02 MW more energy than its initial
operating state.

A final source of uncertainty with respect to actual wind power generation, in contrast
to the theoretical behavior of the power curve, was associated with monitoring errors.
The output power observations were acquired through Supervisory Control and Data
Acquisition (SCADA) systems. However, such systems often contain abnormal data and
outliers, occurring from wind curtailment, maintenance, or other uncontrollable factors [69].
Consequently, these data need to be cleared by appropriate classification algorithms in
order to eliminate their adverse effects and improve wind power predictability [70].

5. HRES Simulations and Optimizations under Uncertainty
5.1. Incorporating Uncertainty in the Simulation

Following the uncertainty aware framework by Sakki et al. [31], we ran the design
optimization problem in the Monte Carlo context. This involved the formulation of many
scenarios (specifically, one hundred), which allowed for providing equally probable sets of
optimized solutions instead of a unique one.

In Section 1, we outlined the three key sources of uncertainty that were embedded in
the aforementioned Monte Carlo simulation–optimization approach, categorizing them
into two external processes (wind velocity and energy demand) and an internal one (wind
power conversion to electricity). The first two sources of uncertainty ere integrated in
the simulation by means of synthetic time series that were generated through the anySim
package [50], which provided a suite of stochastic models for the simulation of both
stationary and cyclostationary processes (in univariate or multivariate modes) that may
follow a wide spectrum of distributions. This allowed for generating synthetic time series
with the desired marginal and stochastic properties, as reflected in the associated historical
data [71–73]. In our work, we utilized this package, which ran in the R programming
environment, to generate 100 synthetic time series of hourly wind velocity and hourly
energy demand (one for each scenario), for a 20-year horizon, which is the typical economic
lifespan of an HRES. Their probabilistic and dependence regime reproduced the one of the
corresponding historical data, the length of which (ten years) was rather short for a proper
representation of their actual variability and, thus, uncertainty.

Regarding the uncertainty in the wind velocity to power conversion, as mentioned
in Section 4, wind turbines operate in complex and variable conditions, thus the power
curves provided by the manufacturers did not accurately represent their on-site behavior.
In this vein, we followed a Monte Carlo simulation approach, considering that the shape
parameters a and b of the empirical Equation (2) were random variables. Specifically, for
both turbines, the output power for a given wind velocity value was sampled from a normal
distribution with a~N(2.25, 0.0225) and b~N(20, 0.016). This distribution and its associated
parameters (i.e., mean and standard deviation values) were appropriately selected after
some trials, so that the average deviation from the theoretical curve was not greater than
15% (Figure 5). This deviation was within reasonable margins, since Lira et al. [74] stated
that the power curve uncertainty was approximately 10%.

Furthermore, we also implemented the soft cut-out strategy, allowing the wind turbine
to operate in the high-wind-speed region (Figure 5). Therefore, we considered a linear
reduction in the turbine’s power for wind speed values between 25 and 30 m/s. The slope,
z, of this linear equation was also represented as a normal process, with z~N(150, 225) for
the large turbines and z~N(45, 100) for the small ones.
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5.2. Results of Monte Carlo Scenarios

Table 4 summarizes the key statistical characteristics of the basic outputs of the
100 optimization scenarios, which are expressed in terms of mean, standard deviation,
and three typical quantiles, i.e., 10, 50, and 90%. We remembered that the two design
variables to be optimized were the reservoir active depth and total power capacity of the
PVs. The conventional approach of Section 3 resulted in the optimized values of 2.88 m
and 1.09 MW, respectively. However, under the Monte Carlo framework, the reservoir
depth and, consequently, its storage capacity, exhibited significant variability, which was
propagated in the key performance metrics of the system (net profit and reliability). In
contrast, the variability of the PV capacity was negligible. In this context, the range of
uncertainty with respect to renewable energy production mainly reflected the stochasticity
of the wind process and its conversion through the probabilistic power curves of the two
turbines. We observed that while the installed wind power capacity remained constant (i.e.,
6.4 MW), the capacity factors of the two machines varied (although, not significantly) as a
result of this stochasticity. On the other hand, since for all scenarios we applied the same set
of solar radiation data, the capacity factor of the PVs remained constant and equaled 0.21.

Table 4. Statistical characteristics of the optimized scenarios (one hundred datasets).

