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Abstract: The evaluation of weather forecast accuracy is of major interest in decision making in almost
every sector of the economy and in civil protection. To this, a detailed assessment of Bologna Limited-
Area Model (BOLAM) seven days fine grid 3 h predictions is made for precipitation, air temperature,
relative humidity, and wind speed over a large lowland agricultural area of a Mediterranean-type
climate, characterized by hot summers and rainy moderate winters (plain of Arta, NW Greece).
Timeseries that cover a four-year period (2016–2019) from seven agro-meteorological stations located
at the study area are used to run a range of contingency and accuracy measures as well as Taylor
diagrams, and the results are thoroughly discussed. The overall results showed that the model failed
to comply with the precipitation regime throughout the study area, while the results were mediocre
for wind speed. Considering relative humidity, the results revealed acceptable performance and good
correlation between the model output and the observed values, for the early days of forecast. Only in
air temperature, the forecasts exhibited very good performance. Discussion is made on the ability of
the model to predict major rainfall events and to estimate water budget components as rainfall and
reference evapotranspiration. The need for skilled weather forecasts from improved versions of the
examined model that may incorporate post-processing techniques to improve predictions or from
other forecasting services is underlined.

Keywords: BOLAM; weather forecast evaluation; rainy area; precipitation; reference evapotranspiration

1. Introduction

Accurate weather forecasting by means of robust weather prediction models is critical
for several industries and for civil protection agencies. Farmers rely on weather to grow crops,
industries such as transportation and construction need to plan for potential disruptions, such
as road closures and delays, and civil protection agencies need critical information that can
help them prepare for and respond to natural disasters and other emergencies.

Numerical weather prediction tries to foresee weather at evolution of time and involves
the integration of hydrodynamics to numerical methods with specified initial conditions.
The verification of those weather forecast models is an essential part of any forecasting
system and obviously is the subject of many studies.

In this context, López López et al. [1] asserted that the Ensemble Prediction Systems
(EPS) have good reliability over study areas in Mexico for thresholds of 5–20 mm of rain
accumulated in 24 h and manage to adequately represent the mean and 95 percentile of
rain accumulated in 6 h for a forecast horizon of 90 h. On the other hand, Apicella et al. [2]
concluded that precipitation forecasts are affected by relatively high uncertainties, due to
the inherent unpredictable nature of precipitation, which is particularly evident over the
Italian territory that they studied. Further, Shahrban et al. [3] found that there are only
a few studies in Australia that have assessed the forecast of precipitation and, by using
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rain radar observations for verification, concluded that the forecast skill of the Australian
Community Climate Earth-System Simulator (ACCESS) needed significant improvement
for hydrological modelling applications.

Clark and Hay [4] examined 40 years of 8-day atmospheric forecasts over the contiguous
USA from the National Centers for Environmental Prediction (NCEP) for predictions of
streamflow using daily precipitation along with maximum and minimum temperature and
found the biases in the NCEP forecasts to be quite extreme. In many regions, systematic
precipitation biases exceed 100% of the mean, with temperature biases exceeding 3 ◦C. In
another study, the long-term verification of the German Weather Service models showed that
they are fairly successful in discriminating between cases of rain and of no rain [5]. The Eta
Weather Forecast Model was evaluated over Central Africa by Tanessong et al. [6] and found
quite good temperature predictions but not good simulations for precipitation. Pinson and
Hagedorn [7], indicated generally good quality of ensemble forecasts of ECMWF (European
Centre for Medium-Range Weather Forecasts) for wind speed, verified by 731 stations over
Europe. Regional Atmospheric Modeling System (RAMS) was evaluated by Tiriolo et al. [8],
with a root mean square error of approximately 2–3 K for temperature and 12–16% for relative
humidity. The verification has been performed against surface SYNOPtic observation (SYNOP)
stations over southern Italy. Liu et al. [9], found out that numerical models, which have been
used for forecasting services in northwestern China, have not been extensively evaluated, and
thus they evaluated forecast performance for four meteorological models during summer over
that area. Their study showed that the RMSE of the forecast temperature at 2 m for each model
was consistent with daily variations, the RMSE of the forecast zonal and meridional wind
speeds at 10 m for each model was high during daytime and low at night and no model had
forecast skills for small-scale high-intensity precipitation but they did have high forecast skills
for large-scale precipitation. Varlas et al. [10] evaluated the precipitation forecasts produced
from WRFARW model (Advanced Weather Research and Forecasting) for a 4-year period
(September 2015–August 2019) using measurements from 24 meteorological stations. The
results of the statistical evaluation indicated that the use of the hydrometeorological modelling
system provides skillful precipitation and water level forecasts.

Considering the Bologna Limited-Area Model (BOLAM), Koussis et al. [11] verified
the precipitation forecasts for eight cases with widespread precipitation over Greece during
fall and winter 2000–2001. Values of 24 h accumulated precipitation were compared against
observations from the Greek synoptic surface network. Bias and mean absolute error
values revealed that BOLAM overpredicts the low to medium precipitation amounts and
underpredicts the high precipitation amounts. An one-year evaluation of BOLAM for
temperature, wind and precipitation in Cyprus was presented by Savvidou et al. [12]. The
findings showed that the model underestimated temperature in general and the wind
speed in the coastal areas. Considering precipitation, the results were satisfactory for the
smaller thresholds while declining for the larger. A comparison between the outputs of
two versions of BOLAM for a flood event that took place in Rome at 2008 [13]. The results
suggested that the upgraded model provided a more realistic representation of the cyclone
warm sector even if no evidence was found that the model upgrade was able to reduce the
forecasting error about the position and the shape of the cyclone.

In this study we attempt a comprehensive assessment of the accuracy and reliability
of BOLAM’s seven days fine grid predictions for precipitation, air temperature, relative
humidity and wind speed over the plain of Arta, located at northwestern Greece for a four-
year period (15 January 2016–22 December 2019). Using data from seven stations located
at the study area along with a range of evaluation metrics and hydrological applications,
we attempt to reveal the forecast’s effectiveness to provide insights into its usefulness and
inform future forecasting efforts.
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2. Materials and Methods
2.1. Study Area

The plain of Arta (Figure 1a) lies at the northwestern part of Greece, in the Region
of Epirus, and has a total area of approximately 45,000 ha. The prevailing crops in the
plain consist of citrus, olive, and kiwifruit trees, along with some arable crops. Olive is
the most important crop in terms of surface area at a regional level with approximately
5500 ha of cultivated land of which 30% is irrigated [14]. The plain is bordered by moun-
tains on the north and east and by the sea at the south and west. The climate of Arta’s
plain is of Mediterranean type, characterized by hot summers and rainy moderate winters,
following the atmospheric circulation regime of the northeastern part of the Mediterranean
region [15,16]. The annual precipitation is 1100 mm and the average temperature is 17.2 ◦C
(Figure 1c), concentrated mainly during winter months, rendering irrigation a necessity dur-
ing summer [17]. Two large rivers (Arachthos and Louros) traverse the plain, functioning
as the main surface water resources.
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Figure 1. (a) Study area, (b) digital elevation model with agro-meteorological stations and BOLAM
forecast grid, (c) ombrothermic diagram based on climatic data (Data Period: 1976–2010) [17].

2.2. Forecast Data

In the framework of the IRMA project which was funded by the European Territorial
Cooperation Programme (ETCP) GREECE-ITALY 2007–2013, the National Observatory of
Athens (NOA) delivered forecast data to the University of Ioannina for almost four years
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(15 January 2016–22 December 2019) [18], to be integrated into a platform for estimating
near-real-time crop water requirements and irrigation forecasts across the study area [19].
The forecasts were available early each day, for the current (Day 0) and six days ahead
(Day 1 to Day 6), in the form of a text file that contained all the information from Grid 2 of
BOLAM model [20,21].

BOLAM performs one-way nested simulations, using two nested grid domains:
(a) a coarse grid consisting of 135 × 110 points with a 0.21 degrees horizontal grid in-
terval (approximately 23 km) centered at 41◦ N latitude and 15◦ E longitude, covering the
area of the Eastern Mediterranean, and (b) a fine grid consisting of 140 × 128 points with
a 0.06 degrees horizontal grid interval (approximately 6.5 km) centered at 38◦ N latitude
and 24◦ E longitude (approximately the position of Athens). The fine grid covers the Greek
peninsula with its maritime areas expanding from the Ionian Sea in the west up to the
Turkish coasts in the east [21].

Figure 1b presents the 9 × 6 square grid with cell size of 4.33 km, created from
the 54 points provided by NOA, with 0.05 degrees grid increment. Each grid cell is
named after the BOLAM grid point identifier. For each point, the basic meteorological
parameters, i.e., precipitation (mm), air temperature (◦C), relative humidity (%), wind speed
at 10 m (bf), wind direction (degrees) and air pressure (hPa) were provided in 3 h steps from
15 January 2016–22 December 2019.

In the context of the present study, the seven days forecasts of precipitation, air
temperature, relative humidity and wind speed were evaluated. Table 1 presents the range
and number of 3 h records for each day of forecast.

Table 1. NOA’s 3 h-forecast data details.

