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Abstract. A new approach is developed for the automatic (computer based) exploration and 

analysis of hydrological data, particularly focused on the identification of shifting 

relationships among hydrological variables. The methodology developed is applicable to 

many hydrological problems, such as identification of multiple stage-discharge relationships 

in a river section, data homogeneity analysis, analysis of temporal consistency of hydrological 

data, detection of outliers, and determination of shifts and trends in hydrological time series. 

Such problems are examined here as particular applications of the single methodology 

developed. A general mathematical representation of the data exploration problem is initially 

proposed, based on set theory considerations. Several statistical tests as well as auxiliary 

information of physical conditions are systematically combined so as to form an objective 

function to be optimised. This objective function represents the performance of a solution, 

(where a solution is a specific partitioning of a data set into subperiods), in a manner that in 

each subperiod a single relationship among data values holds. It is shown that an exhaustive 

search of all candidate solutions is intractable. Therefore, a heuristic algorithm is proposed, 

which emulates the exploratory data analysis of the human expert. This algorithm encodes a 

number of search strategies in a pattern directed computer program and results in an 

automatic determination of a satisfactory solution. 

Keywords. Hydrological data processing, Homogeneity of hydrological data, Consistency of 

hydrological data, River stage-discharge relationships, Exploratory data analysis, Statistical 

tests, Heuristic algorithms, Pattern directed programming, Blackboard systems. 
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1. Introduction 

Hydrological data processing is a high-volume task with great importance. Several teams are 

usually involved in this processing, such as practitioners, engineering consultants and 

managers, and in some cases researchers. The typical methodology used includes a wide 

range of tools, from simple empirical techniques to sophisticated statistical analysis. The task, 

although routine, includes complicated problems where decision-making is necessary, and the 

personal knowledge and experience of the analyst or decision-maker affects the results.  

The main difficulties in data processing are caused by erroneous or spurious measurements 

and by shifts or changes, either in the measuring process or in the physical process itself. Our 

purpose is to develop a general methodology applicable to several phases of the data 

processing, which will tackle such problems in a systematic and intentionally automatic 

manner. Such a methodology must be capable of partitioning a hydrological data series into 

subperiods and detecting outliers, in a way that no spurious measurements neither changes in 

the physical or measuring process appear within each subperiod. To this aim any relationship 

or law imposed by the data values must be employed in order to identify the subperiods. In 

some cases the determination of such a relationship is one of the demands of the problem 

solution. In other cases the relationship is used only for facilitating the partitioning of the data 

set and the detection of outliers. The methodology also incorporates any additional 

information (apart from the data set itself), which is concerned either with the measuring 

process, the physical process measured, or the environment of this physical process.  

 To clarify the scope and the objectives of the developed methodology we will start with 

some examples that will be later used for the detailed application of the method. As a first 

example we consider the data set consisting of simultaneous measurements of stage and 

discharge in a typical Mediterranean river (Sakoulevas river in Western Macedonia, Greece) 

shown in Figure 1(a). In this case we wish to determine the stage-discharge relationship using 

the data set. Apparently however, there is no clear single relationship between stage and 

discharge for the entire data set of Figure 1(a), although the river hydraulics impose such a 

relationship. This is due to changes in the geometry or the roughness of the river bed. In 

Figure 1(b) we have partitioned the data in three subperiods and excluded some measurements 
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judged as outliers. (Later we will explain how these outliers were identified). Now there 

appear three well-established relationships, which can be described by fitting a parametric law 

(in our example, a power law) to the data of each subperiod. In Figure 1(c) we show the 

power law for the first subperiod, determined by the least squares method, along with the data 

values of that subperiod and the outliers, i.e., the data values that depart from the curve 

significantly. Obviously, the fitting of the law is a very easy task. What is complicated here is 

the step from Figure 1(a) to Figure 1(b), i.e., the partitioning of the data set into subperiods 

and the detection of outliers. To this aim we must consider any available information about 

the river properties as well as statistical analysis of the data.  

 Our second example is concerned with the traditional double mass analysis for testing the 

consistency of measured values of rainfall data (see, e.g., Linsley et al., 1975, p. 81). In Figure 

2 we show the double mass diagram for two rain gauges in Sterea Hellas, Central Greece 

(Gregorio and Poros Reganiou). It is very simple to detect in that diagram a change in the 

slope of the double mass curve, indicating a systematic change in the precipitation measuring 

regime at one of the two stations. Somehow more difficult is to detect the two outliers 

indicating spurious measurements during two years. As we will see below, an automatic and 

objective computer-based procedure is not as easy as it may seem from the geometrical 

interpretation of Figure 2. As in the previous example, the problem here is to partition the data 

set in an unknown number of subperiods and detect the outliers such that the cumulative rain 

depths of the two stations in each subperiod obey a simple law of proportionality. The 

determination of the law, i.e., the proportionality constant, is also demanded in order to adjust 

the data values. 

 Our third example is similar to the second in the sense that it is referred to rainfall 

measurements at two stations, but, in addition, in this case we are also interested on the 

temporal consistency of the measurements. More specifically, we consider short-scale rainfall 

data and we try to detect possible shifts in the time recording of each measurement. Such a 

shift is often caused by a malfunction of the clock device of the instrument or a fault in the 

manual filling of the form (the observer may write a day’s measurement in a wrong position 

of the form and then may continue to transfer this error for several subsequent days). The 
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situation is depicted in Figure 3 for one year’s daily measurements of two rain gauges in 

Sterea Hellas, Central Greece (Poros Reganiou and Anthero). We observe that there exists a 

subperiod with a left shift and one with a right shift in the time recording, whereas there exist 

three subperiods with time consistent data. We also observe two cases where the rainfall 

depths of the two stations are in great disagreement. Again, our problem is to partition the 

data series into consistent subperiods and to detect any faulty measurements. To this aim we 

can assume a linear relationship between the two rainfall series. This relationship is not a 

demand of the problem solution; however it assists the partitioning. The details of the 

example and the relationship will be discussed later in Section 5. 

 In all three examples discussed above we have data values which can be described by three 

coordinates (t, x, y) where t denotes time, x denotes a reference variable (stage in the first 

example, rainfall depth of a reference station in the other examples) and y denotes a tested 

variable (discharge in the first example, rainfall depth of the tested station in the other 

examples). We use the time coordinate for ordering the data set only. The coordinates x and y 

we use to identify a bivariate relationship  

 y = g(x) (1) 

between them, which may change from subperiod to subperiod. Our problem is to identify a 

partition of the data set whose subperiods (blocks) correspond to particular instances of the 

relationship (1). We must emphasise that, given a specific subperiod with its data set, the 

identification of (1) is a rather trivial issue. What is nontrivial is the identification of the 

appropriate (consistent) subperiods. The relationship (1) itself may or may not be required as 

an output of the problem examined but it is necessary for the identification of subperiods. 

This notion may be straightforwardly extended for problems involving more than one 

reference variables, i.e., x1, x2, …, in which case the relationship among (x1, x2, …, y) is 

multivariate. It can also be applied in the absence of a specific reference variable, in which 

case the time t plays the role of the reference variable. The latter case we meet for example in 

identification of nonstationarities (e.g., linear trends or shifting levels) in hydrological data 

series.  
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 All the above problems are well known in hydrology and several methods are established 

to solve them. The solution of each of them involves the use of various tools, which are 

usually chosen and applied in an organised manner by an experienced scientist or practitioner. 

Such tools include numerous statistical tests, which assist decision making. An authoritative 

presentation of such tests is given by Hirsch et al. (1993). Specifically, for the identification 

of outliers tests based on the departure of an observation from the mean, standardised by the 

standard deviation (Stedinger et al., 1993, p. 18.45), or based on the influence of an 

observation (Cook, 1977, also quoted by Hirsch et al., 1993, p. 17.45) are typically used; a 

number of tools of this type can be found in Barnett and Lewis (1994). For detecting abrupt 

shifts of some property of the data set the rank-sum test and the two-sample t test (Hirsch et 

al., 1992, pp. 17.21-17.23) may be used. Such tests usually need a prior judgement of the 

point where the shift takes place, which is often done empirically. However, there are 

objective methods that can detect the location of the shift by means of a test statistic. We 

mention here the method by Worsley (1983) for testing linearly related values. In the overall 

enterprise various graphical displays and other tools known as exploratory data analysis 

(EDA) are very helpful (Velleman and Hoaglin, 1981; Hoaglin et al., 1983; Hirsch et al., 

1993). Apart from statistical tests, other procedures that incorporate knowledge of actual 

physical conditions of the process examined are used. Recent developments tend to use 

Decision Support Systems to organise this kind of knowledge; we mention here the works by 

Gawne and Simonovic (1994) and DeGagne et al., (1996) for the establishment of stage-

discharge curves. 

