
Hydrologic data management using 
RDBMS with differential-linear data 
storage 
G. Tsakalias, D. Koutsoyiannis 
Division of Water Resources, Hydraulics and Maritime 
Engineering, National Technical University of Athens, 5 
Iroon Polytechniou, GR-157 00 Zografou, Greect 

Abstract 

Recently, Relational Data Base Management Systems (RDBMSs) have become 
popular for handling hydrologic time-series and running hydrologic applications. 
However, the standard data independence in such systems has many technical 
disadvantages in storing time-series data. An alternative technique, named Dif- 
ferential-Linear Data Storage (DLDS) technique, has been developed in the 
framework of the Hydroscope project (a Greek nation-wide database for hy- 
drometeorological information). This technique establishes a standardised repre- 
sentation of hydrologic time-series in a relational database environment, also 
providing a notable reduction in storage space. Instead of the standard SQL 
queries (select, insert, delete and update), numerous composite procedures are 
implemented to facilitate time-series management. 

1. Introduction 

During the last three decades, hydrologic data storage and retrieval has been 
continuously improved as a result of the evolution of computer technologies in 
data management. The first systems developed were based on central mainframe 
computers and programming languages like FORTRAN. Recently, new hydro- 
logic database systems have been developed taking advantage on the available 
new technologies such as Relational Data Base Management Systems 
(RDBMSs), graphical user interfaces, etc Examples of such systems are the 
National Water Information System II in USA (USGS'), CompuMod in Canada 
(Environment canada2) and Hydroscope in Greece (Tolikas et aL4). The latter is 
a nation-wide distributed database system for hydrometeorological information 
currently consisting of 12 nodes, each belonging to one of the co-operating or- 



3 18 Hydraulic Engineering Software 

ganisations (ministries, universities and research centres). It is based on Hewl- 
ett-Packard 9000/s700 UNIX workstations running the INGRES RDBMS 

In a RDBMS the data are organised in tables. Each table may be viewed 
as a rectangular entity consisting of rows (or records) and columns (or fields). 
Each row is a separate instance of the same kind of information, while the dif- 
ferent fields of the row contain different components of this information. One 
major feature of RDBMSs is data independence: the system itself controls the 
details of data storage and retrieval, while the user need not know how the data 
are stored. Another important feature is that they support the use of special 
programming languages for data manipulation such as SQL (Structured Query 
Language), which provides powerful procedures for data access and retrieval 
(i.e., select, insert, delete and update). Owing to these features, RDBMSs have 
dominated in several business applications and they have become the state-of- 
the-art in commercially available database technologies. This has brther en- 
hanced their capacity, as they are continually improved offering extensive data 
handling capabilities and support and development tools. Thus, they currently 
support distributed databases and provide easy-to-use graphical user interfaces 
and fourth generation programming languages (such as Windows 4GL) and ob- 
ject oriented techniques (Papakostas et d 3 )  

However, RDBMSs have certain disadvantages when used for hydrologic 
data management (~odson') .  These are associated with the time-series charac- 
ter of hydrologic data, their numeric aspect and the complicated calculations 
needed for certain hydrologic applications. The data independence results in a 
significant increase of the storage volume, as the date of each data value has to 
be stored individually with the data value (herein the term YateUmeans the time 
of the measurement with the precision orered by the particular RDBMS) In  
addition, the typical calculations needed for manipulating hydrologic time-series 
(e.g., interpolation, integration, extraction of maxima or minima) are mainly 
procedural calculations and thus are not directly supported by non-procedural 
languages such as SQL. Finally, as it will be described later, the consecutive 
data values of a time-series are in fact connected to each other such that a pos- 
sible update of one value may also affect its previous and next data values This 
is inconsistent with the data-independence feature of a RDBMS. 