Forecast Day Range Number of Timesteps

Day 0 03:00–21:00 UTC 7
Day 1 00:00–21:00 UTC 8
Day 2 00:00–21:00 UTC 8
Day 3 00:00–21:00 UTC 8
Day 4 00:00–21:00 UTC 8
Day 5 00:00–21:00 UTC 8
Day 6 00:00 UTC 1

2.3. Agro-Meteorological Stations Network

The forecasts were verified against meteorological data acquired from 7 stations lo-
cated at the study area for the same time span. These stations belong to a larger network
which currently counts 18 telemetric agro-meteorological stations installed across the Epirus
water district by the University of Ioannina. This network is part of the Open Hydrosystem
Information Network (Openhi.net) which is a national large-scale infrastructure for collect-
ing, processing and storing data on the surface waters of Greece, serving applied, research
and operational needs [22].

All stations were installed and maintained according to WMO [23] and FAO guidelines [24]
and they have modular design to support different types of sensors. Each station is equipped
with sensors to record in 10 min intervals (UTC + 02:00) the following parameters:

1. Precipitation (mm) (Model Rain-O-Matic, Pronamic ApS, Skjern, Denmark, accuracy
±2%, resolution 0.20 mm),

2. Air temperature (◦C) (Model EE08, E + E Elektronik GmbH, Engerwitzdorf, Austria,
accuracy ±0.2 ◦C, measuring range −40 to 80 ◦C),

3. Air relative humidity (%) (Model EE08, E + E Elektronik GmbH, Engerwitzdorf,
Austria, accuracy ±2%, measuring range 0 to 100%),

4. Solar radiation (W m−2) (Model PYR, MeterGroup Inc, Pullman, Washington, DC,
USA, accuracy ±5%, measuring range 0 to 1750 W m−2),
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5. Wind speed at 3 m height (m s−1) (Model 4.3515.51.000, Thies GmbH & Co., Göttingen
Germany, accuracy ±0.5 m s−1 or ±5% of measured value, resolution 0.4 m wind run,
measuring range 0.9 to 40 m s−1), and

6. Wind direction (as degrees from North) (Model NRG 200P, NRGSystems Inc.,
Hinesburg, Vermont, USA, measuring range Direction-360◦, resolution approx. 0.5◦,
sensitivity approx. 1 m s−1).

Data are transmitted by UHF or GPRS (model A753 addWAVE, Adcon Telemetry
GmbH, Vienna, Austria) to the communications center (model A850, Adcon Telemetry
GmbH, Vienna, Austria) and are freely provided in near real time by the Openhi.net online
timeseries database: https://system.openhi.net (accessed on 31 July 2023).

The measurements of each station were compared to the forecast values of the match-
ing grid cell according to its location. This was chosen on purpose, since further manip-
ulation of the forecast data by means of interpolation would result in alteration of the
actual forecast data (Figure 1b). Table 2 presents the stations information along with the
corresponding BOLAM grid cell identifiers, in ascending order.

Table 2. Agro-meteorological stations information and the corresponding BOLAM grid cell identifiers.

BOLAM
ID

Station Name/
URL (accessed on 31 July 2023)

Longitude
(Degrees)

Latitude
(Degrees)

Altitude
(m)

16967 Kommeno/
system.openhi.net/stations/1406/ 21.012 39.051 10

17148 Lamari/
system.openhi.net/stations/1428/ 20.731 39.099 6

17151 Vigla/
system.openhi.net/stations/1405/ 20.885 39.079 0

17152 Kostakii/
system.openhi.net/stations/1402/ 20.947 39.122 10

17154 Kompoti/
system.openhi.net/stations/1407/ 21.061 39.095 15

17337 Agios Spyridonas/
system.openhi.net/stations/1403/ 20.876 39.149 10

17523 Kambi/
system.openhi.net/stations/1404/ 20.913 39.216 20

2.4. Timeseries Preprocessing

Firstly, the historical data time zone was shifted from Eastern European Time (EET) to
Coordinated Universal Time (UTC) to match the forecasts. Additionally, non-valid values were
discarded and records with missing values were omitted through a range check procedure.
Additionally, the historical data timeseries had 10 min step, so they were aggregated using the
Hydrognomon software (https://hydrognomon.openmeteo.org (accessed on 31 July 2023))
to 3 h timestep. Hydrognomon is a free software tool for the processing of hydrological
data. Available processing techniques include time step aggregation and regularization,
interpolation, regression analysis and infilling of missing values, consistency tests, data
filtering, graphical and tabular visualization of timeseries [25].

Additionally, wind speed was measured at 3 m height above the ground, so logarithmic
transformation to the height of 10 m took place according to Equation (1) [23,26]:

u10

u3
=

ln(10/z0)

ln(3/z0)
(1)

where u3 and u10 are the wind speed values (m s−1) at 3 and 10 m height, correspondingly
and z0 is the aerodynamic roughness length, which for low crops is considered equal to
0.1 m [23]. Subsequently, the wind speed data were converted to the Beaufort scale in order
to be comparable with the forecasts [27].

https://system.openhi.net
system.openhi.net/stations/1406/
system.openhi.net/stations/1428/
system.openhi.net/stations/1405/
system.openhi.net/stations/1402/
system.openhi.net/stations/1407/
system.openhi.net/stations/1403/
system.openhi.net/stations/1404/
https://hydrognomon.openmeteo.org
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To perform the evaluation, the timestamps of forecasts and observations needed to be
matched. This was accomplished using Matlab, resulting in pairs of observations—forecasts
from Day 0 to Day 6. Thus, for each station and for each meteorological variable, seven forecast–
observation files were created so that the evaluation could be performed. Consequently,
approximately 1,700,000 forecast–observation pairs in 196 files were generated for evaluation.

2.5. Evaluation Criteria

The forecasts’ quality was assessed by applying accuracy measures along with Taylor
diagrams for all variables, combined with contingency measures for precipitation. Below
follows a short description of the above-mentioned criteria.

2.5.1. Accuracy Measures—Taylor diagram

All forecasted variables, i.e., precipitation, air temperature, relative humidity and wind
speed, were evaluated by several accuracy measures such as the mean bias error (MBE),
the mean absolute error (MAE), the root mean square error (RMSE) and the Nash–Sutcliffe
Efficiency (EF), as reported in Malamos and Koutsoyiannis [28]:

MBE =
1
n

n

∑
i=1

( fi − oi) (2)

MAE =
1
n

n

∑
i=1
| fi − oi| (3)

RMSE =

 1
n

n

∑
i=1

( fi − oi

)2
1/2

(4)

EF = 1− ∑n
i=1( fi − oi)

2

∑n
i=1(o− oi)

2 (5)

where n is the number of forecasts/observations, oi is the ith observation, fi is the ith
forecast, o is the observations average while f is the forecasts average.

Apart from the above presented measures we also implemented the Taylor diagram [29]
that provides a way of plotting three statistics on a two-dimensional diagram that indicates
the proximity of the forecast to the observed values. The statistics needed to create a Taylor
diagram are: (i) the correlation coefficient, r, (ii) the centered pattern root mean square
difference, RMSD, and (iii) the standard deviation of forecasts and observations, σf and σo,
respectively. These statistics assist to determine how much of the overall RMSD in patterns is
attributable to a difference in variance and how much is due to poor pattern correlation [29].

The equation providing the aforementioned RMSD statistic, following the above
presented notation, is [29]:

RMSD =

[
1
n

n

∑
i=1

[(
fi − f

)
− (oi − o)

]2
]1/2

(6)

Each forecast day is plotted on a polar style diagram with the Obs point representing
the observation. The radial distances from the origin to the points are proportional to
timeseries standard deviations and the azimuthal positions give the correlation coefficient
between observation and forecast timeseries. The RMSD between forecast and observa-
tion timeseries is proportional to their distance apart, in the same units as the standard
deviation [29].

The Taylor diagram has been used in various studies related to the evaluation of
climate forecasts and simulations. Lorenzo et al. [30], used it to evaluate irradiance forecasts
while Phakula et al. [31] also used it to evaluate maximum and minimum temperature
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forecasts over South Africa. Similarly, Salih et al. [32] used the Taylor diagram to determine
the effectiveness of simulating precipitation over Tensfit Basin in Morocco.

Taylor diagrams were created for all the variables, i.e., precipitation, air temperature,
relative humidity and wind speed. In particular for precipitation, since the case “no rain”
in both forecasts and observations was not considered for contingency evaluation, they are
not considered either for creating Taylor diagrams.

2.5.2. Contingency Measures

The evaluation of precipitation forecasts included contingency measures which are
not quantitative indicators of a weather event forecast. The forecast is valued by the fact
that the event happened or not, versus whether it was predicted or not. These cases are
designated as a, b, c and d, according to Table 3.

Table 3. Contingency table.