 In the introductory presentation of the three examples we have tried to outline their 

similarities, although they are concerned with different problems, which are typically treated 

by different methods. These similarities allow us to formulate a general methodology to tackle 

all those problems using a single algorithm. The algorithm we propose can emulate the human 

reasoning process and result in an automatic determination of a satisfactory solution of 

problems involving partitioning of data sets into subperiods, identification of shifting laws 

and detection of outliers. The solution is determined by optimising an appropriate objective 

function, which incorporates statistical indexes of the data set as well as other information 
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available for the physical process. The optimisation is performed using certain artificial 

intelligence techniques. Although the algorithm can incorporate additional information on the 

physical conditions, it can also operate in a black-box way, i.e., using the information 

contained in the data set only. This feature of the algorithm is useful in situations where 

additional information is not available or it is very complicated to extract and use it. In such 

situations, which in practice are very common, the reliability of results is decreased as no 

mathematical model can replace perfectly the missing information. However the ability to 

perform in those situations, which evidently are more difficult to tackle, is a strong point of 

the proposed algorithm.  

The text is organised in six sections including this introductory section. In Section 2 we 

give the general description and the mathematical representation of the problem and, also, we 

determine the state space of the problem. In Section 3 we combine several statistical and 

conceptual tests to build a single measure of the degree of “consistency” of a data set, which 

can be used thereafter for optimisation. In Section 4 we present the developed heuristic 

algorithm for the optimisation. In Section 5 we present details on the different applications of 

the method to the above-described real-world hydrological problems. Finally, Section 6 is 

devoted to conclusions and discussion.  

2. Problem setting  

2.1 Basic notation 

In this section we give the mathematical background of the method in a somehow abstract 

way. To increase readability we refer several times to the stage-discharge example. In section 

5 we will refer to the other examples, as well. The background and, consequently, the notation 

used are mainly based on the set theory (see e.g., Moschovakis, 1994; Stoll, 1979; among 

others). 

 Let A denote the finite data set to be explored. To each element a of A there corresponds a 

list of real numbers (t(a), x(a), y(a)), where t denotes time and the other coordinates denote 

the results of hydrological measurements of two quantities at a station (or the same quantity 
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measured at two stations). Additionally, information about the quality or the physical 

condition of the measurement may be available for each a, which is not necessarily 

quantitative. In our stage-discharge example, the data set A consists of all concurrent 

measurements of the river stage and discharge. In that case t represents the time of each 

measurement whereas x and y denote the measured stage and discharge, respectively. As 

already mentioned, the list of coordinates may be expanding by including more than one 

reference variables, i.e., x1, x2, …, or  contracted if x ≡ t. We assume that (a) any two distinct 

elements of A cannot have the same coordinate t, and (b) the coordinate t defines a linear 

order in the set A; thus, for any two elements a and b of A we denote a < b if t(a) < t(b). This 

ordering property is transferred to any subset of A.  

 Let Q be the subset of A containing the elements that are judged as outliers. Later we will 

explain how a set of this type can be constructed. Let also D be the complement of Q in A, 

i.e., D = A – Q. We will focus our interest in the so called intervals δ of D, which are subsets 

of D containing a certain number of consecutive ordered elements, i.e., they have the property 

that any two consecutive elements in δ are also consecutive in D (but not necessarily 

consecutive in A). A geometric explanation of this property is depicted in Figure 4. The set of 

all possible intervals of D, which is a subset of the powerset P (D), will be denoted by Gδ(D). 

In the latter notation the index δ indicates the type of the set’s elements (in this case intervals) 

and the argument D indicates that these elements are intervals in D. 

 A set ∆ = {δ1, δ2, …, δn} is called an ordered partition of D if its members are disjoint 

intervals and their union is D, i.e., 

 (∀ i | i = 1, …, n) [δi ∈ Gδ(D)] 

 (∀ i, j | i, j = 1, …, n and i ≠ j) [δi ∩ δj = ∅]  (2) 

 δ1 ∪ … ∪ δn = D  

The intervals δ1, δ2, …, δn are called blocks of the partition ∆. The set of all possible partitions 

∆ of D will be denoted by G∆(D). We can easily expand the ordering property of A into ∆. 

Furthermore, we will say that two blocks δi and δj are adjacent iff δi ∩ δj = ∅ and δi ∪ δj is an 

interval in D.  
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2.2 The exploration process  

 We will say that the elements of a block δ are consistent if there exists statistical and/or 

conceptual evidence that they all obey a single law of the type y = g(x). We will call outliers 

the elements of A that cannot belong to any block with consistent elements. Thus, an outlier a, 

which is located in the subperiod covered by the block δ, departs significantly from the law y 

= g(x); if we attempt to modify δ to include the element a, then the elements of δ will no 

longer be consistent. 

Let us assume that we have no additional information about the data set apart from the 

values (t, x, y) of its elements. So, when we start the exploration procedure the only known is 

the data set A. We do not know if there are outliers in this set. Also, we do not know whether 

the data values are consistent along the whole period covered by the data set or whether they 

are consistent inside some subperiods only. Thus, the goal of the exploration is to determine a 

set of outliers Q ⊆ A and a set of intervals ∆ ={δi} of D = A – Q, each referring to a specific 

time period, such that the data values in each δi are consistent. Following the above notation, a 

solution of our problem will be a specific couple S = (∆, Q). The state space of the problem is 

the set of all possible S, which will be denoted by G S(A). Note that to construct G S(A) we need 

to find (a) all possible sets Q (i.e., all elements of the powerset P (A)), and (b) all partitions ∆ 

of any set D = A – Q.  

 To find the solution S of the problem we need tools to assess the consistency for each S. 

First, we need a two-valued function that for every S ∈ G S(A) returns 1 if all blocks of ∆ have 

consistent elements, and 0 otherwise. This can be constructed by invoking certain aspects of 

hypothesis testing theory. However, it is practically certain that this function will return 1 for 

many different S. Thus, we will also need a procedure to choose the best solution. This can be 

based on another function, which to each ∆ assigns a real number expressing a measure of the 

goodness of a solution. This can be done by combining measures of the goodness of fit of the 

relationships y = g(x) for the different blocks. Having this function we can compare two 

solutions and select the best. Expanding this thinking further, we can pose several criteria that 

assess the goodness of a solution, and thus introduce a vector function  

 f: G S(A) → R µ (3) 
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where R is the set of real numbers and µ is the dimension of the vector, i.e., the number of 

criteria used. The function f will be referred to as the objective function. In that case the 

“best” solution S is the outcome of a multiobjective optimisation problem with a finite state 

space. A radical simplification of the problem is to combine the different criteria in a single 

real function f (i.e., with µ = 1) thus reducing the problem to single objective optimisation. 

The construction of a specific real objective function by combining several statistical and 

conceptual criteria is studied in detail in Section 3. 

2.3 Size of the state space 

As the state space of the problem is finite, our problem enters the family of discrete 

optimisation problems, which theoretically can be solved by an exhaustive search. This 

method constructs all possible solutions S, one by one, and assesses the goodness of each 

solution applying the function f. To evaluate the efficiency of this method we need to know 

the number of elements |G S(A)| of the state space. (We will use the symbol |.| throughout this 

text to denote the number of elements, else known as cardinality, rather than the absolute 

value; the latter we denote by abs(.)). This can be done as follows.  

 Let DN be a specific subset of A with number of elements |DN| = N, and Q = A – DN. By 

removing the greatest element dN of DN we construct a set DN – 1 with N – 1 elements. Let also 

G∆(DN) and G∆(DN – 1) be the sets of all possible partitions of DN and DN – 1, respectively. If we 

know G∆(DN–1) we can construct G∆(DN) by modifying each of its elements ∆ so as to include 

dN. Because the partitions are ordered and dN is greater than all d1, …, dN – 1, there are only 

two ways to modify ∆: we can either insert dN to the last block of the partition, or add a new 

block to the partition, i.e., the block {dN}, without changing the other blocks. Consequently, 

 |G∆(DN)| = 2 |G∆(DN–1)| (4) 

and since |G∆(D1)| = 1, we conclude that 

 |G∆(DN)| = 2N–1 (5) 

Furthermore, if |A| = M, there can be ⎝
⎛

⎠
⎞M

N  different subsets DN of A, all with N elements. Thus, 
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 |G S(A)| = 1 + ∑
N=1

M
 ⎝
⎛

⎠
⎞M

N  2N–1 (6) 

where the term 1 stands for the case that all elements of A are outliers. After algebraic 

manipulations (6) becomes 

 |G S(A)| = 
1 + 3M 

2  (7) 

 We can observe that this number is extremely large even for a relatively low M. Thus, it is 

practically impossible to use the exhaustive method. For example, for a data set containing 

100 values we have |G S(A)| = 2.6 × 1047. Assuming that an exhaustive algorithm can construct 

and assess 106 solutions per second (an extremely optimistic estimate of speed) it would take 

1034 years to complete its execution. Consequently, we need an effective optimisation 

algorithm that must reduce dramatically the number of searches. Such heuristic algorithms 

like A* or hill-climbing are widely used in artificial intelligence (see Pearl, 1992 for an 

authoritative analysis of heuristic algorithms). In this study we propose an algorithm 

implemented as a pattern-directed computer program, which will be presented in detail in 

Section 4. 