Despite these disadvantages, the above mentioned strong features of the 
commercialised RDBMSs can justify their choice for hydrologic applications. 
This is the case for the Hydroscope project where the selection of the relational 
model offered a lot of powerful characteristics that lead to an efficient distrib- 
uted hydrologic database system. To overcome some of the disadvantages of 
the relational model, a specific technique, named Differential-Linear Data Stor- 
age (DLDS) technique, has been developed and incorporated into the database 
The objectives of this technique were (a) to standardise the representation of a 
time-series in a RDBMS environment; (b) to implement a generalised scheme of 
a time-series with a varying time step, taking advantage of the data- 
independence feature of the RDBMS; (c) to cope with the intermittent nature of 
time-series; (d) to create a set of SQL composite queries that substitute the 



Hydraulic Engineering Software 3 19 

typical simple queries in a manner that they are consistent with the data interde- 
pendence within a time-series; (e) to provide a set of procedures for typical cal- 
culations of a time-series; and (9 to provide an eficient compression technique 
for time-series data. It is noted that in the Hydroscope system the latter objec- 
tive (data compression) is also served by other techniques such as integer stor- 
age of floating-point values (this is also used in other systems; see ~odson ' ) ,  
substitution of the typical date data type offered by the RDBMS with a user- 
defined data type of a smaller length, and the use of an alternative storage tech- 
nique for time-series with constant time step, the list storage structure. A brief 
description of those alternative techniques may be found elsewhere (Papakostas 
et aL3). 

2. Classification of time-series 

Depending on the physical meaning and the observation technique of each hy- 
drologic time-series we can classify hydrologic variables in three Categories: 

hisfantaneous variables: Most hydrologic variables such as river stage, 
river discharge, and temperature are measured (or estimated) and interpreted at 
a specific time instant (Figure 1 a). 

Cumirlalive variables: By continuously integrating an instantaneous vari- 
able with respect to time, starting at a certain time instant (Figure Ib) we get 
another type of variable, the cumulative type A variable of this type is the water 
volume in a lake or reservoir (the corresponding instantaneous variable being 
the net inflow into the lake). 

Dgerential variables: By intermittently integrating an instantaneous vari- 
able with respect to time, starting at numerous arbitrary time instants (Figure 
Ic) we get a third type of variable, the differential type. Time-series of this type 
are those of the rainfall depth (each measurement of the rainfall depth is the in- 
tegral of the intensity for a certain period), the evaporation depth and the sun- 
shine duration. 

We can observe that in the first two types the value of the time-series x(f) 
for any time instant i is unique and has a specific physical meaning. However, in 
the case of differential variables this is not true, because x( t )  depends on the se- 
lection of the time instants of discontinuity (i.e., points where the renewal of 
integration takes place). Consequently, from the point of view of the database 
manipulation, the differential type needs a different treatment while the other 
two variable types, which hereinafter will be referred to as non-differential 
types, can be treated with a common manner. The only difference between in- 
stantaneous and cumulative variables is that in the former case given a time pe- 
riod (t - At, t) the time average 

is meaningkl whereas in the latter case it is not. A meaningkl quantity for that 
time period in the case of cumulative variables is the difference 



320 Hydraulic Engineering Software 

x i ,  (t) = x(t) - ~ ( t  - At) (2) 

The corresponding quantity in the case of differential variables is 

xi, ( t )  = . x ( t )  - x(t - Af) -t z x ( t , )  
I -A l< l l< l  

where t, is any time instant of discontinuity (renewal of integration). 

Figure 1. Explanation skctch for thc classification of time-scrics: (a) instantaneous 
type, (b) cumulative type, and (c) differential type. 

Because a time-series is never known in continuous time, we will assume 
that x(t) is known at a set of points 1, only, not necessarily equidistant. Also, we 
will assume that the distances between consecutive points are the largest dis- 
tances that can guarantee a valid linear interpolation between them. The series 
x(t,) is stored in the database and can be interpreted in two ways, depending on 
the type of variable (differential or non-differential) as indicated in Figure 2. The 
technique for the storage and interpretation of x(t) that is described in the next 
sections, will be referred to as the Differential-Linear Data Storage (DLDS) 
technique, because of the assumption of linear interpolation and its ability to 
handle differential time-series. 