Event Observed

Yes No

Event Forecast
Yes a b

No c d

Based on the above, the following statistics can be calculated [33]:
Frequency bias:

FBIAS =
a + b
a + c

(7)

Probability of detection:

PoD =
a

a + c
(8)

Success rate:
SR =

α

a + b
(9)

Critical success index:
CSI =

a
a + b + c

(10)

The frequency bias, FBIAS, is simply the ratio of the number of “yes” forecasts to the
number of “yes” observations. Unbiased forecasts exhibit FBIAS = 1, indicating that the
event was forecasted the same number of times that it was observed. Note that FBIAS
provides no information about the correspondence between the individual forecasts and
observations of the events on particular occasions, so that Equation (7) is not an accuracy
measure. FBIAS greater than 1 indicates that the event was forecasted more often than
observed. Conversely, FBIAS less than one indicates that the event was forecasted less often
than observed.

Probability of detection (PoD) is the ratio of correct forecasts to the number of times
this event occurred. The optimum value is 1, when all the events have been forecasted.

Success rate (SR) is the ratio of correct predictions to the number of all predictions.
The optimum value is 1, which means all predictions were correct.

Critical success index (CSI) is the number of correct “yes” forecasts divided by the
total number of occasions on which that event was forecast and/or observed. The CSI is
used when the event to be forecast (as the “yes” event) occurs substantially less frequently
than the nonoccurrence (the “no” event), such as precipitation [33]. The optimum is 1,
when the forecast model is always successful.

The above presented measures were applied using various thresholds of precipitation
such as: 0.2 mm, 1 mm, 3 mm, 5 mm, 10 mm and 20 mm. Each case was studied con-
sidering precipitation forecast or event with mm of precipitation equal to or greater than
the threshold, thus the 0.2 mm threshold means that all recorded events were considered.
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These thresholds were adopted to provide a thorough evaluation of the precipitation occur-
rence since the smaller provided forecast value was 0.1 mm while the agro-meteorological
stations had resolution of 0.2 mm. The other five thresholds, i.e., 1, 3, 5, 10 and 20 mm were
chosen based on literature [2,11,20].

3. Results and Discussion

Table 4 presents the 3 h average and standard deviation of the stations recorded data
for air temperature, air relative humidity and precipitation for the examined BOLAM grid
cells. It is obvious that the statistical characteristics of the data are similar but the magnitude
of differences between them justifies the need of dense stations network for tracing their
variability. In the case of precipitation, the standard deviation is greater than the average
in all cases, implying highly non-normally distributed data with increased frequency of
high values.

Table 4. Three-hour average and standard deviation of air temperature, air relative humidity and
precipitation station data, per cell of the forecast grid.

BOLAM Cell—Station
Air Temperature (◦C) Rel. Humidity (%) Precipitation (mm)

o σo o σo o σo

16967—Kommeno 16.6 8.1 84.8 19.4 2.0 5.1
17148—Lamari 17.5 7.9 74.3 19.8 2.3 4.9
17151—Vigla 17.0 7.9 83.1 19.3 2.1 5.1

17152—Kostakii 17.3 8.4 80.5 21.2 2.3 4.8
17154—Kompoti 16.6 8.7 82.0 20.6 2.5 5.7

17337—Agios Spyridonas 16.9 8.3 80.1 21.2 1.9 4.6
17523—Kampi 17.7 8.6 74.8 22.3 2.3 5.0

3.1. Precipitation Forecast Evaluation

As stated earlier, the precipitation forecasts evaluation comprises from contingency
measures, Taylor diagrams and accuracy measures for each of the seven days of forecast,
i.e., Day 0 to Day 6, as presented below. Particularly for each day, the calculated contingency
measures for the different rain thresholds, i.e., 0.2 mm, 1 mm, 3 mm, 5 mm, 10 mm and
20 mm are presented. As stated earlier, the 0.2 mm threshold represents all recorded
precipitation events.

3.1.1. Frequency Bias

Figure 2a–g presents the frequency bias of BOLAM precipitation forecasts for Day 0 to
Day 6, against the optimum value of 1 that is depicted with a dashed line.

The similarity of the FBIAS pattern between the different days of forecast, with FBIAS
consistency falling below the optimal value FBIAS = 1 with increasing precipitation thresholds
is evident. The best performance of the forecast model is observed in the case of the 0.2 mm
threshold which is the case of all predicted precipitation events that can be measured, but the
predictive capacity of the model decreases towards the last day of forecast. FBIAS tends to
get values smaller than 1, i.e., the event was forecasted less often than observed, when the
precipitation threshold increases to 3 mm and more. In particular for precipitation events
greater or equal to 20 mm, the forecasts fail to portray the actual precipitation events of
this magnitude.

Considering the spatial variation of FBIAS, the forecasts of the stations located to
the north, near the mountains (BOLAM grid cells: 17337 and 17523), presented larger
values of FBIAS than the rest, signifying that the model forecasted more rainfall events
than those observed. This attribute could be explained by the local orography effects
that can influence rainfall patterns by causing upward movement of moist air, leading to
enhanced precipitation on windward slopes and rain shadow effects on the leeward side
of mountains.
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Figure 2. Precipitation FBIAS for each of the seven days (a–g) of forecast and for the different rain
thresholds of 3 h accumulated precipitation, against the optimum of 1 (dashed line).

3.1.2. Probability of Detection

Figure 3 portrays the probability of detection (PoD) of BOLAM precipitation forecasts
per grid cell with a station, for each forecast day and for each rain threshold.
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It appears that there is a decrease in the PoD values by increasing rain thresholds,
i.e., the model’s failure to predict precipitation events as the thresholds increase. Addition-
ally, considering the days ahead increase, there is a gradual decrease in PoD values between
consecutive days. It is impressive that from Day 5 onwards, the model failed to predict any
event larger than 20 mm.
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As for the spatial variation of PoD, the forecasts of the northernmost station (BOLAM
grid cell: 17523) presented the larger values of PoD.

3.1.3. Success Rate

Figure 4 represents the success rate (SR) of precipitation forecasts per BOLAM grid
cell with a station for each forecast day and for each rain threshold.
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It is obvious that the larger values of SR accounted for the 0.2 mm threshold in all cases.
There is gradual decrease in SR for thresholds greater than 0.2 mm. As days ahead increase,
there is a gradual decrease in SR values between consecutive days; and beyond Day 3,
the success rate of the forecasts is smaller than 0.5. As previously, from Day 5 onwards,
the model presented SR = 0 for events larger than 20 mm; this signifies a total failure of
prediction of high rainfall depths.

3.1.4. Critical Success Index

Figure 5 depicts the critical success index (CSI) of precipitation forecasts per BOLAM
grid cell with a station for each forecast day and for each rain threshold.

For all days of forecast the overall performance is poor since the best CSI score is
less than 0.5 for Day 0, meaning that less than half of the forecasted precipitation events
were correctly predicted. As the rain threshold increases above 1 mm, there is an obvious
decrease in the CSI. As the days ahead increase, the CSI values decrease similarly to
the previously presented metrics, concluding to values for Day 5 less than 0.05 for events
greater than 10 mm and zero for events greater than 20 mm. For Day 6, the model presented
CSI = 0 for events larger than 10 mm apart from the case of northernmost station located at
grid cell 17523. Overall, the larger CSI values were found at grid cell 17523 (station: Kambi)
while the worst at cell 17152 (station: Kostakii), similarly with the case of PoD.

3.1.5. Accuracy Measures

Table 5 depicts the outcome of the accuracy measures used for the evaluation of the
3 h precipitation forecasts. The poor quality of the predicted values is evident since the EF
criterion is negative or very close to zero in almost every forecast day and grid cell. Even
the best performance, for Day 0 and Day 1 at cell 17148—Lamari is low as the EF values
are 0.04 and 0.03, respectively. According to literature [34], since EF is less than zero the
model-predicted values are worse than simply using the observed mean. Additionally,
the MBE is negative in all cases, indicating a tendency to underestimate precipitation.
Considering the rest of the metrics, they present similar variation in all cases.
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Table 5. Accuracy measures for 3 h precipitation forecasts.

16967—Kommeno 17148—Lamari

MBE MAE RMSE EF MBE MAE RMSE EF

Day 0 −0.7 2.3 5.8 −0.20 Day 0 −0.5 2.5 4.8 0.04
Day 1 −0.6 2.3 5.3 −0.09 Day 1 −0.6 2.5 4.8 0.03
Day 2 −0.9 2.3 5.3 −0.07 Day 2 −0.8 2.5 5 −0.08
Day 3 −0.8 2.5 5.4 −0.12 Day 3 −0.8 2.6 5.4 −0.32
Day 4 −0.9 2.5 5.5 −0.15 Day 4 −0.7 2.7 5.3 −0.26
Day 5 −0.9 2.4 5.5 −0.24 Day 5 −0.7 2.7 5.4 −0.32
Day 6 −1.3 2.6 5.3 −0.26 Day 6 −1.2 3 5.6 −0.37

17151—Vigla 17152—Kostakii

MBE MAE RMSE EF MBE MAE RMSE EF

Day 0 −0.6 2.6 6 −0.21 Day 0 −0.8 2.6 5.7 −0.19
Day 1 −0.4 2.5 6.1 −0.41 Day 1 −0.8 2.6 5.6 −0.35
Day 2 −0.7 2.4 5.4 −0.11 Day 2 −1.0 2.6 5.2 −0.18
Day 3 −0.7 2.5 5.4 −0.13 Day 3 −1.0 2.7 5.3 −0.22
Day 4 −0.7 2.5 5.4 −0.13 Day 4 −1.0 2.7 5.3 −0.27
Day 5 −0.7 2.6 5.7 −0.33 Day 5 −1.0 2.7 5.4 −0.36
Day 6 −0.8 2.4 4.8 −0.35 Day 6 −0.9 2.5 4.6 −0.40
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Table 5. Cont.