3. Consistency assessment 

3.1 The objective function 

In our search for the best solution S = (∆, Q) of the exploration problem our main criteria are 

the following. 

1. There should be statistical and/or conceptual evidence that the data values of each block 

δ of ∆ are consistent. 

2. There should be a measure of the consistency of the data associated with the set ∆, 

based on statistical criteria, which we wish to be as large as possible. 

3. The number of outliers |Q| should be as small as possible, given that we wish to 

incorporate in our solution as many data values as possible. 

4. The number of blocks |∆| should be as small as possible, given that we do not wish to 

spread the data in many subperiods (we rather wish to have all data in one period if 

possible). 
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 To quantify the criterion 1 we introduce a two-valued function 

 he: Gδ(D) → {0, 1}         ∀ D ⊆ A (8) 

which acts on each block δi of ∆ and returns zero if there is evidence that the elements are not 

consistent (for example if there exists an outlier in δi) and unity otherwise. The evidence of 

consistency is provided by the execution of several appropriate statistical or conceptual tests 

based on the available data set, also considering any available additional information. In each 

statistical test the null hypothesis defends in some manner the data consistency. If the 

outcomes of all tests are favourable for data consistency then he(δi) = 1. If even one outcome 

is against data consistency then he(δi) = 0. Such tests are presented in detail in Subsection 3.3. 

To combine the various he(δi) for all i we multiply them thus getting a function applying on ∆, 

i.e., 

 He: G∆(D) → {0, 1}     ∀ D ⊆ A (9) 

where  

 He(∆) = ∏
δi ∈ ∆

  he(δi) (10) 

Apparently, He(∆) = 1 if the outcomes of all tests at all blocks δi of ∆ are favourable for data 

consistency, otherwise He(∆) = 0. The functions he and He will be referred to as the block 

consistency evidence and the partition consistency evidence, respectively. 

 We can quantify the criterion 2 in a similar manner. To each block δi of ∆ we assign a 

positive real number hm(δi), which expresses some measure of consistency of the block’s data. 

The function  

 hm: Gδ(D) → R +         ∀ D ⊆ A (11) 

will be referred to as the block consistency measure. Then we combine the measures hm(δi) 

for all i by multiplying them thus getting the partition consistency measure for ∆. This defines 

the function 

 Hm: G∆(D) → R +       ∀ D ⊆ A (12) 

where  
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 Hm(∆) = ∏

δi ∈ ∆
 hm(δi) (13) 

In order for the multiplication in (13) to be well justified we can define hm and Hm in terms of 

probability of some events, in which case 

 0 ≤ hm(δ), Hm(∆) ≤ 1 (14) 

Specifically, in each block δi we consider an event εi associated with the consistency of the 

data of that block so that the events of different blocks be independent. Then we can define 

 hm(δi) = Pr(εi)         Hm(∆) = Pr
⎝
⎜
⎛

⎠
⎟
⎞

I
i = 1

|∆|
 εi  (15) 

where Pr(.) denotes probability. Owing to the independence of εi, (13) is compatible with (15). 

The construction of the events εi and the determination of the consistency measure functions 

will be discussed in Subsection 3.5. 

  Furthermore, we can combine the consistency evidence functions and the consistency 

measure functions to get two uniting functions, which will be referred to as the consistency 

assessment functions (for block and partition, respectively): 

 h(δ) = he(δ) hm(δ),             H(∆) = He(∆) Hm(∆) (16) 

 We must note that the definition of functions He and Hm is somehow arbitrary and 

subjective. However, this may not be a critical issue, as a wide range of trial functions that 

have some justified general properties and an appropriate set of parameters (which is more 

important than the function type) gave the same results (i.e., the same final solution S) in 

several experimental applications of the method. 

 The quantification of the remaining two objectives is very simple and is given by the 

following equation, which combines all four objectives in a four-dimensional objective 

function:  

 f(∆, Q) = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤He(∆)

 Hm(∆)

|A – Q|

|A| – |∆|

  (17) 
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We wish to maximise all the four components of this function, noting that the first component 

is two-valued and the second is highly nonlinear. We observe that the second and fourth 

components of the function usually are not competing. As a result of the definition of Hm in 

(13) as product of hm terms that normally are less than unity, the smaller is the number of 

blocks |∆| the bigger are the values of both |A| – |∆| and Hm(∆). Thus, we can ignore the fourth 

component. Furthermore we can combine the remaining three components in a single real 

function by introducing priorities to each one, thus reducing the problem to single objective 

optimisation. To this aim, we give first priority to the consistency evidence function, second 

priority to the number of outliers and third priority to the consistency measure. Observing that 

the first component is two-valued (0 or 1), the third is integer, and the second is a real number 

between 0 and 1, we formulate our final single objective function as 

 f(∆, Q) =  He(∆) [ ]|A – Q| + Hm(∆)   (18) 

which is compatible with the priorities that we have set. (For example, among two solutions 

with He(∆) ≠ 0, the solution with the fewer outliers always results in greater value of f(∆, Q) 

regardless of the value of Hm(∆)). 

3.2 Construction of the block consistency evidence function 

As we have stated earlier, the block consistency evidence function is a two-valued function 

that combines the results of several statistical and conceptual tests applied to the data of each 

block. Thus, it can be written as 

 he(δ) = h1
e(δ) h2

e(δ) h3
e(δ) …  (19) 

where each of the components hl
e(δ) is one if the outcome of the relevant test defends the data 

consistency and zero otherwise. In the next subsections 3.3 and 3.4 we describe some 

representative tests that we have explored and found to have good performance in the model 

applications in real-world hydrological problems. To increase readability the reader is 

prompted to have in mind the stage-discharge example, where the consistency of a block’s 

data is expressed in terms of the goodness of fit of the relationship  

 y = g(x) = c xd (20) 
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to the data values, where y denotes discharge, x denotes stage, and c and d are parameters 

statistically estimated from the data values of the specific block. The equivalent log-log linear 

relationship, which has the advantage of making residuals homoscedastic, may also be 

considered.  

3.3 Statistical components of the consistency evidence function 

We emphasise that no single statistical test can describe entirely what we mean with the term 

consistency in this context. For example, if we merely use a test based on the determination 

coefficient of (20), this would not capture an outlier in the block examined, as that outlier may 

not affect seriously the determination coefficient. Thus, we need a combination of statistical 

tests. Below we give a collection of the most important tests and the resulting functions hl
e(δ). 

The collection may be expanded to include other tests suitable for specific problems. Also, 

not all tests of the given collection are necessary for any problem; the developed system has 

the ability to enable or disable each of the tests. 

Determination coefficient. Let ej be the departure of the data element dj, from the assumed 

law of interval δ, i.e., ej = yj – ŷj  where ŷj  =g(x 
j). The determination coefficient is 

 r2 = 1 –  
 σ2

e  

 σ2
y  

 (21) 

where σ2
e  and σ2

y are the variances of e and y respectively, estimated from all data of interval 

δ. Let ρ2 be the corresponding population parameter and ρ2
0 be a reference value greater than 

zero (e.g., ρ2
0 = 0.9). We test the null hypothesis H0: ρ

2

 
 = ρ2

0 against the alternative hypothesis 

H1: ρ
2

 
 < ρ2

0 at a significance level α1 (e.g., α1 = 0.05). If the null hypothesis is rejected then we 

set the corresponding consistency evidence function equal to zero, otherwise we set it equal to 

unity. (Notice the difference from the typical correlation coefficient test where the null 

hypothesis is ρ = 0; also notice that the null hypothesis, as set above, is favourable for the data 

consistency, whereas in the typical correlation coefficient test is not.) We use the Fisher 

transformation for r, i.e., ζ(r) = (1/2) ln [(1 + r) / (1 – r)] and assume that R2, the random 

variable whose estimate is r2, is the squared inverse Fisher transformation of an 

approximately normally distributed variable, whose mean is ζ(ρ0) and standard deviation is 
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 σ2
ζ ≈ 

1
|δ| – 3 (22) 

where |δ| is the number of elements of δ. With these assumptions the resulting consistency 

evidence function is 

 h1
e(δ) = 

⎩
⎨
⎧0 α(r2) < α1

1 otherwise
 (23) 

where α(r2) denotes the attained significance level for the observed r2; it can be shown 

(D. Koutsoyiannis, unpublished document, 1994) that this is given by  

 α(r2) = FG⎝⎜
⎛

⎠⎟
⎞ζ(r) – ζ(ρ0)

σζ  – FG⎝⎜
⎛

⎠⎟
⎞–ζ(r) – ζ(ρ0)

σζ  (24) 

In the last equation r and ρ0 are the positive square roots of r2 and ρ2
0, respectively, and FG 

denotes the standardised normal distribution function. 

