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ABSTRACT
Emp;rzca,i evulen:ce suggests that statistical properties of storm rainfall at a Jocation and within

a homogeneous se'_ n-have a well structured dependence on storm duration. To explain this

dependence, a samp sca,lmg model for. ramfall mtenssty within a storm was hvpothesmed It was
shown both a.nalytm : y: and empmcaliy that such a model can explain rea.snnably well the observed
: .st.a.tisttcal structure in the interior of storms pmv;dmg thus an efficient parametrizatmn of storms
-_5-_0f varymg durations and total depths This simple scaling model is also consistent with, and
“pro\rkdes a theoretical basis for; the concept of mass curves (normalized cumulative storm depth vs.
-norma.hzed cumulatwe time since the beginning of a storm) which are extensively used in hydrologic

design. In- 'ast, popular stationary madels of rainfall intensity are shown unable to capture the

duration dependent statast:ca.l structure of storm depths and are also inconsistent with the concept

of mass curves




1 Introduction-

This pa.pé_r; dé'z}l_s'f with the analysis and modeling of the stochastic structure of rainfall intensities
- .‘:vithin_st‘.ofms: of ;{rarying-duration. Storms are defined here as rainfall events which are independent
of each other as ba.sed, for-example, on Poisson storm arrivals. The need to parametrize the time
distribution of storins-___whit;ﬁ are “similar” apart from total storm depth and storm duration arose

_ very early-and the concept of mass curves, i.e., non-dimensional cumulative storm depth versus

o ;ﬁion—-dimenéiox};al_gcumula;tive time s_i_t‘ice: the beginning of a storm, has been extensively used for

hydrologic design. (e.g.; ‘Grace and Eagleson, 1966, p. 90; Huff, 1967; Fagleson, 1970, p. 194;
I’:lgnm and Cordery, 1975 -among others).. The idea behind those efforts was the recognition that
: for a particular Ioca.tion or within a meteomlogxcally homogeneous region and for a homogeneouns
.season storms are expected to exhibit similarities in their internal structure despite their different
duirations and total stmm depths. In addition, the concept of normalized mass curves was adopted
. ‘in some adva.nced rainfall models, such as the ones of Bra.s and. Rodnguez»lturbe (1976) Hjelmfelt
' {1981), Woolhiser and Osborn (1985).

Emplrlca.l ev;dence from this and other studies (see sections 5 and 6) regarding the dependence

ouf the statistical propertles of incremental and total storm depths on storm duration, led us to the

' .f-;'ﬁ-f-hypothesm of a. simple scahng model for the mstanta.neaus rainfall mtensxty within a storm with

. "-.storm duratwn a_s the sca.hng parameter This model ha.s beén tharoughly exammed in this paper
o ‘and the: prop_ réies of the total storm depth and incremental rainfall depths have been analytically

| :'"_;éenved a.nd have beenr used for model ﬁttmg and model evaluation. Another motlva.tzon for exam-

: ':-mmg the’ sunple sca.lmg model is that it is consistent- w1th1 and provides a good theoretical ba.sm
for the concept. of mass curves which are very often used in hydrologic applications and rainfall
_modehng ' '

Most © the a.vaJla,ble continuous time ra,mfall models e.g., the Neyma.n—Scott model (Kavvas

2 EE ;a,nd Deileu _ :1981 R,odrlguez~lturbe et al '1984; a.mong others) used to descnbe rainfall intensities

are stanona.ry In this paper we show that any statlonary model is unable to capture the duration
dependent sta,tzst.lcal structure of rainfall intensities and is also inconsistent with the concept of

o ma.ss curves

- This. paper is stmctured as follows Sectmn 2introduces notation. In section 3 the simple scaling
. :model for mstanta.neous rainfall intensities within a storm is presented. The statistical properties

REN of the total sl;erm dept.h and mcrementa.l storm depths, e.g:, hourly depths, a.re derived in section 4.
g -:'i-In section: 5 some impartant properties Imphed by the -model structure are compared with features

of ;a_mf_a_]l document_ed in the literature. In section 6 the simple scaling model is fitted to hourly




data from 89 storing in ;Ch:alara, Greece and the performance of the model is evaluated in terms
of it.é’a.bility 0 ca,pt'u're statistical properties not explicitly used for model fitting. In section 7 two
) _:statlonadry modais of. msta,ntaneous rainfall mhenmty are examined and it is shown both analytically
- and empmcaﬂly that t;hese modeis are.not able to reproduce some of the observed characteristics
of storm rainfall that the s:mplc scaling model is able to describe. In section 8 the connection of
slmple scalmg models to mass curves is examined and it is shown that mass curves are consistent
::Wlth the hypothesxs of sxmple scaling but. are mconsxstent with the assumption of any statlonaru
'mode_l.for_._mstan_ta.neous vainfall mtenmties Finally, in section 9 the scaling model is applied to
generating synthetic storm hyetographs and mass curves which are shown the compare well with

-the corresponding empirical ones. Some concluding remarks are given-in section 10.