17154—Kompoti 17337—Agios Spyridonas

MBE MAE RMSE EF MBE MAE RMSE EF

Day 0 −1.0 2.6 5.7 −0.04 Day 0 −0.2 2.4 5.4 −0.22
Day 1 −1.0 2.6 5.6 0.01 Day 1 0 2.4 6 −0.69
Day 2 −1.2 2.6 5.7 0 Day 2 −0.3 2.3 4.9 −0.12
Day 3 −1.3 2.8 6 −0.13 Day 3 −0.3 2.4 5 −0.21
Day 4 −1.2 2.9 6.1 −0.18 Day 4 −0.4 2.4 4.9 −0.17
Day 5 −1.1 2.8 6 −0.20 Day 5 −0.3 2.5 5.3 −0.40
Day 6 −2.1 3.7 7.8 −0.21 Day 6 −0.5 2.5 4.9 −0.35

17523—Kampi

MBE MAE RMSE EF

Day 0 −0.3 2.6 5.3 −0.07
Day 1 −0.1 2.6 5.7 −0.28
Day 2 −0.4 2.7 5.3 −0.09
Day 3 −0.4 2.8 5.5 −0.20
Day 4 −0.5 2.8 5.2 −0.12
Day 5 −0.4 2.8 5.5 −0.32
Day 6 −0.7 3.2 6.2 −0.27

3.1.6. Taylor Diagrams

Taylor diagrams were also created for the quantitative evaluation of precipitation
forecasts, which are presented in Figure 6. Each of the diagrams presents the proximity of
the forecasts to the observed values of the agro-meteorological stations located inside the
corresponding BOLAM grid cell for each of the seven days ahead.

At the stations’ cells, the correlation coefficient, r, ranges from 0 to 0.4 for Day 0
to Day 5, respectively, while negative values are encountered for Day 6. The standard
deviation is strongly underestimated in all cases and is far from the observed value. This
means that the variability of the precipitation regime was not correctly attributed. In
particular, large precipitation depths were underestimated, while smaller precipitation
depths were overestimated. Considering the RMSD criterion, this varies for 4 mm to 6 mm
in all stations’ cells.
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3.1.7. Air Temperature Evaluation

Table 6 presents the accuracy measures for the air temperature forecasts. It’s obvious that
the model exhibits notable performance up to Day 5 for all grid cells apart from 17523. The
forecast’s performance decreases in Day 6, though remaining acceptable and reasonable.

Considering grid cell 17523, that refers to the Kampi station, the decrease in the
forecast’s performance is considerable. A plausible explanation could be the fact that is
the furthest from the sea, near the mountains (Figure 1b), thus affected by the orography.
Furthermore, it exhibits similar statistical characteristics as presented in the following
Taylor diagrams (Figure 7g).
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Table 6. Accuracy measures for air temperature forecasts.

16967—Kommeno 17148—Lamari

Day MBE MAE RMSE EF Day MBE MAE RMSE EF

Day 0 −0.2 1.7 2.2 0.93 Day 0 −0.6 1.8 2.2 0.92
Day 1 0.1 1.9 2.3 0.92 Day 1 −0.3 1.9 2.3 0.91
Day 2 0.1 1.9 2.4 0.91 Day 2 −0.2 2.0 2.4 0.91
Day 3 0.2 2.0 2.5 0.90 Day 3 −0.2 2.1 2.6 0.90
Day 4 0.2 2.1 2.7 0.89 Day 4 −0.1 2.1 2.7 0.89
Day 5 0.2 2.2 2.8 0.88 Day 5 −0.1 2.3 2.8 0.87
Day 6 1.7 2.8 3.4 0.69 Day 6 1.3 2.7 3.2 0.71

17151—Vigla 17152—Kostakii

Day MBE MAE RMSE EF Day MBE MAE RMSE EF

Day 0 −0.3 1.4 1.7 0.95 Day 0 −0.8 1.7 2.1 0.94
Day 1 −0.2 1.4 1.8 0.95 Day 1 −0.6 1.7 2.1 0.94
Day 2 −0.1 1.5 2.0 0.94 Day 2 −0.5 1.8 2.2 0.93
Day 3 −0.1 1.7 2.1 0.93 Day 3 −0.5 1.8 2.3 0.92
Day 4 0.0 1.8 2.2 0.92 Day 4 −0.4 1.9 2.4 0.92
Day 5 0.0 1.9 2.4 0.91 Day 5 −0.4 2.1 2.6 0.90
Day 6 0.6 2.0 2.6 0.81 Day 6 0.6 2.1 2.7 0.81

17154—Kompoti 17337—Agios Spyridonas

Day MBE MAE RMSE EF Day MBE MAE RMSE EF

Day 0 −0.7 2.2 2.6 0.91 Day 0 −0.7 1.9 2.4 0.92
Day 1 −0.4 2.2 2.7 0.91 Day 1 −0.5 1.9 2.4 0.92
Day 2 −0.3 2.3 2.7 0.90 Day 2 −0.4 2.0 2.5 0.91
Day 3 −0.2 2.3 2.9 0.89 Day 3 −0.3 2.1 2.7 0.90
Day 4 −0.2 2.4 2.9 0.88 Day 4 −0.3 2.2 2.8 0.89
Day 5 −0.2 2.5 3.1 0.87 Day 5 −0.2 2.3 2.9 0.88
Day 6 1.7 2.8 3.4 0.67 Day 6 0.9 2.6 3.2 0.72

17523—Kampi

Day MBE MAE RMSE EF

Day 0 −2.5 2.9 3.4 0.85
Day 1 −2.2 2.7 3.3 0.85
Day 2 −2.1 2.7 3.3 0.85
Day 3 −2.0 2.7 3.3 0.85
Day 4 −2.0 2.7 3.4 0.84
Day 5 −1.9 2.8 3.5 0.83
Day 6 −0.7 2.3 3.1 0.76

The Taylor diagrams created for the evaluation of air temperature forecasts are shown
in Figure 7. Day 0 to Day 5 forecasts exhibit standard deviations close to the observations,
meaning that the temperature forecasts do not significantly underestimate high tempera-
tures nor overestimate the smaller ones. The correlation coefficient, r, is close to 0.95 and
the RMSD ranges from 2 ◦C to 2.5 ◦C proving that the temperature forecasts respect the
actual temperature variability. Even Day 6 forecasts present a correlation coefficient close
to 0.9, with standard deviation of approximately 2 ◦C smaller than the observed and RMSD
ranging from 3 ◦C to 4 ◦C.
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3.1.8. Relative Humidity Evaluation

Table 7 presents the accuracy measures for the relative humidity forecasts. It is
apparent that the forecasts underestimate the relative humidity in all cases, especially for
those stations which are nearest to the sea, i.e., Kommeno, Vigla and Kompoti. The best
performance, in terms of the largest EF values along with the smallest MBE, MAE, RMSE
values, were achieved at the Kampi station, which is the furthest from the sea, located in
the northern side of the study area (Figure 1b), contrasting the air temperature evaluation
and depicting the spatial heterogeneity in soil–atmosphere interactions.

Table 7. Accuracy measures for relative humidity.

16967—Kommeno 17148—Lamari

Day MBE MAE RMSE EF Day MBE MAE RMSE EF

Day 0 −12.2 14.3 17.8 0.19 Day 0 −4.8 11.4 15.3 0.39
Day 1 −11.0 13.2 17.4 0.20 Day 1 −4.3 11.9 16.2 0.33
Day 2 −11.4 13.9 18.3 0.12 Day 2 −5.0 12.9 17.5 0.22
Day 3 −11.9 14.5 19.1 0.03 Day 3 −5.5 13.8 18.7 0.11
Day 4 −12.3 15.1 19.8 −0.04 Day 4 −5.8 14.1 19.1 0.07
Day 5 −12.3 15.5 20.2 −0.09 Day 5 −5.7 14.7 19.8 0.00
Day 6 −15.0 16.0 22.0 −5.69 Day 6 −14.2 19.1 25.6 −4.07

17151—Vigla 17152—Kostakii

Day MBE MAE RMSE EF Day MBE MAE RMSE EF

Day 0 −11.3 14.1 17.9 0.17 Day 0 −9.2 12.7 16.3 0.43
Day 1 −10.3 13.2 17.4 0.19 Day 1 −8.1 12.0 16.1 0.43
Day 2 −10.7 13.9 18.3 0.10 Day 2 −8.6 12.8 17.2 0.34
Day 3 −11.1 14.5 19.2 0.02 Day 3 −9.0 13.5 18.2 0.27
Day 4 −11.5 15.1 19.9 −0.06 Day 4 −9.5 14.2 18.9 0.21
Day 5 −11.5 15.6 20.5 −0.12 Day 5 −9.5 14.8 19.6 0.15
Day 6 −14.8 16.9 23.0 −5.18 Day 6 −15.0 17.2 23.1 −4.07