 In this test we have two parameters that must be selected by the user: the reference value ρ0 

and the significance level α1. We note that the alternative hypothesis H1 has no meaning if the 

reference value ρ0 equals zero. To avoid numerical effects for very low values of ρ0 we 

suggest a minimum value of ρ0 = 1.3 α1 (which was found by numerical investigation). For 

example for α1 = 0.05 the minimum value is ρ0 = 0.065. This implies no practical limitation as 

for most problems the usual values of ρ0 are greater than 0.9 (see examples of Section 5).  

Standardised residual. The second component accounts for extraordinary departures of the 

data values from the law y = g(x) and thus assists for the identification of outliers. It depends 

on the maximum absolute residual ej standardised by the standard error σe and is defined by 

 h2
e(δ) = 

⎩
⎨
⎧ 0 (∃ j | j = 1, …, |δ|) ⎣

⎢
⎡

⎦
⎥
⎤abs(yj –ŷj)

σe
 > b2

 1 otherwise

 (25) 

where abs(.) denotes absolute value (we have used this notation to avoid conflict with the 

symbol for set cardinality) and b2 is an acceptable threshold corresponding to a significance 

level α2. For example, if the residual is normally distributed, we can adopt b2 = 2.58 to 

characterise as outliers the extreme 1% of the data values. Alternatively we can determine b2 

as a function of |δ| from the equation by Stedinger et al. (1993, p. 18.45), based on tabulated 
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data by Interagency Advisory Committee on Water Data (1982). It is clear from (25) that the 

consistency evidence function equals zero even if only one outlier is contained in δ.  

 An alternative way to standardise residuals is to divide by the measured value yj instead of 

the standard deviation of residuals. This agrees with ISO Standard 1100 for determination of 

stage-discharge relationships (International Organization for Standardization, 1973), which 

sets a maximum difference ±20% of the measured discharge from the adopted curve.  

Standard deviation of residuals. Sometimes, it is desirable to keep the standard deviation of 

residuals below a certain level σ0, a practice known in the quality control theory as control of 

the standard deviation (Papoulis, 1990, pp. 342-347). This leads to the one-sided test H0: σe = 

σ0 against H1: σe > σ0. From the theory of statistics we obtain the following component of the 

consistency evidence function 

 h3
e(δ) = 

⎩
⎨
⎧ 0  σe > b3

 1 otherwise
 (26) 

where 

 b3 = σ0 
χ

2

1 – α3

(|δ| – 1) 

 |δ| – 1  (27) 

in which α3 is the adopted significance level for this test, and the numerator under the root 

denotes the (1 – α3)-quantile of the χ2 distribution for (|δ| – 1) degrees of freedom.  

Runs. The fourth component accounts for the existence of unusual patterns within δ. An 

unusual pattern is a sub-interval δp of δ, also termed run, that consists of a considerable 

number of neighbouring points whose residuals (i.e., departures from the law y = g(x)) are all 

positive or all negative. The existence of such a pattern within δ may imply another separate 

law for the sub-interval δp. Such a pattern is captured by 

Error! (28) 

where b4 is a critical value. Using the theory of runs (Hald, 1965, pp. 342-353) it can be 

shown (D. Koutsoyiannis, unpublished document, 1994) that 

 b4 ≈ β ln |δ| + γ (29) 

where 
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β = 
11

ln (–213 ln (1 –α4))  ,   γ = 1  if  |δ| < –213 ln (1 – α4)

 β = 
1

ln 2  ,   γ = 
–ln (–2 ln (1 – α4))

 ln 2  otherwise
 (30) 

whereas α4 is the confidence level of the relevant statistical test. The critical length obtained 

by the above equations for α = 0.05 and |δ| = 10, 30 and 100 is 5, 7 and 9 respectively. Note 

for comparison that in a similar situation concerning the construction of stage-discharge 

curves the ISO Standard 1100 (International Organization for Standardization, 1973) suggests 

a critical number of consecutive points above or below the curve equal to 7, regardless of the 

total number of points defining the curve. Apparently however, the critical length given by 

(29) as a function of |δ| is more reasonable. 

Marginal outliers. Essentially, all the previous components assess the goodness of fit of the 

law y = g(x) to the data. This component accounts for marginal outliers, i.e., based on merely 

each one of the variables x or y. 

 h5
e(δ) = 

⎩⎪
⎨
⎪⎧ 0 (∃ j | j = 1, …, |δ|) 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤abs(x

 
j  – x–)

σx
 > b5 or 

abs(y 
j – y–)

 σy
 > b5

 1 otherwise

 (31) 

where b5 is a critical value corresponding to a significance level α5. In the above equation x– 

and σx are the mean and standard deviation of x, respectively, whereas y– and σy are the mean 

and standard deviation of y. We note that this test, besides its marginal action on each variable 

separately, is also important for the test of the goodness of fit of the law y = g(x). To 

understand this consider the case that δ contains some data values that form an irregular 

concentrated group of points (x, y) plus a point (xf, yf) which is a far outlier with respect to 

both x and y. It is very probable that the far outlier can lead to the faulty conclusion that there 

exists some law y = g(x), despite of the fact that most of the points are spread irregularly. This 

case is surely captured by the component h5
e while it may not be traced by the previous 

components as the departures for the hypothetical law may be low. 



18 

3.4 Conceptual components  

Apart from statistical tools the data analysts use practical rules and additional information 

about the data set. This additional information is employed in our comprehensive system in 

three ways. First, we use it in the formulation of the consistency evidence function, in order to 

form some conceptual tests formally similar with statistical tests. Such tests are described 

below in this subsection. Second, we utilise it in the search strategy for the best solution, as it 

will be discussed in Section 4. Third, the experienced analyser may alter the final solution 

obtained automatically by the system, as it is not obligatory for the user to adopt that solution; 

rather the interactive form of the system allows the user to modify the solution S = (∆, Q) and 

ask the system to best fit a specific law to the modified solution, or even propose his or her 

own fit. 

Number of elements of blocks. This component, h6
e(δ), guarantees a minimum number of 

elements of δ and it is defined by  

 h6
e(δ) = 

⎩
⎨
⎧ 0 |δ| < b6

 1 otherwise
 (32) 

where b6 is a critical value. ISO Standard 1100 for determination of stage-discharge 

relationships (International Organization for Standardization, 1973) sets a lower limit b6 = 6 

for the number of measurements that define a valid stage-discharge curve.  

Known outliers. Additional information about the measurements may lead us to characterise 

as outlier a given point, whose physical conditions depart from normal. For example, stage-

discharge measurements taken during periods when the river is iced, do not obey to any 

particular law and thus are characterised as outliers. Thus, before we apply any statistical 

procedure we may form a set Qo containing such points, which must be excluded from the 

blocks of any solution. The component of the consistency evidence function that prevents 

these points to be included in a block is  

 h7
e(δ) = 

⎩⎪
⎨
⎪⎧ 0 δ I Qo ≠ ∅

 1 otherwise
 (33) 

Known breakpoints. In many situations it is known that the physical conditions of the 

measured processes have changed at a certain time. For example, an abrupt change in the 
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cross section geometry of the river channel, caused by a major flood, leads to a permanent 

shift of the stage-discharge relationship. Thus, if t* is the (known) time that such an event has 

been occurred, then we should not have data points before and after t* belonging to the same 

block. This is captured by the component h8
e(δ) of the consistency evidence function, which 

can be formally written as 

 h7
e(δ) = 

⎩⎪
⎨
⎪⎧ 0  (∃ a, b ∈ δ) [t(a) < t* ≤ t(b)]

 1 otherwise
 (34) 

The previous two components account for additional information that induces particular 

decisions about the final solution. To take such actions the analyser must be certain about the 

validity of this information. However, there are cases of “suspect” measurements or “likely” 

breakpoints, where the analyser cannot be certain in taking actions such as excluding data 

points from the final solution or setting a breakpoint at a certain time. For example, a stage-

discharge measurement taken during a flood may not obey the law of other measurements 

referring to more steady flow conditions. In such cases the use of components (33) and (34) is 

not appropriate, because we cannot exclude such a data point from the final solution without 

testing it first. However, we can take advantage of this kind “fuzzy” information in the search 

strategy of the final solution, as it is explained in Section 4.  