Mean Standard
Deviation

10%
Quantile

50%
Quantile

90%
Quantile

Reservoir active depth (m) 3.07 0.76 3.96 2.98 2.36
Reservoir storage capacity (m3) 329,882 53,370 400,282 323,278 274,583

Solar power capacity (MW) 1.69 0.03 1.70 1.69 1.67
Mean annual energy production from wind

turbines and solar panels (GWh) 24.24 1.90 26.78 24.43 21.86

Mean annual energy production from PHS
system (GWh) 4.93 0.19 5.16 4.95 4.69

Reliability (%) 94.89 1.50 96.75 95.11 92.98
Mean annual net profit (EUR) 640,234 255,062 959,029 669,924 315,269

Investment cost (EUR) 15,615,067 339,558 16,039,471 15,575,241 15,274,195
Ordinary annuity (EUR) 1,820,737 24,986 1,851,966 1,817,807 1,795,283
Payback period (years) 6.35 0.51 5.71 6.26 7.24

Capacity factors
Small wind turbines 0.29 0.03 0.34 0.30 0.25
Large wind turbines 0.41 0.03 0.46 0.41 0.37
Hydropower station 0.09 0.01 0.10 0.09 0.08
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5.3. Insight into the Trade-Off between Reservoir Size and Overall System Profit

The analysis of the model outcomes under uncertainty revealed the existence of a
trade-off between the key design quantity, i.e., the active depth of the reservoir, which
dictated its size, and the overall profit of the water energy system. Since this trade-off
embedded all kinds of uncertainties that were included in the simulation–optimization
procedure, its quantification and interpretation presupposed the use of advanced stochastic
and statistical tools. This objective was implemented via a two-step approach.

First, we investigated the marginal behavior of the two random variables by assigning
suitable statistical distributions, specifically normal and log-normal ones, to the reservoir
active depth and the mean annual profit, respectively (Figure 6). In this context, we
utilizes the fitdistrplus R package [75], which provided functions for fitting a wide range of
univariate distributions to different types of data (continuous censored or non-censored,
and discrete as well), also supporting different parameter estimation procedures. In our
case, for both variables, we applied the moment-matching estimation method, which
involved finding the values of the model parameters that made the data’s sample moments
equal to the model’s corresponding population moments.
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After selecting the marginal distributions for the two variables, we investigated their
dependencies by fitting a Gaussian copula, as shown in Figure 7. Notably, the two variables
exhibited a quite strong negative correlation, as indicated by the associated Pearson’s
coefficient (R), which equaled −0.75. The copula approach enabled the formulation of
multivariate non-normal distributions by combining given non-normal marginal models,
only with dependence patterns. Gaussian copulas are very flexible and have been broadly
used for the modeling of dependent variables of any type [76,77], as well as for predictive
uncertainty assessment studies.
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In our case, the copula-based approach provided greater insight into the trade-off
between the optimized reservoir depth and the associated profit under uncertainty. In
particular, for a given depth, and thus a known reservoir size, which is an engineering
decision, we may specify a probabilistic range of the anticipated annual profit of the system.
On the contrary, a desirable profit threshold corresponds to a range of potential design
options. In this vein, a conservative design approach would favor the implementation of
a large reservoir (upper quantile) and vice versa. Conclusively, the copula graph can be
utilized as a decision support tool for both engineers and from the perspectives of investors
and stakeholders.

6. The Challenge of Seawater

One of the major obstacles for the development of HRESs in small, non-interconnected
islands, which take advantage of PHS systems, is the scarcity of water resources, which is a
long-lasting issue, especially during summer. A potential solution can be the deployment
of PHS systems that utilize the sea as the lower reservoir, as proposed for the case of Sifnos
island. The Okinawa Yanbaru Seawater Pumped Storage Power Station [78] was the first
experimental pumped storage facility in the world that used seawater for energy storage.
Its construction lasted from 1987 to 1999; yet, it was dismantled in 2016. This was because
Okinawa’s projections overestimated the load demand growth, constituting the plant’s
operation as no longer profitable.