Hydraulic Engineering Software 321 

3. Data interdependence 

We can observe from Figures 1 and 2 that there is always an interdependence 
between the separate rows of a time-series in a database table. This is especially 
apparent in the differential variables where the value at date f has meaning only 
if we know the date of the previous measurement. Similarly in the case of non- 
differential time-series we should know when we are not allowed to interpolate 
any more (when there is a lack of information). For example we see in Figure 2a 
that we can interpolate (or perform some other calculation) between tz and t 3 ,  

but not between t3 and is because there is lack of information in that period 
(e.g., due to instrument malfitnction). Thus, it is necessary to add a record with 
a null value between t 3  and t s  (a null is a special value indicating the absence of a 
valid observation), which will indicate that interpolation is not allowed. 

It is obvious that in situations like the described above, simple tasks like 
the deletion or insertion of a measurement cannot be performed without the 
consideration of the data interdependence. We cannot simply delete a measure- 
ment, but it may be it necessary to replace the deleted record with a null value 
record to indicate that an interpolation or integration at the measurement's 
neighbourhood is no longer valid. We also cannot simply insert a value because 
this will probably alter other values computed by interpolation or integration. 

Figure 2 Explanation sketch for the interpretation of stored data series: (a) non- 
differential series and (b) differential series 

4. DLDS chain definition 

In relational databases the records are not ordered, thus the notion of the next 
row does not exist. We will explicitly define here the next record of the record 
with dated,, as the record with date d,, I that can be found as: 

select CI,+~ = min(date) where date >= d, 



322 Hydraulic Engineering Software 

In the above notation (as well as in following similar situations) we use an SQL 
like pseudocode to enhance readability. In a similar way we can define the pre- 
vious date as the date d,.,. We will refer to a record with date u', as the record,. 

A DLDS chain is a set of records in a database table representing a part of 
a time-series and having at least two columns standing for the date and the value 
of an observation. If record, is the member of the chain with the minimum date 
and record, is the record with the maximum date then: (a) the record1 is the 
only member of the chain that has a null value; (b) if dl .E: cl, .c: ((, then record, is 
a member of the chain; and (c) the set of records of the chain is not subset of 
any set of records that form another DLDS chain. 

The chain can be interpreted as a differential or a non-differential one (see 
Figure 2). Obviously a time-series consists of one or more DLDS chains (the 
number of chains depends on the number of periods with lack of information) 

5. User-programme interaction 

We will examine now how a computer user can manipulate a DLDS chain. Ob- 
viously he or she cannot use the conventional procedures used in RDBMSs due 
to the implicit data interdependence. Despite this, we should consider that the 
user is familiar with a standard way of interaction with a database front end. The 
question is if we can keep this type of interaction and use it to manipulate 
DLDS chains. 

We will examine the typical situation where we haw a tablefield (an array 
of fields on the computer screen) that displays time-series data and a user per- 
forming actions on the tablefield. We will also assume that the database table 
(from which the data come from) has two columns only, date and value, and 
that the column date is a unique key. The tablefield ha? three columns, date, 
value and hidden-date. The user can change the value of columns date and value 
while he or she cannot see the third column, 

Each row of the tablefield has a row state (or a destination) associated 
with it. Every user action modifies this destination. At the end of the session 
when a save command is executed the row destinations will tead to specific da- 
tabase queries. In an independent row format the modification of the row desti- 
nations according to user actions and the interpretation of the row destinations 
to database queries could be briefly described as in Table 1. 

In all cases before the insert command the save procedure checks if a rec- 
ord with the same date already exists and provides the user a dialog box to de- 
cide if the existing record should be overwritten. 