3.5 Construction of the block consistency measure function 

As we have stated in Subsection 3.1 the block consistency measure is defined as the 

probability of an event εi associated with the data values of interval δi. This event must be 

related with the consistency of the data in a manner that its probability be close to 1 for an 

apparently consistent data set and close to zero for an evidently inconsistent data set. Such an 

event can be defined in terms of the test statistics discussed in Subsection 3.3. Since the 

various statistics examined are apparently jointly dependent, it is very difficult to describe our 

event by more than one statistics. Thus, we must choose one of them, the more representative 

for the specific problem studied. Without loss of generality we will choose the determination 

coefficient R2. This was found empirically to be the most appropriate for the studied 
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examples, which can be theoretically justified by its feature to be an overall measure of the 

goodness of fit. An event with the desired properties is  

 ε = {R2 < r2} (35) 

The resulting block consistency measure is then  

 hm(δ) = Pr(R2 < r2) = α(r2) (36) 

where α(r2) is the attained significance level of the test, given by (24). Alternatively, we can 

define the consistency measure by means of the conditional probability Pr(R2 < r2 | R2 < ρ2
c) 

where ρ2
c is the critical value of R2 for the relevant test described in Subsection 3.3 at the 

significance level α1. In this case the consistency measure takes the form 

 hm(δ) = 
⎩
⎨
⎧0 α(r2) ≤ α1

α(r2) – α1
1 – α1

 α(r2) > α1
 (37) 

which is consistent with h1
e(δ) defined in (23), as both h 

m(δ) and h1
e(δ) are equal to zero in the 

critical region of the test. We clarify that α(r2) that is used in the above equations has already 

been calculated during the evaluation of h1
e(δ) (i.e., the application of the determination 

coefficient test), and thus the evaluation of h 
m(δ) needs no additional statistical calculation. 

4. The proposed heuristic algorithm 

4.1 Human reasoning strategies and state space reduction 

The actions of a human expert trying to explore the consistency of a given data set can be 

represented by a process of successive transformations from a problem state S = (∆, Q) to a 

new state S΄ = (∆΄, Q΄), i.e., 

 (∆΄, Q΄) ← (∆, Q) (38) 

This step-by-step search is obviously not exhaustive as not all possible problem states are 

evaluated. The expert always selects the most promising new state S΄, thus heuristically 

guiding the search towards the “best” solution. There are some decisions associated with the 

selection of the direction of the search, i.e., the selection of the most promising new problem 

state. These decisions are supported by the use of the statistical tools described in previous 
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section together with the expert’s experience and intuition. The junction of scientific 

knowledge, experience and intuition can be viewed as heuristic rules or search strategies that 

the expert employs in order to guide the search towards the most promising direction.  

 We will now assume that a data set A is given to a human expert and that he or she tries to 

separate it into consistent intervals and to isolate the outliers of the set, i.e., he or she searches 

for a solution (∆, Q) of the problem. We will trace in the following paragraphs some of the 

most preferable search strategies, used to select and test the most promising problem states. 

Such strategies are depicted in the schematic representation of Figure 5, in the form of a 

simplified example indicating the consecutive steps of the search process. In the initial step L1 

the data set is totally unexplored, while in the final step L8 the final solution has been found. 

The strategies include: 

1. Opening of windows in the data set, in order to locate consistent intervals (Figure 5, steps 

L2 and L6). 

2. Expansion of a consistent interval integrating elements adjacent to this interval that do not 

belong to any other consistent interval but rather lie in between the already found 

consistent intervals (Figure 5, steps L3, L5 and L7). 

3. Merging of adjacent consistent intervals when their union is judged consistent (Figure 5, 

step L6). 

4. Shifting of the boundaries of adjacent consistent intervals that cannot be merged, by 

exchanging elements between them (Figure 5, step L7). 

5. Isolation of some elements (outliers) belonging to an interval that cannot be judged as 

consistent (Figure 5, steps L4 and L6). 

6. Re-integration of some elements that were left out as outliers but as the problem state 

evolves they might be integrated in a recently found consistent interval (Figure 5, step L8). 

7. Replacement of isolated elements by other elements of a consistent interval (Figure 5, step 

L8). 

8. Reduction of the problem to distinct sub-problems with lower complexity. This results in 

arbitrary partitioning of the data set and processing of each interval separately. 

9. Reconnection of sub-problems. This is the reverse of the reduction procedure. 



22 

4.2 Representation scheme 

The heuristic algorithm we propose in this study emulates the human reasoning process and 

thus we will use a similar representation. The various search strategies used by the human 

expert are represented in the algorithm as numerous transformations. The algorithm, in order 

to reach a solution state, transforms the current state of the problem to a new state, as 

described by (38), which is equivalently written as 

 (Φ΄, Π ΄, Q΄) ← (Φ, Π, Q) (39) 

where ∆ is now separated in two disjoint sets Φ and Π, defined by 

 Φ ∪Π = ∆, π ∈ Π ⇒ h(π) > 0 (40) 

This means that the set Π holds all members of ∆ already found to be consistent, while the set 

Φ holds the rest members of ∆. These members are either tested and judged inconsistent, or 

not yet tested. 

 The initial state of the algorithm is 

 SI = (ΦI, ΠI, QI) = ({A}, ∅, ∅) (41) 

 Each transformation consists of a conditions part and an action part. The conditions part of 

a transformation represents a search of the current state for a pattern on which it can apply its 

action. The action part represents the modification of the current state that will be performed 

if the conditions part succeed in the search of the pattern of interest. 

 The algorithm will terminate when it is no more able to transform the current state. The 

algorithm can be schematically represented by the following seven steps: 

(1)  Form the initial state of the problem and assert it as the current state. 

(2)  If all transformations are marked as used then go to step (7). 

(3)  Select a transformation not marked as used. 

(4)  Search if the conditions of the transformation hold in the context of the current state. 

(5)  If the conditions do not hold, mark the transformation as used and go to step (2). Else 

continue. 
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(6)  Instantiate the actions of the transformation thus modifying the current state. Remove 

the used mark from all transformations and go to step 2. 

(7)  Exit with the current state as a solution of the problem. 

 In the following subsections we describe the specific transformations used by the algorithm 

to reach the goal state. For each transformation we describe the conditions and the actions part 

and give some comments. 

4.3 Opening of windows  

Opening of windows is one of the most popular procedures in signal analysis and pattern 

classification (Duda and Hart, 1973, pp. 88-95). As an isolated procedure it is not so effective, 

but when combined with other types of actions it results in a powerful tool. The procedure 

searches for a block φ of Φ such that at least one subinterval π of φ is consistent. If it 

succeeds, it appends the interval π to the set Π and modifies appropriately the set Φ without 

changing the set Q. The conditions that must hold in order for the transformation to instantiate 

its action are 

 (∃ φ ∈ Φ) (∃ π ⊆ φ, π ∈ Gδ(D)) [h(π) > 0] (42) 

The “exists” (∃) quantifier may be interpreted as the indicator of an appropriate search. The 

relation π ∈ Gδ(D) indicates that π is an interval in D, where D is the union of all members of 

both Π and Φ. The result of the transformation is 

 Φ΄ = (Φ  – {φ}) ∪ {φ1, φ2},     Π΄ = Π ∪ {π},     Q΄ = Q (43) 

where φ1 and φ2 are subintervals of φ containing those members that are smaller and greater, 

respectively, than the members of π. 

 The transformation will process every member φ of Φ until it finds one having at least one 

consistent subinterval π. The search for the existence of such a subinterval begins with a trial 

window with number of elements |π| = c with c = |φ|. If the algorithm does not find a window 

π with consistent members, it reduces the number of elements of the search window to c = 

c / cr where 1 < cr < c. The search is completed when c < cmin. The parameters cr and cmin are 

defined by the user. If the parameter cr is very large then we get a fast but risky search. If the 
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parameter cr is near to 1 we get a slow scanning of the set φ. An interesting special case is φ1 

= φ2 = ∅ in which π = φ. 