Over the years, there have been several studies suggesting the use of PHS systems
that utilize the sea as a lower reservoir in islands, including Hawaii, Ireland, and the
Azores [79–81]. In a more recent study, Ali and Jang [82] examined the case of Deokjeok-do,
South Korea, and found that an HRES coupled with a seawater PHS system, apart from
providing energy independence, also led to a cheaper initial investment cost than using
batteries as energy storage. However, the inclusion of a seawater pumped storage system in
the HRES introduced various technical challenges, mainly related to corrosion. This section
aims to address the most crucial ones, ensuring the proposed system’s technical feasibility.

6.1. Conveyance System

Corrosion prevention can vary depending on whether the components are subject
to high or low flows. This protection categorization was implemented in the Okinawa
project [83]. The conveyance system of the latter utilized pipes fabricated of fiber-reinforced
plastic (FRP) with rubber joint seals, which are resistant to both seawater corrosion and
high pressure. Generally, glass-reinforced polyester (GRP) was chosen for smaller pipe
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diameters [84]. GRP is a composite material that consists of a polymer matrix and glass
fibers. The former is usually an epoxy, vinyl ester, or polyester thermosetting resin, acting
as a binder for the fibers, while the latter adds strength to the composite [85]. Its chemical
structure is inert to seawater and its smooth surface reduces hydraulic losses, exhibiting a
quite satisfactory friction factor of 0.030. However, this material’s internal water pressure
decreases as the pipe’s diameter increases. Nevertheless, GRP pipes can be combined with
steel pipes, if higher pressures are expected [84].

Another important issue regarding the conveyance system is the unwanted accu-
mulation of marine organisms immersed in the sea, which is also referred to as marine
fouling [86]. In the past, various methods were used to prevent that phenomenon, such as
chlorine production by an electrolysis unit and its disposal in the penstock [87]. However,
it was found that such practices not only threatened the surrounding ecosystem, but also
deposited byproducts (i.e., manganese) [88]. While less harmful methods that do not pro-
duce biocidal intermediates have been investigated, i.e., electrochemical degradation [89],
natural biocide-based, and non-stick coatings [90,91], further research is required in order
to provide solutions that ensure both the surrounding ecosystems’ sustainability and the
project’s techno-economic feasibility.

6.2. Electromechanical Equipment

Electromechanical equipment refers to the turbines and pumps used in the PHS system.
In HRESs, the selection of pumps is a particularly important procedure, as there is a wide
variety available on the market, serving various applications. For a project of this scale,
centrifugal pumps are recommended, given that they have been previously used for marine
applications [92]. Their basic limitation is associated with the intermittent production of
renewables, meaning that when weather conditions are not favorable, it may be impossible
to develop sufficient heads to fill the reservoir. This issue was addressed by Manfrida and
Secchi [92], who suggested a configuration, including the installation of pumps in parallel,
with different flow rates.

Similar to the corrosion of pipes, the erosion of electromechanical equipment poses
another technical challenge. Francis and Hebdon [93] distinguished several types of
corrosion from seawater that could affect stainless steel (SS) electromechanical equipment
into the following ways:

• Crevice corrosion, which is the most ordinary form of corrosion, is initiated by changes
in the local chemistry within a crevice. It is usually associated with a stagnant solution
in the micro-environments that tends to occur in crevices. In seawater pumps, crevices
can be found where seals and impellers are fastened to the shaft and flange faces are
cast in for pipework connections;

• Erosion corrosion can occur from the seawater’s rapid flow rate;
• Cavitation occurs when a fluid’s operational pressure drops below its vapor pressure

and causes gas pockets and bubbles to form and collapse. This common phenomenon
occurs when a pump operates outside its normal design parameters. The formed
bubbles erode the steel;

• Corrosion fatigue derives from the combination of alternating or cycling stresses in a
corrosive environment, mainly affecting seawater pump shafts.

In general, alloys of stainless steel (i.e., chromium, nickel, and molybdenum) have a
high pitting-resistance equivalent number (PREN), which indicates its corrosion resistance.
According to the Norwegian Standards, a PREN value of around 40 provides sufficient
corrosion resistance to seawater [94].

6.3. Groundwater Degradation Due to Seawater Effects

The last challenge introduced by seawater concerns the possibility of ground con-
tamination by salt water (either by leakage or wind transport). Specifically, groundwater
salinization is a crucial environmental issue, especially in areas with karstified underlying
geological formations (this was also one of the major shortcomings of the proposed design
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for Sifnos). Thus, the waterproofing of the reservoir is considered essential while dealing
with seawater. In this context, high-density polyethylene geomembranes (HDPEs), which
are resistant to chemicals and ultraviolet radiation, are a potential solution, combined with
a drainage system that detects possible leakages [78]. On the other hand, the construction
of an embankment around the reservoir can prevent seawater transport via the wind [84].