We can observe in Table 1 that a row destination always leads to a unique 
SQL query. Hence, we want to keep the user-programme interactions un- 
changed (thus retaining the consistency of the user interface) and use these row 
destinations to manipulate DLDS chains. This can be done by substituting each 
single query (update, insert, delete) with a sequence of queries, depending on 
the chain surrounding the processed raw, as we can see in the next section. 



Hydraulic Engineering Software 323 

Previous row 
state ' 

none 

unchanged 
or changed 
unchanged 
or changed 

unchanged 
or changed 
none 
undefined 
or new 
undefined 
or new - 
new 

Table 1. 

User action 

User-programme interaction 

I Tablefield modifi- I New row 

select from the 
database 
write new value 

write new date 

delete row 

insert new row 
write new value 

write new date 

delete row 

new 

m invisible row deleted 
~nheriting the hid- 
jen date of the par- 
5nt row is added 
the row becomes deleted 
invisible 

undefined ' 
new 

I 

new 

the row becomes dclrted 
invisible 

6. Mapping of standard SQL to DLDS queries 

The mapping of the single queries (update, insert, delete) to composite DLDS 
queries is given in Table 2. Each composite query is as a set of rules, all trig- 
gered each time a row is considered by the save procedure. Each rule has a 
condition part and an action part. Generally, the rules are not mutually exclu- 
sive. The composite queries keep the name of the replaced single queries with 
the addition of the character '#'. Some columns of Table 2 need explanation: 

Chain conditions: In order for a rule to perform its action some condi- 
tions must hold. The chain conditions refer to the processed row and the sur- 
rounding rows of the DLDS chain, 

Rule conditions: Some rules are mutually exclusive. This is explicitly de- 
clared in this column. 

Dialog: Before a rule's action is performed, a dialog box may appear. 
This dialog box can be one of two types: Warning is just a message providing 
the user useful information. C~t$~rrncr/ion provides the user a message and he or 
she can answer 'yes' or 'no'. If the user answers 'yes' the rule's action will be 
performed otherwise no action will be taken. 

We note here that in the case of the first insertion in the database the rule 
I6 creates the first DLDS chain. We also note that the actions taken after the 
update# DLDS query are also DLDS queries. 



Table 2. DLDS queries that replace standard SQL queries 

Action 

update value, to null 
delete record, 

delete record, 

delete existing recorc 
insert ne\\T record, 
lnsert record. 

insert re'cord, 
exists recordb, db > d, -The lmk will be spht into the h k s  (d -dm 

d,-db thus moddymg the cham~houl4 the (d, is in a chain range and lies in the new record be mnsertedPZ Cyesl 
middle of a fink) 

14 not exists recor4, db > d, not 11 insert record, 
(the new record lies after the last 
chain) 

•˜ Since time is discrete in DBMSs -just before" means one tlme unlt (u) before 

Dialog 

confirmation 
-The cham w~l l  be destroyed Youshould 
probably m e r t  a record to m a t a n  the 
chain Should the record be  deleted% hesl 
confirmation 
-Should the record, be overwritten* [yes] 

confirmation 

Rule Con- 
ditions 

not I1 
not I4 
not I1 

Chain Conditions 

value, is not null 
value, is null 
value,+l is null 
value, is null 
value,+l is not null 

exists record, nlth date d, (d,, is a 
junction of two links at - the chain) - 
value,+l is null 

eststs recorda, a', < d, 

DLDS Query 

delete# the record, 

insert# a record 
with date d,, 

Rule 
Name 
D 1 
D2 

D3 

I1  

12 

13 



Hydraulic Engineering Software 325 

The standard select query (not contained in Table 2)is also substituted by 
sequences of queries. As there are many forms of it, we will give here one ex- 
ample only. The procedure 

select X = value where date = d and range = r 

for a differential variable will be substituted by the following SQL queries (in 
pseudocode): 

select d, = max(date) where date <= d - r 
select d, = min(date) where date >= d - r 
select value, = value where date = d, 
select value, = value where date = d, 
value, = interpolation (value,, value,, d,, d, d,) 
select d, = max(date) where date <= d 
select d,= min(date) where date >= d 
select value, = value where date = d, 
select value, = value where date = d, 
value, = interpolation (value,, value,, d, , d ,  d,) 
select i = sum(va1ue) where date > d-r and date < d 
X = i - value, + value, 

We note that if value, or value, or i is null then the result X will be 
also null. By a way similar to the procedure above we can define a select proce- 
dure for mean non-differential variables, etc. 