4.4 Expansion of a consistent interval 

When a consistent interval (a member π of the set Π) is located in the current state, a natural 

action would be to expand this consistent interval to its unexplored neighbourhood (a member 

φ of the set Φ). This is accomplished by cutting a piece φ1 from the adjacent φ set and 

merging it with π. The conditions that must hold in the current state are 

 (∃ π ∈ Π) ( ∃ φ ∈ Φ ) ( ∃ φ1 ⊆ φ ) [π ∪ φ1 ∈ Gδ(D) and h(π ∪ φ1) > 0] (44) 

where the interval π is adjacent to φ as well as to the subinterval φ1 of φ. The result of the 

transformation is 

 Π΄ = (Π – {π}) ∪ {π ∪ φ1},      Φ΄ = (Φ  – {φ}) ∪ {φ – φ1},    Q΄ = Q (45) 

 Many alternative sets φ1 are tested during this expansion process. Firstly, the algorithm 

tries to integrate the whole set φ in the consistent interval π. Thus, the number of elements c 

of the first set φ1 is equal to that of φ, i.e., |φ1| = |φ|. If the union of π and φ1 is not consistent 

then the number of elements of φ1 is reduced by one and the new union of π and φ1 is tested. 

This reduction is done repeatedly until c = 1. 

4.5 Merging of adjacent consistent intervals 

When two consistent intervals are adjacent, a natural action is to merge them, if possible. The 

relevant transformation modifies the set Π without affecting the sets Φ and Q. The necessary 

conditions are 

 (∃ {π1, π2} ⊆ Π) [π1 ∪ π2 ∈ Gδ(D) and h(π1 ∪ π2 ) > h(π1) h(π2)] (46) 

where the intervals π1 and π2 are adjacent. The result is 

 Φ΄ = Φ ,   Π΄ = (Π – {π1, π2}) ∪ {π1 ∪ π2},    Q΄ = Q (47) 

 The algorithm keeps track of all unsuccessful attempts to merge consistent intervals by 

inserting appropriate marks in a special space of the computer memory. Thus, the algorithm 

prevents the application of the transformation under the same conditions (application to the 
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same consistent intervals). Marks of this type are inserted for other transformations as well, 

but it is not our purpose to present all details of the particular implementation of the proposed 

algorithm. 

4.6 Shifting of consistent intervals boundaries 

In case of a smooth transition from an instance of a law relating the data values to a different 

instance of the law, the boundary between any two instances may be not well defined. Very 

often, there is no abrupt change in the data of the two law instances. The data values in the 

boundary of two consecutive consistent intervals lay in a “gray” area and may belong to either 

law instance. Thus, we need a transformation that will force the two consistent intervals to 

exchange elements until a better partitioning is found. Its conditions are 

(∃ {π1, π2} ⊆ Π) (∃ {π΄1, π΄2} ⊆ Gδ(D)) [π΄1 ∪ π΄2 = π1 ∪ π2 and h(π΄1) h(π΄2) > h(π1) h(π2) (48) 

where π1 and π2 are adjacent intervals in D, π΄1 and π΄2 are also adjacent intervals in D, and 

π΄1 ≠ π1. The modification of the current state is 

 Φ΄ = Φ,   Π΄ = (Π – {π1, π2 }) ∪ {π΄1, π΄2},   Q΄ = Q (49) 

 The number of elements c of π΄1 determines the time position where the new intervals are 

separated. The transformation starts the search with c = |π1| ± 1. If the new partitioning does 

not improve the solution, the number of elements c becomes c = |π1| ± 2 . This scanning goes 

on until c = |π1| ± cm where cm is defined by the user (e.g., cm = 3). 

4.7 Isolation of elements 

The detailed mathematical representation of this transformation is somewhat complicated 

(G. Tsakalias, unpublished document, 1994) and, therefore, we will give a verbal description 

of the transformation. When an unexplored set φ contains outliers, it cannot be used by any of 

the former transformations. For example, the transformation that expands a consistent interval 

cannot expand a set π toward an adjacent set φ if the first element of φ is an outlier. This 

outlier is an obstacle that must be removed. The transformation takes as input a set φ, isolates 

a subset z of this set, and returns to the algorithm a “clean” set φ΄ = φ – z. Thus the expansion 

transformation (or any other transformation) will now act on the new set φ΄. If the isolation of 
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the outliers is successful (the set z contains the obstacles) then the members of the set φ΄ will 

be utilised and the transformation will not act again on the set φ. Otherwise, a different set z 

will be isolated and the process will stop with the isolation of the entire set φ.  

 The isolation of some elements does not necessarily mean that these elements will remain 

isolated in the final solution. They must be considered as temporarily “disabled” because, as 

the solutions evolve, other transformations may succeed in utilising them again. An exception 

to this rule is the case where there exists additional, physically-based, information about the 

measurements, that may lead us to characterise as outlier a given point, whose physical 

conditions depart from normal. If such outliers are a priori known positively, they can be 

entirely excluded from the data set. However, if the additional information is no more than a 

“suspicion” about the correctness of some data points, then these data point are introduced in 

the solution procedure by assigning them a priority (against other points) for being isolated by 

the algorithm. 

4.8 Re-integration of elements 

This transformation is opposite to the previous one, as it attempts to re-integrate temporarily 

isolated data. It modifies Π and Q without affecting Φ. The necessary conditions are 

 (∃ QR ⊆ Q) (∃ π ∈ Π  ) [π ∪ QR ∈ Gδ(D ∪ QR) and h(π ∪ QR) > 0] (50) 

The first relation in square brackets states that the new set π ∪ QR must be an interval in 

D ∪ QR. The above conditions hold in case that the algorithm in a previous stage had isolated 

some elements (which are contained in the set QR) and it is now coming to revise this decision 

trying to reconnect these elements. The transformation of the current state is 

 Φ΄ = Φ,   Π΄ = (Π – {π})  ∪ {π ∪ QR},   Q΄ = Q – QR, (51) 

 The set QR is chosen so that |QR| ≤ cR, where cR is an integer constant defined by the user 

and by default set to cR = 1.  
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4.9 Replacement of elements 

This transformation is similar to the previous one, but here the re-integrated elements are not 

appended to a specific interval but rather they replace some other elements of this interval. 

The conditions that must hold in order for the transformation to apply are 

Error! (52) 

The first relation in square brackets states that the new set (π – π E) ∪ QE must be an interval 

in (D – π E) ∪ QE. These conditions describe a search for the re-integration of some previously 

isolated elements (members of the set QE) that replace an equal number of connected elements 

(members of the set πE) inside a consistent interval (π) of the current state. The result of the 

transformation is 

 Φ΄ = Φ,     Π΄ = (Π – {π})  ∪ {(π – πE) ∪ QE},    Q΄ = (Q – QE) ∪ πE (53) 

 The set QE is chosen so that |QE| ≤ cE, where cE is an integer constant defined by the user, 

which is by default set to cE = 1. 

4.10 Problem reduction and reconnection 

Very often, a human expert does not consider simultaneously all data values of a large set 

(e.g., with one thousand or more measurements), but rather splits the data values in “pages” 

and considers each page separately. As the search evolves, he or she tries to reconnect these 

pages. To emulate this human strategy we have implemented a transformation that partitions a 

large interval φ into two subintervals φ1 and φ – φ1. The conditions that must hold are 

obvious: 

 (∃ φ ∈ Φ) (∃ φ1 ⊆ φ) [{φ1, φ – φ1} ⊆ Gδ(D)] (54) 

The relation in square brackets means both φ1 and φ – φ1 must be intervals in D. The result is 

 Φ΄ = (Φ – {φ})  ∪ {φ1, φ – φ1},   Π΄ = Π,   Q΄ = Q (55) 

 The number of elements of the set φ1 is fixed to some integer cf defined by the user. As the 

transformation can be applied many times, it is possible that the initial set φ will be finally 

separated into many intervals. However, this does not mean that these intervals will remain 
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separated. In fact this is quite unlikely because the separation is done in arbitrary locations. 

Although this transformation does not affect the quality of the final solution, it affects the 

speed of the method in case of large data sets.  

 Another case of problem reduction is met when there exists auxiliary, physically-based 

information (such as that discussed in the end of subsection 3.4), about specific permanent 

shifts in the measured hydrological process or its environment of, or even in the measuring 

process itself. In such a case the problem reduction is permanent and no reconnection is 

needed. This, apparently, simplifies the problem as its dimensionality is permanently reduced.  

4.11 Additional remarks 

In addition to the above-described transformations there are some other with complementary 

action. For example, there is a transformation that collects the “garbage” produced by other 

transformations. 