2 Terminology and preliminaries

- Let D denote the duration of a storm and §{2, D), 0 £ < D the rainfall intensity process within -
 the storm di%.i;agii;n. h(t,D) denotes the cumulative rainfall depth process defined as

e
h(t, D) = / &(s,D)ds, 0Kt D (1)
: ;a.nd X a(s D) denotes the mcremental ra.mfali depth in the interval ({i — 1)4, zA) ie.,
: . .
Xali, D)= f e, =12,k | @)

where k is the mteger pa,rt of D}' A (see Fig.  1). It is assumed that within a meteorologically
g_homogeneous reglon and season every storm of dura,tlon D can be considered as a realization of
dura.tio_n (-0 5 t 5 D) :.a.t:;_d thus its ensemble average is, in fact, a funct:on of the duration D).
- Let ne(t, D) denote the ensemble average of £(¢, D), i.e.,

L om(t, D)= Elee, D) (3)
and Rf_(-tl-, ta; D) the secand order product moment of £(¢, D} in the interval of a storm event, i.e.,
. Rf(zlptst) E{‘E(tl)D)f(tZaD)]! 0 < tl;t2 <D ' : (4)

as

Ce(fl,tz, D) CO”[E(h, D)E(bsD)} Rty 1 D) ne{tay D)nf(th D) - (5}
:'-In a similar ma.nner we deﬁne ‘the statistical properties of the cumulative depth process h(t, D),
ie., nh(t,_D., ), Rty ,.t_g, D), and Cy{ty,12; D), and those of the incremental depth process Xa(t, D),
i.'e".ﬂxn.(’:1”‘0)}.{2.4‘{&(51.?312.)_1 a“nd Cxﬁ_(i_,_j_;_.@_),




3 Scaling model of storm intensities

-'I‘he hypothesm is-set forward that the process of instantanecus rainfall intensities within a storm,

: e, f(t Dy, 0 < t < §7) is a self-similar (s;mple sca.lmg) process with scalmg exponent H,i.e.,
#(t, D)) = {X“Hcff»’\i ADY) - (6)
‘where the abeve equahty is in terms of the finite dlmensmnal probability distribution, i-e.,

Pri(t, D) < 81,05 £t DY S 20] = PHATHEQ, AD) € 21, .., A" TE(Atn, AD) < 2],
- | 0<ty,ta< D (7)

- ;-(see, far examPle, La.mperti 1962 where hawever, infinite duration stochastic processes are con-

| 'fsadered) Consequently the k th moment of £(t,D) is given as
E[E(t D)k} I\“H"EIE(/“ AD)"] - (8)
and the (k l) second product moment as.

[5(11»13)"‘5(% )‘1 = A*H"‘“’E{fwl,AD)*&(M:», m)q (9)

.....

'_Lf Dg & AD; then under appropnate scalmg of time, ie. tg = My, the sta.tistxcal (ensembie) prop-
:'ertms of the ram{a.il mtensuy in storms of dgxatlon D3 are related to the corresponding statistical

propertxes of the. ra.mfa.ll mtenmty in swrms of duratlon D1 ax:cordmg to (7).

It is noted tha,t by settmg /\ = 1f D in (6) we obta.ln
REIE {b‘feftw 0 | (10)

: -:-;-.-:'where E(t/ D, 1) represents the mtens:ty pmcess of a storm event normahzed to unit-duration. It is
ey then ma.hzed fmm (16) that the- hypothesas of scalmg unphes that the statistical properties of the
_ _ra.mfa.ll mtensxty in storms of any duration can be obtained by appropriate scaJ.mg of the statistical
::3-:;:-_propert1es of: the mufali mtensﬂ;y ina stcrm norma.hzed to unit duration.