17154—Kompoti 17337—Agios Spyridonas

Day MBE MAE RMSE EF Day MBE MAE RMSE EF

Day 0 −11.5 14.4 18.7 0.21 Day 0 −9.2 14.0 18.3 0.27
Day 1 −10.9 14.1 18.8 0.17 Day 1 −8.8 13.6 18.3 0.26
Day 2 −11.5 14.9 19.9 0.07 Day 2 −9.3 14.5 19.4 0.17
Day 3 −11.9 15.6 20.7 −0.01 Day 3 −9.7 15.2 20.3 0.08
Day 4 −12.4 16.2 21.4 −0.08 Day 4 −10.1 15.7 20.9 0.03
Day 5 −12.5 16.6 22.0 −0.14 Day 5 −10.1 16.3 21.6 −0.03
Day 6 −19.5 20.4 27.0 −12.61 Day 6 −15.8 19.0 25.3 −3.46

17523—Kampi

Day MBE MAE RMSE EF

Day 0 −3.5 12.2 16.2 0.47
Day 1 −3.3 12.2 16.4 0.46
Day 2 −4.0 12.9 17.4 0.39
Day 3 −4.6 13.7 18.4 0.32
Day 4 −4.7 14.3 19.1 0.27
Day 5 −4.8 14.8 19.8 0.21
Day 6 −11.4 16.8 22.6 −1.25

Additionally, the best scores were achieved at Day 0 and Day 1, with acceptable values
of the EF criterion, especially for three stations, i.e., Lamari, Kostakii and Kampi, while all
indices are declining for the subsequent days. In many cases, the EF criterion is negative
portraying the poor quality of the predicted values, making use of the observed mean
preferable to the model-predicted values. The Day 6 forecasts systematically present the
worst scores among the other forecasts.
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Furthermore, the corresponding Taylor diagrams were created for the evaluation of
relative humidity forecasts which are shown in Figure 8. The declining performance is
obvious as the days ahead increase, with Day 6 failing to catch on the other forecasts with
an r less than 0.4 in all cases and standard deviations far from the observed values. On
the other hand, the standard deviation of the forecasts for Day 0 to Day 5 are close to the
that of the observation. The correlation coefficient, r, ranges from 0.6 to 0.8, gradually
declining from Day 0 to Day 5, revealing good correlation between the model output
and the observed values. The RMSD ranges from 13.5% to 20% in accordance with the
r variation.
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3.1.9. Wind Speed Evaluation

Table 8 and Figure 9 present the accuracy measures and the Taylor diagrams for the
wind speed forecasts, respectively. The declining performance is obvious as the days ahead
increase, with Day 6 failing to catch on the other forecasts. The poor quality of the predicted
values is apparent since the EF criterion achieved small or even negative values while the
mean absolute error reached up to 1.5 Beaufort.
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Additionally, low values of the correlation coefficient were encountered, ranging from
0.14 (Day 6 at 17337—Agios Spyridonas) to 0.55 (Day 0 at 17148—Lamari). Positive values of
MBE reveal the tendency to overestimate the wind speed, except for cells 16967 (Kommeno)
and 17523 (Kampi).

In the case of cell 16967, the wind speed was underestimated with negative MBE
values and RMSE around 2 Beaufort, except for Day 6. The standard deviation was
also underestimated denoting that the variability of the wind regime was not correctly
attributed. This behavior may be attributed to the prevailing conditions caused by the
station’s proximity to the sea.

Similar to the relative humidity evaluation, the best scores were encountered at cell
17523 (Kampi) the furthest from the sea, located near the mountains (Figure 1b), obviously
affected by the orography. Interesting is the fact that the air temperature forecasts were
inversely affected, as previously presented.
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Table 8. Accuracy measures for wind speed.

16967—Kommeno 17148—Lamari

Day MBE MAE RMSE EF Day MBE MAE RMSE EF

Day 0 −0.7 1.5 2.0 0.14 Day 0 0.4 0.8 1.0 −0.07
Day 1 −0.6 1.4 2.0 0.14 Day 1 0.4 0.8 1.0 −0.10
Day 2 −0.6 1.4 2.0 0.13 Day 2 0.4 0.8 1.1 −0.16
Day 3 −0.6 1.5 2.0 0.10 Day 3 0.4 0.8 1.1 −0.21
Day 4 −0.6 1.5 2.1 0.08 Day 4 0.4 0.8 1.1 −0.25
Day 5 −0.6 1.5 2.1 0.04 Day 5 0.4 0.9 1.1 −0.28
Day 6 0.5 1.0 1.4 −0.53 Day 6 0.8 0.9 1.1 −2.25

17151—Vigla 17152—Kostakii

Day MBE MAE RMSE EF Day MBE MAE RMSE EF

Day 0 0.4 0.8 1.0 −0.22 Day 0 0.3 0.8 1.0 −0.06
Day 1 0.5 0.8 1.1 −0.29 Day 1 0.4 0.8 1.0 −0.16
Day 2 0.5 0.8 1.1 −0.31 Day 2 0.4 0.8 1.1 −0.19
Day 3 0.5 0.9 1.1 −0.37 Day 3 0.4 0.8 1.1 −0.23
Day 4 0.5 0.9 1.1 −0.39 Day 4 0.4 0.8 1.1 −0.26
Day 5 0.5 0.9 1.1 −0.45 Day 5 0.4 0.8 1.1 −0.28
Day 6 0.9 1.0 1.1 −6.15 Day 6 0.8 0.9 1.1 −3.50

17154—Kompoti 17337—Agios Spyridonas

Day MBE MAE RMSE EF Day MBE MAE RMSE EF

Day 0 0.4 0.8 1.1 −0.15 Day 0 0.5 0.8 1.0 −0.24
Day 1 0.4 0.9 1.2 −0.28 Day 1 0.5 0.8 1.0 −0.33
Day 2 0.4 0.9 1.2 −0.27 Day 2 0.5 0.8 1.1 −0.41
Day 3 0.4 0.9 1.2 −0.31 Day 3 0.5 0.9 1.1 −0.46
Day 4 0.4 0.9 1.2 −0.37 Day 4 0.5 0.9 1.1 −0.51
Day 5 0.4 0.9 1.2 −0.42 Day 5 0.5 0.9 1.1 −0.56
Day 6 1.0 1.1 1.3 −7.88 Day 6 1.0 1.0 1.2 −4.38

17523—Kampi

Day MBE MAE RMSE EF

Day 0 −0.1 0.8 1.1 0.21
Day 1 0.0 0.8 1.1 0.20
Day 2 0.0 0.9 1.1 0.15
Day 3 0.0 0.9 1.2 0.09
Day 4 0.0 0.9 1.2 0.05
Day 5 −0.1 0.9 1.2 −0.02
Day 6 0.6 0.9 1.1 −0.35

3.2. Assessment on Hydrological Applications
3.2.1. Forecasting Major Rainfall Events

Forecasting major rainfall events is essential for water resources management since
it allows authorities to prepare and plan for potential emergencies, such as flooding,
landslides or even dam failures, which can cause significant damage and loss of life. By
having early warning systems in place, communities can be evacuated or take necessary
precautions to mitigate the impact of heavy rainfall events. This information can be used to
plan and implement appropriate measures to prevent or mitigate damage. The accuracy
and effectiveness of forecasting models have a significant impact on the safety and well-
being of communities. So, investigation of their quality in the study area can contribute to
the appropriate actions and measures needed at events such as those.

We selected the two most characteristic cases, in terms of magnitude, that the model
was unsuccessful in predicting the actual major events throughout the studied period.
The first refers to the failed/underestimated prediction of a major event, while the second
reports a false alarm about another major event. The validation took place against data
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from five stations since the sixth was not operational at that time and the rain gauge of the
seventh was out of commission.

On 22 October 2016 between 00:00 and 03:00 UTC, a major rainfall caused flooding in
the plain of Arta. The recorded rainfall ranged from 65.4 to 137.4 mm in a three-hour period,
which, according to the methodology presented by Iliopoulou et al. [35], corresponded to
return periods that span from ~15 years for 65.4 mm/3 h (17523—Kampi) to ~300 years for
137.4 mm/3 h (16967—Kommeno).

Table 9 presents the BOLAM model’s 3 h forecasts versus the stations’ records for the
specified period, as well as the corresponding totals. In all cases, the model failed to predict
the major rain event during its occurrence but also for 3 h before and after. An interesting
find is that the Day 1 forecast underestimated the event more than those of the other days
ahead, which, on the other hand, is consistent to the findings of the contingency analysis
presented earlier (Figures 2–5).

Table 9. Three-hour forecasts and aggregated observations (mm) before and after the major rainfall
event that occurred on 22 October 2016.