 After the completion of the algorithm, the set Π contains the blocks found to be consistent, 

while the set Φ contains inconsistent blocks. The elements of Φ are appended to the set of 

outliers Q, so that the final solution (∆F, QF) is  

 ∆F = Π,      QF = U
φi ∈ Φ

 φi U Q (56) 

 There is no guarantee that this solution is the optimum. Due to the extremely complicated 

determination of the consistency assessment function there can be no theoretical proof that the 

algorithm reaches the absolutely optimal solution. However, in the experiments we have done 

we never found manually a solution with higher value of the objective function than that 

obtained by the algorithm. 

 We must notice that the algorithm, as described above, does not evaluate directly the 

objective function f(∆, Q) of equation (18) in each step (i.e., in each execution of a 

transformation). In fact, it evaluates the block consistency assessment function h(δ) for each 

interval δ it considers. This simplifies the computations. All transformations applied, increase 

successively the value of the function h(δ) of the interval δ that they modify. Consequently, 

they increase always the value of the objective function f(∆, Q). This feature of the algorithm 
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prevents circular actions evolving a number of transformations. To this rule there is the 

exception of transformations that do not modify the set Π, which do not alter the value of 

objective function. For example, the transformation that isolates elements does not affect the 

value of this function. However, it employs an internal explicit mechanism for preventing 

circular actions. 

4.12 Program implementation 

The algorithm presented in this study is implemented using the Prolog language and 

following the principles of pattern directed programming. In a pattern directed program the 

procedures are autonomously triggered when patterns of data are found in the memory of the 

computer. This is the main difference from conventional programs whose procedures are 

called by other procedures with a standard order. More specifically, the architecture of the 

implemented program is quite similar to the architecture of the systems called blackboard 

systems (Hayes-Roth and Hewett, 1988). The transformations are represented as knowledge 

sources and the current problem state is represented as a blackboard. The sets used by the 

algorithm are represented as blackboard objects recorded on the blackboard. Each time a 

knowledge source finds a pattern (i.e., a combination of objects on which it can apply) it 

instantiates its action, thus transforming the blackboard (i.e., the current state of the problem). 

A number of techniques that improve the efficiency of the program are employed in order to 

avoid unnecessary searching, circular transformations and to increase the program speed.  

 The system is implemented on RISC workstations under the name PINAX and is 

connected to the HYDROSCOPE relational database (the Greek national data bank for 

hydrological and meteorological information) (Papakostas et al., 1994), through the OPSIS 

time series processing and visualising system (Tsakalias and Koutsoyiannis, 1994). 

5. Hydrological applications 

In this section we will reconsider the examples already discussed in the Introduction, in order 

to present the details of the application of the proposed method. 
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5.1 Stage-discharge relationships 

Our first application is concerned with the construction of stage-discharge curves by using 

simultaneous measurements of water level (or stage) and discharge of a river. This is a very 

common hydrologic problem as the stage-discharge curves along with the detailed stage 

records are used to extract the discharge records almost in any river. Although there have 

been developed standards for the establishment of stage-discharge curves (International 

Organization for Standardization, 1973) the problem remains difficult and tedious. Its solution 

has a high degree of subjectivity as it depends on the expert’s knowledge, experience and 

intuition. Recent developments tend to use Decision Support Systems to facilitate the 

establishment of stage-discharge curves (Gawne and Simonovic, 1994; DeGagne et al., 1996). 

Such systems are physically based as they consider the hydraulic characteristics of the river, 

such as energy slope, friction, channel aggradation and degradation, etc. 

 In Sections 1 and 3.2 we have already discussed the formulation of the problem from our 

point of view. According to this, rather black box, approach the only data needed is the set of 

concurrent measurements of stage and discharge. Apparently, the knowledge of the physical 

conditions of the river channel, and their changes in time, is quite helpful. However, in the 

example presented here, the Sakoulevas river, no such information is available. In Greece, 

almost all rivers exhibit significant instability in stage-discharge relationship (owing to 

frequent changes of river bed conditions) and thus, the construction of multiple stage-

discharge curves is obligatory. The problem of constructing the stage-discharge curves 

becomes more complicated because of the large percentage of erroneous data, caused by non-

representative measurements or, more rarely, by incorrect values. 

 The data set (the set A), depicted in Figure 1 consists of 78 measurements of Sakoulevas 

river for an eight-year period. The relatively small number of measurements facilitates the 

visualisation of the results (although we have successfully tested cases with much larger data 

sets). 

 We recall from Subsection 3.2 that the relationship among stage (x) and discharge (y) data 

is a power law y = c xd with c > 0. The parameters of the various components of the block 

consistency assessment function, as defined in Subsection 3.3, are shown in Table 1. 
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 According to (7), the number of elements of the state space of the problem is 8.2 × 1036. 

The algorithm evaluated 181 states and obtained in three seconds the results shown in Figure 

1b. We observe that the system separated the data in three periods. The outliers (members of 

the set Q) are not shown in this figure. In Figure 1c we present one of the three blocks with 

the connected elements (the members of the consistent subset) along with the outliers of that 

period and the corresponding power law. As explained in section 3.1, due to the form of the 

objective function (which gives high priority to the number of outliers), the final number of 

outliers is the minimum possible. This means that the outliers shown in Figure 1c (even if 

seemingly their departure from the power law is not extremely large) could not be included to 

the block of consistent elements (in that case the consistency evidence function He would 

become zero).  

5.2 Double mass analysis 

In this example, the members of the input data set A contains 22 measurements of annual 

rainfall depths at two adjacent rain gauges located at Gregorio and Poros Reganiou in Sterea 

Hellas, Central Greece. The target of the problem is to test whether the data set is 

homogeneous or not, and, in the latter case, to partition it into homogeneous subperiods.  A 

straight line passing from the origin, i.e., 

 y = g(x) = c x (57) 

should fit the double mass plot of the two series if both are homogeneous during the entire 

period of the data set. Otherwise, more than one instances of the same law must be identified, 

each corresponding to a subperiod with homogeneous data. The variables x and y for each 

block δ = {dr, r = 1, …, k} are defined by 

 yj = ∑
r = 1

j
 h2(dr),           xj = ∑

r = 1

j
 h1(dr) (58) 

where h1(dr) and h2(dr) denote contemporaneous rainfall depths in the two neighboring 

stations. Note that in this example, to determine the problem variables we need first to choose 

a partitioning into blocks. 
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 The parameters of the specific tests of the block consistency function used are shown in 

Table 1. According to (7), the number of elements of the state space of the problem is 

1.6 × 1010. The algorithm evaluated 21 states and obtained in less than one second the results 

shown in Figure 2. We observe that the system isolated two elements (at years 1963 and 

1961) and separated the other elements into two homogeneous periods (1983 - 1974 and 1973 

- 1962). The isolation of the two elements is quite reasonable. The annual rainfall depth at 

Gregorio is generally greater than that at Poros Reganiou with a ratio of about 1.4 (the 

standard deviation is 0.2), whereas in 1963 this ratio becomes double this value and in 1961 

becomes half this normal value. These are definitely extraordinary values suspect for 

measuring errors. 

 The separation into two periods is also justified. Geometrically this is indicated in Figure 2 

by the significant departures of the second period’s data from the straight line defined by the 

first period’s data. To verify this further, we performed t tests at both data series for the 

significance of the difference between the means of the annual rainfall depth (not the 

cumulative values) of the two periods. For the Poros Reganiou data set no significant 

difference between the two periods was found. For the Gregorio station, when all data values 

are considered (including the two isolated elements), the difference between the two means 

(1983-1984 against 1973-1963) is significant at a significance level α = 0.05. When the two 

isolated elements are removed, the difference between the means of the two periods becomes 

significant at α = 0.01. 

 Interestingly, the same results were obtained by the system using the 264 monthly rainfall 

depths instead of the 22 annual values. 

5.3 Analysis of temporal consistency 

In the third example, already mentioned in the Introduction, our goal of consistency 

exploration is to find the start and the end of periods with faulty time entries of rainfall 

measurements, giving us the opportunity to check and correct the data record. 

 Again, in this problem we must partition the data set of the tested rain-gauge, into 

consistent blocks, in a manner that all rainfall measurements y of each block δ = {dr, r = 1, …, 
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k} have the same shift τ from the correct time, whereas measurements of different blocks have 

different lags. To this aim, we use as reference the concurrent measurements x of another rain-

gauge, located near the tested rain-gauge. We assume that the measurements of the reference 

station have correct time entries, and, therefore, any measurement y(t) is in fact concurrent 

with x(t − τ). Given the small distance between the locations of the two stations, we expect 

that their measurements, after the appropriate time shift, should be linearly correlated. 