For reasons of s1mphclty we will. assume that the process. £{t, D} is stationary within a storm

. event, i.e., the ﬁmte dimensmnal d:strxbutlon functlon 1s invariant to time translat:on within a

 storm, |
R D):}?%-{fwa D)}, 0<ti+r<D (1)

_Note that this i is. a wea,l-: sta,tmna.nty conditlon in tha.t lt represents stationarity of £(t, D) only

w:thm storm events of a ﬁxed duration’ a.nd not over any storm mdependently of duration {or over

'the whole time axls), which, would imply




ey Sy | o (12)

as most: 'a%failéﬁlé rainfall infensi!;y models, e.g., thé 'Néyman Scott model, assume.
The wea.k statmna.nty assumptlon {11} .shou!d ot be considered as a-structural constraint of .
.'_':the smxple scahng model but rather it is a cnnvement mmphﬁca.tmn The data exammed as well

'a,s other data (e g Gra.ce and Eagleson, 1966 p 90) are not far from this a.ssumpt:on Note that

' fthls assumptlon results to a “mean mass curve. which is a strmght line. Appa.rently however, a.ny

the ma.ss cur\f% (see development m section. 8 a.nd apphca.tlon in section 9) wﬁl not be a stralg;ht
line but it wnll have a nonlmeax sha.pe in agreemerit. w1th empirical evidence,

. Under our a,gsux_n_ptmn the ensemble statistical properties of the process £(2, D) do not depend
~on t for a given ﬂura;fibif D and the ense’mblé'statist-ica.l properties of £(¢/D,1) are independent of
tand D). Let us define as @ the ensembie mean of the process £(t/D,1), ie.,
=me/D) | | (13)
Since. f(t/D i |

#(r/D) = Bt/ D, 1)5((t+ /D, o | | (14)
o :'Bas_'ed on the_:a,_bovq._relaatwns and {6) the ensem'ble statistical properties of £(%, D) can be written

is sta,-tiena.rj We a]sb define

| g mzmclﬁ” o | | (15)
= Coule(t, D) (17, D)] = ($r/D) = D% (16)

: _'"These equatlons mlply that under the hypothesls of simple scalmg {equation 6) and the assumption

Eof stationarity within an event (equation 11) the statistical properties of £(t, D) can be obtained

-.fmm the statistical properties of the normahzed to unit duration process £(¢/D,1) and a scale
) cha.ngm" tra.risforma,tmn w}uch is'a power law of the storm duration. Note that 'the mean of the

inge s:,ty process depends on the duration a,ccordmg to a power law with exponent /7, while

_ : f the rmnfa.ll mtensaty process is also a, pcrwef law of dumtlon wlth exponent - ZH
' -._:ngher pmduct moments follow sumlam relatmnshxps as 1mphed by (10).

-4 Propertles of total and incremental storm depths

To be able m test the hypethems of sca.hng for f{t }3) usmg available ramfa.il data the statistical

pmpcn tles @ :ncremental and. total storm depths need to be derived. In this sectlon we show that

both total storm depths h(D D) and. mcremental storm dept.hs Xa(i, D) follow 51mple scaling laws

- .and expressions- for thel_r_ mean and covariance are derived.




4.1 Cﬁmui_aﬁvéf.énd total storm _dépt'hs

It can be shown (see Appemdix 1) that under some rather mild restrictions on the covariance of
- €1, D) the cumulaﬁive rainfall depth Process. h(t D) is also a simple scaling process with exponent
B/ I U '

{z».(t,_D.s} £ (A Dp(x, AD)Y) (17)
--Seﬁtiﬁg i : D .and A.m 1/D in the above equation we obtain

{h(D, DY} £ {DHHR(1, 1)) (19)
.Notin.g..tﬁa,t-iﬂ'[k(l D] :.q.and defining

e mva‘r[h(l 1)] ' | . | (19)

. we can wme the ensemhie mean and vamance o{ the total storm depth as

ﬁ-:';#;ftk_{ﬂ_-, -1))15%;%@!0‘*"”*“ - | | @1)

::._Note that as a result of the simple scahng model for rainfall intensities, the coefficient of variation
of the tm;a,l storm depth is constant: ‘and equal tQ Ve fer.

R 2 Incremental storm depths-

 The. mcremental st.erm depth at dxmete time. t= 1, ie.; Xa(t, D) defined in (2), can be written as

(z, D) = h(iA 13) ~ (i ~ 1)A D) (22)

In view of the scahng of h{t, D) (equatmn 17) the discrete-time incremental depth process Xa (i, D)
is also scahng, ie, .