7. Conclusions

In the present study, we developed a simulation–optimization procedure for the design
of HRESs in a stochastic setting and assessed it within the preliminary analysis of a pro-
posed scheme for a non-interconnected Aegean island (Sifnos). The HRES model was based
on an hourly time-scale simulation approach, accounting for a detailed representation of all
important meteorological, energy, and water fluxes. With regard to this, the optimization
method opted for a robust and techno-economically sustainable outcome, thus maximizing
the project’s mean annual profit until its full depreciation and simultaneously ensuring high
reliability in the load demand satisfaction. We highlighted that our design optimization
approach resulted in a much smaller reservoir size with respect to the previous estimations
(i.e., 315,000 vs. 1,100,000 m3), with a minor loss of reliability.

The design procedure was then formalized by means of one-hundred Monte Carlo
scenarios, in which we considered three key sources of uncertainty, involving physical
(wind velocity), anthropogenic (load demand), and internal (wind power-to-electricity
conversion) processes. As expected, the incorporation of all these sources of uncertainty
within the design, which was the key novelty of this research, was reflected in all quanti-
ties of interest, namely, the reservoir size, the reliability of the system, and the net profit.
Nevertheless, the initially proposed reservoir size still remained far away from the 90%
range of variability. The quantification and interpretation of uncertainty was facilitated
through typical statistical metrics (e.g., empirically derived quantiles), as well as more ad-
vanced probabilistic–stochastic tools. In this context, we applied a copula-based approach
to evaluate the trade-offs between two of the most important aspects of the optimization
problem, namely, the active depth of the storage component (design variable) and the
net annual profit (performance metric). Our analysis indicated that this could also serve
as a decision support tool for all the associated groups of interest (engineers, investors,
and stakeholders).

Furthermore, the selection of a seawater PHS system introduced several challenges,
which we briefly highlighted and addressed through effective technological means. To date,
this option has only been practically tested in very limited cases; yet, it has the potential for
wide applicability in islanding areas that suffer from water scarcity (which was also the
case for Sifnos). Our analysis indicated that HRESs coupled with seawater PHS systems
can provide techno-economically feasible solutions to the matter of energy independence
in isolated and islandic regions, thus contributing to the sustainable development of the
associated local communities.

Certainly, the overall design of HRESs supported by PHS systems also presented sev-
eral other challenges to be addressed involving the project siting and synergies between the
systems’ components, thus making the underlying multi-objective optimization problem
even more complex [95,96].

In particular, the generic layout of the system should also be investigated from the
environmental perspective, since ecologically sensitive areas require careful planning and
thorough assessing of the ecosystem impacts. Thus, an HRES feasibility study must be
accompanied by a formalized environmental impact assessment (EIA). An EIA includes
measures to minimize or offset the impacts of the surrounding and broader ecosystem,
deriving from the project’s implementation and operation [97]. Mitigation measures re-
fer to scaling down or even relocating the project to reduce the impacts at the source,
whereas offset measures compensate for the negative impacts by providing solutions that
counterbalance them [98].
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On the other hand, the synergy between water and energy components across an HRES
can be even more effective in order to improve its overall performance. A prime example
is the installation of floating photovoltaic modules (FPVs) on a reservoir [99,100]. Such a
configuration can favor both components, since the water cooling effects of evaporation
and wind ventilation increase the PV energy yield, while the PV modules’ shading effects
concurrently limit the losses due to evaporation [101]. Such a layout can also be investigated
in the Sifnos case.

The incorporation of environmental issues within the design optimization procedure
and the interactions between the reservoir and FPVs introduced additional sources of
uncertainty to be accounted for in a future study. There is also an ample number of
uncertainty issues to be included in a forthcoming analysis with respect to external drivers
(e.g., solar radiation, energy market, and social reactions), as well as power delivery
issues (e.g., electricity transmission losses, voltage stability, and breakeven grid extension
distance) [102]. Nevertheless, this study proposed all the fundamental elements, in terms
of the theoretical background and computational tools, to address the design of HRESs
under uncertainty.
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