16967—Kommeno

Timestamp (UTC) Day 1 Day 2 Day 3 Day 4 Day 5 Obs

22/10/2016 0:00 6.4 17.5 11.1 17.6 0.0 8.1
22/10/2016 3:00 8.1 8.1 19 21.2 0.0 137.4
22/10/2016 6:00 10.4 19.5 9.4 8.7 0.0 3.9

Total 24.9 45.1 39.5 47.5 0.0 149.4
17151—Vigla

Timestamp UTC Day 1 Day 2 Day 3 Day 4 Day 5 Obs

22/10/2016 0:00 6.3 13.4 15.2 30.1 0.3 28
22/10/2016 3:00 7 8.1 17.5 15.5 0.2 108
22/10/2016 6:00 6.1 10.5 5.8 4.8 0.0 2.4

Total 19.4 32 38.5 50.4 0.5 138.4
17152—Kostakii

Timestamp UTC Day 1 Day 2 Day 3 Day 4 Day 5 Obs

22/10/2016 0:00 8.2 17.4 13.7 26.7 0.1 12
22/10/2016 3:00 9.4 9.7 20.7 26.2 0.0 94.6
22/10/2016 6:00 9.6 18.7 12.3 7.4 0.0 1.4

Total 27.2 45.8 46.7 60.3 0.1 108
17337—Agios Spyridonas

Timestamp UTC Day 1 Day 2 Day 3 Day 4 Day 5 Obs

22/10/2016 0:00 15.8 21.6 16.6 30.4 0.1 6.2
22/10/2016 3:00 13.7 22.1 23.3 15.4 0.1 99.4
22/10/2016 6:00 6.8 17.1 7.9 7.3 0.0 0.6

Total 36.3 60.8 47.8 53.1 0.2 106.2
17523—Kampi

Timestamp UTC Day 1 Day 2 Day 3 Day 4 Day 5 Obs

22/10/2016 0:00 15.5 25.5 21.3 33.5 0.2 6.2
22/10/2016 3:00 15.3 26.2 27.3 14.7 0.1 65.4
22/10/2016 6:00 4.1 13.3 7.3 7.1 0.0 1.2

Total 34.9 65 55.9 55.3 0.3 72.8

Secondly, on 28 November 2016 between 00:00 and 06:00 UTC, the BOLAM’s Day 1
forecast forecasted a major rainfall event, which, according to the methodology presented by
Iliopoulou et al. [35], corresponded to return periods that range from ~15 years for 85.2 mm/9 h
(16967—Kommeno) to ~1100 years for 244.2 mm/9 h (17337—Agios Spyridonas).
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Table 10 presents the BOLAM model’s 3 h forecasts versus the stations’ records for
28 November 2016, as well as the sum of rainfall for forecasts and the recorded data. It is
impressive that no rainfall was recorded during this period, according to all stations, demon-
strating the poor performance of the forecast model. Furthermore, these large quantities
affected the 2016 sum of Day 1’s rainfall forecasts, as we present in the following section.

Table 10. Three-hour forecasts and aggregated observations (mm) for the unsuccessful major rain
event forecasting on 28 November 2016.

16967—Kommeno

Timestamp UTC Day 1 Day 2 Day 3 Day 4 Day 5 Obs

28/11/2016 0:00 16.3 4.4 1.1 0 0 0.0
28/11/2016 3:00 15.3 5.2 0.5 0.3 0.1 0.0
28/11/2016 6:00 53.6 8.1 0.1 0.5 0.3 0.0

Total 85.2 17.7 1.7 0.8 0.4 0.0
17151—Vigla

Timestamp UTC Day 1 Day 2 Day 3 Day 4 Day 5 Obs

28/11/2016 0:00 110.6 6.3 0.5 0.6 0.4 0.0
28/11/2016 3:00 71.9 8.6 0.2 0.7 0.8 0.0
28/11/2016 6:00 21.1 10.5 0.1 0.7 3.1 0.0

Total 203.6 25.4 0.8 2 4.3 0.0
17152—Kostakii

Timestamp UTC Day 1 Day 2 Day 3 Day 4 Day 5 Obs

28/11/2016 0:00 87 6.3 1.1 0.3 0.1 0.0
28/11/2016 3:00 51.5 8.7 0.5 0.4 0.5 0.0
28/11/2016 6:00 39.5 9.7 0.1 0.6 1.8 0.0

Total 178 24.7 1.7 1.3 2.4 0.0
17337—Agios Spyridonas

Timestamp UTC Day 1 Day 2 Day 3 Day 4 Day 5 Obs

28/11/2016 0:00 92 9.7 0.9 0.5 0.4 0.0
28/11/2016 3:00 143.5 11.2 0.3 0.8 1.9 0.0
28/11/2016 6:00 8.7 10.3 0.2 1.2 4.9 0.0

Total 244.2 31.2 1.4 2.5 7.2 0.0
17523—Kampi

Timestamp UTC Day 1 Day 2 Day 3 Day 4 Day 5 Obs

28/11/2016 0:00 50.9 15.5 1 0.6 0.2 0.0
28/11/2016 3:00 119.1 16.8 0.5 1.1 3.4 0.0
28/11/2016 6:00 1.7 11 0.4 2.2 6.4 0.0

Total 171.7 43.3 1.9 3.9 10 0.0

3.2.2. Estimating Water Budget Components: Precipitation and Evapotranspiration

Meteorological data are involved in several topics of hydrology, such as identifying
potential flood risks or estimating evapotranspiration as a major part of the water balance
concerning the amount of water needed for irrigation. However, collecting meteorological
data is time-consuming, expensive and in some cases impossible. While meteorological
data require sophisticated equipment and complex data processing techniques, weather
forecasts can be accessed from a range of sources, including online weather services and
mobile applications. This ease of access and analysis makes weather forecasts appear as
convenient alternatives and poses the question whether scientists can, given the circum-
stances, rely on weather forecasts to quickly gather information on weather instead of
seeking meteorological data.
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In this context, we present a comparison between the mean annual/monthly precipi-
tation and the mean annual/monthly evapotranspiration of the study area as they were
calculated using the provided 3 h forecasts of precipitation and temperature at each cell
containing a station, against those calculated using the actual data, aggregated in daily
scale. The evaluation refers to forecasts of Day 1 to 5 since those of Day 0 and Day 6 did
not include eight 3 h records per day (Table 1).

According to Table 11 the annual difference between the observations and the fore-
casted precipitation, ranges from −651 mm for Day 2 of 2019 to 61 mm for Day 1 of 2016.
The latter is the only case of overestimation, and was explained in the previous section,
where it is shown that a large amount of precipitation was predicted for the 28 November
2016 but never occurred. It is obvious that the best performance among all days of forecast
is that of Day 1, and the worst is that of Day 5, as expected.

Table 11. Mean annual precipitation based on forecasts against observations (mm).

Year Day 1 Day 2 Day 3 Day 4 Day 5 Observation

2016 1289 1027 954 901 877 1229
2017 774 737 767 724 704 1039
2018 939 904 818 762 742 1156
2019 960 727 735 816 835 1379

The observed four-year average is 1200 mm yielding an average difference of 357 mm
between forecasts and observations, i.e., a 30% underestimation.

Considering the monthly average difference between precipitation data and forecasts
for the four years (Figure 10), the underestimation throughout the year is evident, though
intensifying from November to February, i.e., the rainy season, reaching up to 96.5 mm per
month for Day 5 on November.
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Figure 10. Four-year monthly average difference between precipitation data and forecasts.

Based on the above analysis, it is obvious that the deviations between precipitation data
and forecasts along with their seasonal distribution, do not support the use of precipitation
forecasts instead of measurements.
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Considering the case of reference evapotranspiration, since the forecast data missed infor-
mation concerning solar radiation or any other applicable information, we implemented the
Hargreaves-Samani equation [36]. It estimates the reference evapotranspiration, ETo (mm d−1)
at daily scale using only air temperature data (◦C) as:

ETo = 0.0023·0.408·Ra·(Tmean + 17.8)·(Tmaximum − Tminimum)
0.5 (11)

where Ra is the extraterrestrial radiation (MJ m−2 d−1). This method has received consid-
erable attention since it can produce satisfactory results compared to the FAO Penman-
Monteith equation as an alternative in the case of limited data availability [24], and it
considered accurate enough for hydrological purposes [37–40].

According to Table 12, the annual difference between the observations and the fore-
casted ETo, ranges from −130 mm for Day 5 of 2016 to −190 mm for Day 1 of 2017.
Additionally, the observed four-year average is 1253 mm yielding an average difference of
158 mm between forecasts and observations, i.e., 13%.

Table 12. Mean annual ETo based on forecasts against observations (mm).

Year Day 1 Day 2 Day 3 Day 4 Day 5 Observation

2016 1049 1062 1060 1064 1087 1217
2017 1092 1102 1118 1118 1130 1283
2018 1084 1093 1100 1101 1114 1254
2019 1081 1098 1103 1105 1127 1258

An interesting find, contrasting the preceding evaluation of the temperature forecasts,
is that the ETo values that were calculated based on the Day 5’s forecasts, were closer to
the observed ones, instead those of Day 1. An explanation is that the differences between
the maximum and minimum air temperature of the Day 5 forecasts are closer to the actual
data, which is supported by the MBE values presented at Table 6.