7. Concluding remarks \ 

In summary, the DLDS technique standardises the representation of a time- 
series in a RDBMS environment, implements a generalised scheme of a time- 
series with a varying time step, and provides a set of composite SQL queries, 
which substitute the standard ones. In addition to the above, we have devel- 
oped a number of procedures that facilitate typical time-series calculations such 
as transformation of a fixed step time-series to a DLDS chain (and vice versa), 
extraction of time averaged series, extraction of extreme values, etc. 

Due to its structural features (variable time step, linear variation assump- 
tion) the DLDS technique results in an efficient compression of time-series data. 
To give an indication of the reduction in storage space we consider the case of a 
daily rainfall time-series. Assuming that we have an average of 50 rainy days per 
year with about 30 sequences of dry days (several days each) between them (a 
situation typical in Greece), with the DLDS technique we must store 50 + 30 = 
80 daily values per year (instead of 365). This results in a reduction in space 
equal to 100 * (1 - 801365) = 78%. As another interesting case we consider a 
time-series of hourly river discharge Assuming that we have about 20 days per 
year with significant flood events, while in the other days the variation of dis- 
charge is small, such that it suffices to interpolate between daily values to find 
the hourly values, we need 20 * 24 + (265 - 20) = 825 data values in total. In 
case of the common storage method the total values would be 365 * 24 = 8760. 
Thus the technique leads to a 100 * (1 - 82518760) G 90% reduction in storage. 



326 Hydraulic Engineering Software 

However, the reduction is not so impressive for other variables such as tempera- 
ture, humidity and so. 

The DLDS technique is more effective in data compression than another 
similar method, the repeat counter technique (consisting of the use of a counter 
in each row indicating how many repeated values in sequence exist in a time- 
series; see ~odson ' ) .  The repeat counter field leads to an about 40% increase of 
the storage volume for each row. Thus for the daily rainfall example, with this 
technique the reduction in storage would be 100 * (1 - 1.40 * 801365) = 69%. 
Moreover, the latter technique does not take advantage of linearly varying time- 
series, such as the river discharge during days with no flood. Finally, the DLDS 
technique provides a more natural way in data entry and retrieval, as the use of 
a varying time step is more favourable for the user when compared to the use of 
a counter, especially when digitising chark (e.8, rain recorder charts) to enter 
them to the database. 

Acknowledgement: The authors wish to thank N. Papakostas for his construc- 
tive comments. 

References 

1. Dodson, R. D., Advances in hydrologic computation, Chapter 23, 
Handbook ofhyclrology, ed D. R. Maidment, McGraw-Hill, 1992. 

2. Environment Canada, ('omp~rModfiinclional speciJication, Report, En- 
vironment Canada, Ottawa, Canada, 1991. 

3 .  Papakostas, N., Nalbantis, I. & Koutsoyiannis, D., Modern computer 
technologies in hydrologic data management, Proceedings of the 2nd 
European Corgerence in Water Resources Technology and Manage- 
ment, Lisbon, Portugal, 1994. ? 

4. Tolikas, D.. Koutsoyiannis, D. & Xanthopoulos, Th., HYDROSCOPE: 
Un systeme d'informations pour I'Ctude tles phknornknes hydroclima- 
tiques en Grece, 6""'" Colloque Intcrnalionul de CXmatologii?, Thessa- 
loniki, GrBce, 1993. 

5 .  United States Geological Survey (USGS), System requirements specifi- 
cation for the IJSGS National Water Irformation System II, Report, S .  
B. Mathey (ed), USGS, Reston, USA, 1991 