Therefore, the law to be established is  

 y(t) = a + b x(t – τ) (59) 

where all parameters a, b and τ have to be determined. The most difficult to determine is the 

values of the lag τ for the different blocks, which, besides, are the demands of the problem 

solution (parameters a and b are not required items of the solution). The problem is simplified 

if we consider τ as an integer multiple of the temporal resolution of measurements ε, i.e., τ = 

i ε, where i is an integer ranging in a prespecified interval [–k, k]. All integer values of i in this 

interval must be tested for each block δ, and finally the value that maximises the function h(δ) 

is selected. 

 For the application of the method we have used the daily rainfall series of one year (1982) 

for stations Poros Reganiou and Anthero, with a distance of 6 km between each other. The 

parameters used for the components of the consistency assessment function are shown in 

Table 1. The data values of both stations were consistent in time, so we altered them to check 

if the algorithm can find the alterations. Specifically, we altered the February’s data of 

Anthero, shifting the time field of each measurement by one day to the left. Also, we altered 

the October’s data of the same station, shifting the time field of each measurement by one day 

to the right. In addition, we modified one measurement of rainfall depth at the same station, 

replacing the existing value with an extremely high one. In Figure 3 we give the altered 

hyetograph of Anthero and the original one at Poros Reganiou. The consistent periods 

identified by the system are separated by the vertical lines and the isolated observations are 

marked in this figure (the system found one more outlier). We observe that the system 

detected our “cheat”, finding exactly the points where the “malfunction” appeared and 

disappeared.  
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6. Conclusions and discussion 

The ascending hydrological information overload requires new computer-based methods for 

tackling common hydrological problems, formerly accomplished by manual methods. Some 

of these problems, such as the identification of shifting relationships between bivariate data 

sets and the exploration and testing of consistency or homogeneity of data sets, are not at all 

easy tasks when we attempt to solve them automatically with a computer program. They need 

a rigorous mathematical formulation and an intelligent and quick algorithm to find a solution. 

In this study we attempted to establish a generalised framework for solving such problems.  

 Thus, the first achievement of this work is the general mathematical formulation of a 

seemingly diverse collection of problems concerning hydrologic data processing. All 

examined problems are formulated as a single problem whose solution is the partitioning of 

the data set into consistent ordered blocks and the extraction from the data set of a subset 

holding the outliers. This formulation leads to the determination of the state space of the 

problem, which appears to be a huge set of possible solutions. The candidate solutions must 

be evaluated by optimisation of an appropriate objective function.  

 A wide range of statistical tests is investigated and systematically combined so as to form 

an objective function representing a measure of the consistency of a data set partitioned into 

blocks. This function is initially multidimensional and thus the optimisation is multiobjective. 

By simplifying the objective function, the problem has been reduced to a single-objective 

optimisation. The specific function proposed integrates the outcomes of several statistical and 

conceptual tests, and it can be easily expanded or modified, to include more components. 

Also, it includes several parameters that can be chosen to fit the needs of each specific 

problem. The parameter sets given in the examples studied may be used as a guide for similar 

situations. 

 Due to the magnitude of the state space of the problem, an exhaustive search of all 

candidate solutions is impossible, even for the smallest problems. Therefore, a heuristic 

algorithm is proposed, which makes the solution of the problem feasible by emulating the 

exploratory analysis of the human expert. This algorithm encodes a number of search 

strategies in a pattern directed computer program. 
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 Three different applications of the method to real world hydrological problems are 

included to test the system’s performance. They are concerned with typical hydrological 

problems such as the identification of stage-discharge curves, the double mass analysis and 

the analysis of temporal consistency of hydrological data. In all cases the performance of the 

system was very satisfactory. Moreover, in all our experiments the system provided improved 

solutions in comparison with those obtained by human experts, as in all cases the system 

utilised more data and its solutions had a higher consistency measure than any expert’s 

solution. Conclusively, the system can assist the human expert by undertaking many of his or 

her tedious tasks. 
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Table 1. Parameters of the block consistency assessment function for the application of the 

method in the three case studies presented in the paper. 

Parameters for the case study of  

Component  stage-

discharge  

double mass  temporal 

consistency  

Determination coefficient*   ρ2
0 = 0.9,  

α1 = 0.05 

 ρ2
0 = 0.9, 

α1 = 0.05 

 ρ2
0 = 0.9, 

α1 = 0.05 

Standardised residual α2 = 0.025  α2 = 0.05  α2 = 0.05 

Standard deviation of 

residuals 

σ0 = 0.35, 

α3 = 0.05 

σ0 = 5, 

α3 = 0.05 

σ0 = 1.2, 

α3 = 0.05 

Runs α4 = 0.05 α4 = 0.01 α4 = 0.01 

Marginal outliers Disabled α5 = 0.01 Disabled 

Number of elements of 

blocks 

 b6 = 10  b6 = 8  b6 = 8 

* For both consistency assessment and consistency measure functions. 
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List of Figures 

Figure 1. Construction of stage-discharge curves for the Sakoulevas river: (a) The whole initial data 

set. (b) The consistent blocks separated by the system, without the outliers; triangles correspond to 

period 1 (02/1964-05/1966), circles correspond to period 2 (06/1966-05/1969) and rectangles to 

period 3 (06/1969-01/1972). (c) The data of period 1 (triangles) along with the outliers (symbols ) 

belonging to this period, and the corresponding least squares power curve. 

Figure 2. Double mass plot of annual rainfall at stations Poros Reganiou and Gregorio. Data are 

plotted in reverse order (the point close to the origin corresponds to the last year). Circles 

correspond the first period (1983-1974), rectangles to the second period (1973-1962) while the 

symbols  correspond to the outliers (1963 and 1961). The straight line is the least-square line of the 

first period. 

Figure 3. One year (1982) hyetographs of two rain-gauges as an example of the temporal 

consistency analysis. Dotted line represents the measurements at the reference station (Poros 

Reganiou), while continuous line represents the measurements of the tested (and altered) station 

(Anthero). For clarity of the diagram we have removed prolonged intermediate dry periods, 

although the system considered the whole data sequence. 

Figure 4. Geometric explanation of the basic definitions and notation. (a) Set-theory representation: 

The data set A to be explored is represented by the thick straight line and its elements, ordered by 

time, are represented by the circles. Some of the elements of A form the set of outliers Q. The other 

elements are partitioned into three blocks, forming the ordered partition ∆ = {δ1, δ2, δ3}. 

Figure 5. Schematic representation of eight (L1 … L8) consecutive steps of the search for the best 

partition of a data set with 24 points. In the initial step (L1) all 24 data points (open circles) are 

unexplored whereas in the final step (L8) 21 data points (filled circles) have been partitioned into 

three blocks (gray frames) and other three points (gray squares) are marked as outliers. Labels 

indicate the transformations instantiated.  
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Figure 1. Construction of stage-discharge curves for the Sakoulevas river: (a) The whole initial data 

set. (b) The consistent blocks separated by the system, without the outliers; triangles correspond to 

period 1 (02/1964-05/1966), circles correspond to period 2 (06/1966-05/1969) and rectangles to 

period 3 (06/1969-01/1972). (c) The data of period 1 (triangles) along with the outliers (symbols x| ) 

belonging to this period, and the corresponding least squares power curve. 
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Figure 2. Double mass plot of annual rainfall at stations Poros Reganiou and Gregorio. Data are 

plotted in reverse order (the point close to the origin corresponds to the last year). Circles 

correspond the first period (1983-1974), rectangles to the second period (1973-1962) while the 

symbols x|  correspond to the outliers (1963 and 1961). The straight line is the least-square line of the 

first period. 
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Figure 3. One year (1982) hyetographs of two rain-gauges as an example of the temporal 

consistency analysis. Dotted line represents the measurements at the reference station (Poros 

Reganiou), while continuous line represents the measurements of the tested (and altered) station 

(Anthero). For clarity of the diagram we have removed prolonged intermediate dry periods, 

although the system considered the whole data sequence. 
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Figure 4. Geometric explanation of the basic definitions and notation. (a) Set-theory representation: 

The data set A to be explored is represented by the thick straight line and its elements, ordered by 

time, are represented by the circles. Some of the elements of A form the set of outliers Q. The other 

elements are partitioned into three blocks, forming the ordered partition ∆ = {δ1, δ2, δ3}. (b) 

Simplified schematic representation of the same.  
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Figure 5. Schematic representation of eight (L1 … L8) consecutive steps of the search for the best 

partition of a data set with 24 points. In the initial step (L1) all 24 data points (open circles) are 

unexplored whereas in the final step (L8) 21 data points (filled circles) have been partitioned into 

three blocks (gray frames) and other three points (gray squares) are marked as outliers. Labels 

indicate the transformations instantiated.  

 