Figure 11 presents the monthly average difference between ETo data and forecasts
for the four years, portraying an apparent underestimation of forecast based ETo. This
deviation increases during the warm-dry period of the year, i.e., April to August, reaching
up to 22.4 mm per month for Day 1 on June, doubting the suitability of the ETo forecasts
in accurate estimation of the irrigation needs. However, based on the above findings, the
temperature forecasts may serve as a compromise to annual, or monthly in some cases, ETo
estimation in the absence of temperature data.
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4. Conclusions

We presented the evaluation of the NOA’s BOLAM model forecasts across a rainy
study area, i.e., the plain of Arta, against the measurements of seven agro-meteorological
stations for the period from 15 January 2016 to 22 December 2019. The provided forecasts
comprised from seven days of 3 h gridded data for precipitation, air temperature, relative
humidity and wind speed and they were compared to those of the stations contained at
each corresponding grid cell. After the initial timeseries preprocessing, the evaluation
dataset was comprised from approximately 1,700,000 forecast–observation pairs. Several
evaluation criteria were applied, such as contingency measures, Taylor diagrams and
accuracy measures.

The need for spatial analysis of the involved parameters variability was established
with noticeable differences between the grided forecasts and the corresponding agro-
meteorological stations, indicating the need for a dense multipoint analysis across the study
area. This was evident in the case of the grid cell referring to the station located at the
northern side of the study area, far from the sea, which achieved the best scores for relative
humidity and wind speed but exhibited the worst performance for air temperature.

For the case of precipitation, all criteria exposed that the 3 h forecasts failed to comply
with the precipitation regime throughout the study area. All the large precipitation depths
were underestimated, while from the fifth day of forecast onwards, the model failed to
predict any event larger than 20 mm per 3 h, as presented. Furthermore, the Nash–Sutcliffe
Efficiency criterion was negative or very close to zero in almost every forecast day and
grid cell.

On the other hand, air temperature forecasts exhibit notable performance up to Day 5
for almost all grid cells. The forecast’s performance exhibits a decrease in Day 6 though
remaining acceptable and reasonable. However, the temperature forecasts do not un-
derestimate high temperatures nor overestimate the smaller ones with high correlation
coefficients. These prove that the temperature forecasts respect the actual temperature
variability (mostly the annual and daily cycles) and they are reliable.

Considering relative humidity, the forecasts underestimated the relative humidity in
all cases, especially for those stations adjacent to the sea depicting the spatial heterogeneity
in soil–atmosphere interactions. The best scores were achieved at Day 0 and Day 1 while
for the subsequent days all performance indices declined, with Day 6 failing to catch on the
other forecasts. The Nash–Sutcliffe Efficiency criterion achieved acceptable values at Day 0
and Day 1 at three stations, but for the rest of the forecast range, the performance declined,
making use of the observed mean preferable to the model-predicted values.

As for the wind speed forecasting, the findings portrayed the BOLAM’s poor per-
formance, since the model presented small or even negative values of the Nash–Sutcliffe
Efficiency criterion along with low values of the correlation coefficient. Additionally, the
wind speed was overestimated in all cases aside from the station located close to the sea
where strong underestimation was noted.

The evaluation of forecasting major rainfall events revealed that the model was unsuc-
cessful in predicting the actual events. In the first case, there was a failed prediction of an
actual major rainfall event while the second reported a false alarm about a major event that
never occurred.

Further analysis included the comparison between forecasted and observed estimates
of mean annual/monthly precipitation and mean annual/monthly reference evapotran-
spiration across the study area. The deviations between precipitation data and forecasts
along with their seasonal distribution, showed that the use of rainfall forecasts failed to
approximate the observations. The temperature based ETo estimations proved that the
temperature forecasts may underestimate ETo, but they may serve as a compromise to
estimate ETo at annual scale in the absence of actual temperature data. However, this
deviation increases during the warm-dry period of the year, doubting the suitability of
forecasts in accurate estimation of the ETo in monthly scale.
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Undoubtedly the evaluation of a forecast is a critical step in determining its effective-
ness and its usefulness in informing decision-making processes. This paper provided a
comprehensive assessment of the accuracy and reliability of the BOLAM’s seven days fine
grid 3 h forecasts for the plain of Arta at northwestern Greece against observed data. Even
if the findings support only the quantitative forecasting of temperature and in some cases
the relative humidity, evident is the need for skilled weather forecasts from improved ver-
sions of the examined model that may incorporate post-processing techniques to improve
predictions or from other forecasting services.

Author Contributions: Conceptualization, N.M.; methodology N.M. and D.K. (Demetris Koutsoyian-
nis); supervision, N.M.; writing—original draft preparation, N.M. and D.K. (Dimitrios Koulouris); data
curation, D.K. (Dimitrios Koulouris); software, D.K. (Dimitrios Koulouris); visualization, N.M. and
D.K. (Dimitrios Koulouris); funding acquisition, I.L.T.; validation, N.M. and I.L.T.; writing—reviewing
and editing D.K. (Demetris Koutsoyiannis) and I.L.T. All authors have read and agreed to the published
version of the manuscript.

Funding: IRMA project was funded by the European Territorial Cooperation Programme (ETCP)
GREECE-ITALY 2007–2013 (subsidy contract no: I3.11.06).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. López López, M.R.; Pedrozo-Acuña, A.; Severiano Covarrubias, M.L. Evaluation of ECMWF’s Forecasting System for Probabilistic

Urban Flood Prediction: A Case Study in Mexico City. J. Hydroinform. 2022, 24, 38–55. [CrossRef]
2. Apicella, L.; Puca, S.; Lagasio, M.; Meroni, A.N.; Milelli, M.; Vela, N.; Garbero, V.; Ferraris, L.; Parodi, A. The Predictive Capacity

of the High Resolution Weather Research and Forecasting Model: A Year-Long Verification over Italy. Bull. Atmos. Sci. Technol.
2021, 2, 3. [CrossRef]

3. Shahrban, M.; Walker, J.P.; Wang, Q.J.; Seed, A.; Steinle, P. An Evaluation of Numerical Weather Prediction Based Rainfall
Forecasts. Hydrol. Sci. J. 2016, 61, 2704–2717. [CrossRef]

4. Clark, M.P.; Hay, L.E. Use of Medium-Range Numerical Weather Prediction Model Output to Produce Forecasts of Streamflow. J.
Hydrometeorol. 2004, 5, 15–32. [CrossRef]

5. Damrath, U.; Doms, G.; Frühwald, D.; Heise, E.; Richter, B.; Steppeler, J. Operational Quantitative Precipitation Forecasting at the
German Weather Service. J. Hydrol. 2000, 239, 260–285. [CrossRef]

6. Tanessong, R.S.; Vondou, D.A.; Igri, P.M.; Kamga, F.M. Evaluation of Eta Weather Forecast Model over Central Africa. Atmos.
Clim. Sci. 2012, 2, 532–537. [CrossRef]

7. Pinson, P.; Hagedorn, R. Verification of the ECMWF Ensemble Forecasts of Wind Speed against Analyses and Observations:
Verification of the ECMWF Ensemble Forecasts of Wind Speed. Meteorol. Appl. 2012, 19, 484–500. [CrossRef]

8. Tiriolo, L.; Torcasio, R.C.; Montesanti, S.; Federico, S. Verification of a Real Time Weather Forecasting System in Southern Italy.
Adv. Meteorol. 2015, 2015, 758250. [CrossRef]

9. Liu, Y.; Zhang, T.; Duan, H.; Wu, J.; Zeng, D.; Zhao, C. Evaluation of Forecast Performance for Four Meteorological Models in
Summer Over Northwestern China. Front. Earth Sci. 2021, 9, 771207. [CrossRef]

10. Varlas, G.; Papadopoulos, A.; Papaioannou, G.; Dimitriou, E. Evaluating the Forecast Skill of a Hydrometeorological Modelling
System in Greece. Atmosphere 2021, 12, 902. [CrossRef]

11. Koussis, A.D.; Lagouvardos, K.; Mazi, K.; Kotroni, V.; Sitzmann, D.; Lang, J.; Zaiss, H.; Buzzi, A.; Malguzzi, P. Flood Forecasts for
Urban Basin with Integrated Hydro-Meteorological Model. J. Hydrol. Eng. 2003, 8, 1–11. [CrossRef]

12. Savvidou, K.; Lagouvardos, K.; Michaelides, S.; Kotroni, V.; Constantinides, P. Verification of the BOLAM Weather Prediction
Model over the Area of Cyprus. Adv. Geosci. 2010, 23, 93–100. [CrossRef]

13. Casaioli, M.; Lastoria, B.; Mariani, S.; Bussettini, M. Evaluating the Improvements of the BOLAM Model of the ISPRA Sistema
Idro-Meteo-Mare on the December 2008 Flood Event in Rome. Adv. Geosci. 2010, 25, 135–141. [CrossRef]

14. Fotia, K.; Mehmeti, A.; Tsirogiannis, I.; Nanos, G.; Mamolos, A.P.; Malamos, N.; Barouchas, P.; Todorovic, M. LCA-Based
Environmental Performance of Olive Cultivation in Northwestern Greece: From Rainfed to Irrigated through Conventional and
Smart Crop Management Practices. Water 2021, 13, 1954. [CrossRef]

15. Flocas, H.A.; Karacostas, T.S. Cyclogenesis over the Aegean Sea: Identification and Synoptic Categories. Meteorol. Appl. 2007,
3, 53–61. [CrossRef]

https://doi.org/10.2166/hydro.2021.072
https://doi.org/10.1007/s42865-021-00032-x
https://doi.org/10.1080/02626667.2016.1170131
https://doi.org/10.1175/1525-7541(2004)005&lt;0015:UOMNWP&gt;2.0.CO;2
https://doi.org/10.1016/S0022-1694(00)00353-X
https://doi.org/10.4236/acs.2012.24048
https://doi.org/10.1002/met.283
https://doi.org/10.1155/2015/758250
https://doi.org/10.3389/feart.2021.771207
https://doi.org/10.3390/atmos12070902
https://doi.org/10.1061/(ASCE)1084-0699(2003)8:1(1)
https://doi.org/10.5194/adgeo-23-93-2010
https://doi.org/10.5194/adgeo-25-135-2010
https://doi.org/10.3390/w13141954
https://doi.org/10.1002/met.5060030106


Hydrology 2023, 10, 162 29 of 29

16. Flocas, H.A.; Simmonds, I.; Kouroutzoglou, J.; Keay, K.; Hatzaki, M.; Bricolas, V.; Asimakopoulos, D. On Cyclonic Tracks over the
Eastern Mediterranean. J. Clim. 2010, 23, 5243–5257. [CrossRef]

17. Hellenic National Meteorological Service. Available online: http://www.emy.gr/emy/en/climatology/climatology_city?
perifereia=Epirus&poli=Arta (accessed on 10 April 2023).

18. Tsirogiannis, I.L.; Lagouvardos, K.; Baltzoi, P.; Malamos, N.; Fotia, K.; Christofides, A. WP5: Irrigation Management Tools.
In Efficient Irrigation Management Tools for Agricultural Cultivations and Urban Landscapes (IRMA); Technological Educational
Institute of Epirus: Arta, Greece, 2015; p. 86.

19. Malamos, N.; Tsirogiannis, I.L.; Christofides, A. Modelling Irrigation Management Services: The IRMA_SYS Case. Int. J. Sustain.
Agric. Manag. Inform. 2016, 2, 1. [CrossRef]

20. Kotroni, V.; Lagouvardos, K. Precipitation Forecast Skill of Different Convective Parameterization and Microphysical Schemes:
Application for the Cold Season over Greece. Geophys. Res. Lett. 2001, 28, 1977–1980. [CrossRef]

21. Lagouvardos, K.; Kotroni, V.; Koussis, A.; Feidas, H.; Buzzi, A.; Malguzzi, P. The Meteorological Model BOLAM at the National
Observatory of Athens: Assessment of Two-Year Operational Use. J. Appl. Meteorol. 2003, 42, 1667–1678. [CrossRef]

22. Mamassis, N.; Mazi, K.; Dimitriou, E.; Kalogeras, D.; Malamos, N.; Lykoudis, S.; Koukouvinos, A.; Tsirogiannis, I.; Papageorgaki, I.;
Papadopoulos, A.; et al. OpenHi.Net: A Synergistically Built, National-Scale Infrastructure for Monitoring the Surface Waters of
Greece. Water 2021, 13, 2779. [CrossRef]

23. WMO. WMO Guide to Instruments and Methods of Observation—Volume I—Measurement of Meteorological Variables; World Meteoro-
logical Organization: Geneva, Switzerland, 2018; Volume I; ISBN 978-92-63-10008-5.

24. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements—FAO
Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; ISBN 92-5-104219-5.

25. Kozanis, S.; Christofides, A.; Mamassis, N.; Efstratiadis, A.; Koutsoyiannis, D. Hydrognomon—Open Source Software for the
Analysis of Hydrological Data. In Proceedings of the EGU General Assembly, Vienna, Austria, 2–7 May 2010.

26. Koutsoyiannis, D.; Xanthopoulos, T. Engineering Hydrology, 3rd ed.; National Technical University of Athens: Athens, Greece,
1999; Available online: https://repository.kallipos.gr/handle/11419/5888 (accessed on 2 August 2023).

27. National Meteorological Library and Archive. The Beaufort Scale; Met Office: Devon, UK, 2010; Volume 12, p. 22.
28. Malamos, N.; Koutsoyiannis, D. Field Survey and Modelling of Irrigation Water Quality Indices in a Mediterranean Island

Catchment: A Comparison between Spatial Interpolation Methods. Hydrol. Sci. J. 2018, 63, 1447–1467. [CrossRef]
29. Taylor, K.E. Summarizing Multiple Aspects of Model Performance in a Single Diagram. J. Geophys. Res. Atmos. 2001,

106, 7183–7192. [CrossRef]
30. Lorenzo, A.T.; Holmgren, W.F.; Cronin, A.D. Irradiance Forecasts Based on an Irradiance Monitoring Network, Cloud Motion,

and Spatial Averaging. Sol. Energy 2015, 122, 1158–1169. [CrossRef]
31. Phakula, S.; Landman, W.A.; Engelbrecht, C.J.; Makgoale, T. Forecast Skill of Minimum and Maximum Temperatures on

Subseasonal-to-Seasonal Timescales Over South Africa. Earth Space Sci. 2020, 7, e2019EA000697. [CrossRef]
32. Salih, W.; Chehbouni, A.; Epule, T.E. Evaluation of the Performance of Multi-Source Satellite Products in Simulating Observed

Precipitation over the Tensift Basin in Morocco. Remote Sens. 2022, 14, 1171. [CrossRef]
33. Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2019;

ISBN 78-0-12-815823-4.
34. Loague, K.; Green, R.E. Statistical and Graphical Methods for Evaluating Solute Transport Models: Overview and Application.

J. Contam. Hydrol. 1991, 7, 51–73. [CrossRef]
35. Iliopoulou, T.; Malamos, N.; Koutsoyiannis, D. Regional Ombrian Curves: Design Rainfall Estimation for a Spatially Diverse

Rainfall Regime. Hydrology 2022, 9, 67. [CrossRef]
36. Hargreaves, G.H.; Samani, Z.A. Estimating Potential Evapotranspiration. J. Irrig. Drain. Div. 1982, 108, 225–230. [CrossRef]
37. Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop Evapotranspiration Estimation with FAO56: Past and Future. Agric. Water

Manag. 2015, 147, 4–20. [CrossRef]
38. Sperna Weiland, F.C.; Tisseuil, C.; Dürr, H.H.; Vrac, M.; Van Beek, L.P.H. Selecting the Optimal Method to Calculate Daily Global

Reference Potential Evaporation from CFSR Reanalysis Data for Application in a Hydrological Model Study. Hydrol. Earth Syst.
Sci. 2012, 16, 983–1000. [CrossRef]

39. Tegos, A.; Malamos, N.; Koutsoyiannis, D. A Parsimonious Regional Parametric Evapotranspiration Model Based on a Simplifica-
tion of the Penman–Monteith Formula. J. Hydrol. 2015, 524, 708–717. [CrossRef]

40. Tegos, A.; Malamos, N.; Efstratiadis, A.; Tsoukalas, I.; Karanasios, A.; Koutsoyiannis, D. Parametric Modelling of Potential
Evapotranspiration: A Global Survey. Water 2017, 9, 795. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1175/2010JCLI3426.1
http://www.emy.gr/emy/en/climatology/climatology_city?perifereia=Epirus&poli=Arta
http://www.emy.gr/emy/en/climatology/climatology_city?perifereia=Epirus&poli=Arta
https://doi.org/10.1504/IJSAMI.2016.077264
https://doi.org/10.1029/2000GL012705
https://doi.org/10.1175/1520-0450(2003)042&lt;1667:TMMBAT&gt;2.0.CO;2
https://doi.org/10.3390/w13192779
https://repository.kallipos.gr/handle/11419/5888
https://doi.org/10.1080/02626667.2018.1508874
https://doi.org/10.1029/2000JD900719
https://doi.org/10.1016/j.solener.2015.10.038
https://doi.org/10.1029/2019EA000697
https://doi.org/10.3390/rs14051171
https://doi.org/10.1016/0169-7722(91)90038-3
https://doi.org/10.3390/hydrology9050067
https://doi.org/10.1061/JRCEA4.0001390
https://doi.org/10.1016/j.agwat.2014.07.031
https://doi.org/10.5194/hess-16-983-2012
https://doi.org/10.1016/j.jhydrol.2015.03.024
https://doi.org/10.3390/w9100795

	Introduction 
	Materials and Methods 
	Study Area 
	Forecast Data 
	Agro-Meteorological Stations Network 
	Timeseries Preprocessing 
	Evaluation Criteria 
	Accuracy Measures—Taylor diagram 
	Contingency Measures 


	Results and Discussion 
	Precipitation Forecast Evaluation 
	Frequency Bias 
	Probability of Detection 
	Success Rate 
	Critical Success Index 
	Accuracy Measures 
	Taylor Diagrams 
	Air Temperature Evaluation 
	Relative Humidity Evaluation 
	Wind Speed Evaluation 

	Assessment on Hydrological Applications 
	Forecasting Major Rainfall Events 
	Estimating Water Budget Components: Precipitation and Evapotranspiration 


	Conclusions 
	References