{Xali, DY} 2O X, (3, ADY} | (23)
Itm easy to*shcrw that th§ ﬁensemble mean . of Xp(i, P} is
E[X,_».(a,D)] clz&DH = §DH T (24)

"where 6 A/D After sorme; algebra.lc manipulations (see Appendix 2) one can derive the variance.
' '_-of Xa(a D )-as

s,




wvar{Xa(i, D)} 5 {_,b(a,s) ~ 2O DUH ) (25)

where
¥(0;6) = 2[¢@w v) dy (26)
e :-;Slmlla.rly (see Appendlx 2), the covatiance can be derived as |
| QAWD%¢WMMHMKm+mﬁH[Mm&~3ﬁﬁwm | (27)

. where

i) = /m (- walmaw@+/ "((m 4 i~ ey m>0 (9

_The a.utocorrelatxon funcnfm can then be written as -

tb(g :6)':1“ : 2

_'_=?:It is 1nterestmg to note that as a ma.mfestatlon of the sca.]mg hypothesm for f(t D) the autocorre-

| m(ms%%D)v:. (29)

o - latlon functmn of the mcmmentai depth pmcess depends on é = Af D that is, on the integration -

§ '_.1nterval ncmnﬂ.hzed by sterm dura.txon, a.nd it does not depend directly on the storm dura.tlon or
. the mtegratzon interval, nor on the scalmg exponent H.

5 llscussm' ;Df model propertms and ramfall features reported
m llterat ire

-Befdt;e we. éiitiiia.rk into the détaiis of fitting the proposed model to a specific data set and evaluating
“its performance (sectlon 6} as well as theoretxcally and empirically comparing it to stat;onary models
' (sectmn ) we prefer t‘.o pravlde a little more 1n51ght; into some important propertles implied by the

: model structure and compare these propert;es w:th features of rainfall documented in the literature.

' Part:tcularly, we Wzli focus ca;l the a.vera,ge mtensﬂ;y of astorm, the coeﬂi(:lent of variation of thetotal

storm depth or. the a,vemge intensity, and the correlation structure of mcremental depths Later in

Ea. ':secﬁlon 8. we will exammne the model ‘consequences regs.rdmg the normalized mass curves. In both .

' :-sectlons we wﬂl 1llustmte that the proposed model, in spite of its novel mathematlcal formulation,

B - deseribes adequa,tely weil known fea,tures of rainfall and is in agreement with some models while in

B --dxsagveement thh others




5.1 Average _intens_jii_;_y of storm

‘As it results from (20}, the time average intensity of a storm (D) is a function of the duration with
- ;-expect!e_d value given by,

-'--'fE'[E(ii)}?‘lDﬁ S -

: The model a,l},ows H to take either positive, zero, or nega.twe {but greater than -1) values. In the

we :have a mean’ mtensnty which i 19 an increasing function of duration, while in the second

-__the mean mtenszty is constant. and independent of duration. The third case seems to be the most
frequent, since a nega,t_we correlation of duration and mean intensity is quite common as will be

- discussed below. Note in that case that when I — 0 it is easily shown that all the statistical

maments of both the msta,nta,neous and time average intensity tend to oo. However this is not a -

pmblem smce the total depth KD, D) -+ 0, as it follows from (20) and (21). Thus, with H < 0
when D = 0 we ha.ve A raanfall impulse with-an infinite intensity but zero total depth which seems
- to be reasonable.. Reca.il that other models (e.g., Poisson White Noise Model, Neyman-Scott White

k _ENmse Model see Radrlguez~ Jturbe et ali, 1984} use the concept of rainfall impulses with zero
- s -';dura.tmn

_ The dependence of tota,l storm depth or mean mtenslty on the duration of a storm has been
mvestigated in severai eaxker studies. For exa.mple, Grar,e and Eagleso ( 1966) have studied summer
storzn da,ta. of .‘I‘ruro, Nova .Scotla, and St. Johnsbury, Vermont After classifying the storms in three

- types (tmce, moderate, and peaked storms) they established linear regression relationships between

storm depth and du;_;qt:.qn of the form (keeping the notation of the present study)

EIR(D, D)) =aD +b (31)
___-whéré-a a.ndb are pamméters estimated by linear regression using all the data of each type. From
. -thxs equatmn it follows that

ERD)—a+wD (32)

: i'whmh is a hyperbc:lxc form not practically different from (30) {as shown in their figures the power
.relatlanshlp lm_'_ﬂht be used a;s well). Dependmg ‘on the sign of b, the mean intensity can be a
-decreasmg (b >:: 0} or mcreasmg (b < ©) function of D. In five of the six cases studied by the

o =_a,uthors (2 stations x 3 types) the b was pomtwe, which corresponds to a negative scaling exponent

- H, and_m one case bwas negative, which co;;rgs_pqnds to a positive . Quite similar is the analysis

of Wpﬁlhis_gr:i._&nd .Oébor.xﬁ.;('i‘&%). Closer to the present study is the approach and the findings of
Hershenhomand -qulhi%ér: (1977}, who studied 23 year data set of summer (July and Augu.st)



ca.se

- ‘storins from-"é"fa;ing;age at’ Walnut Gulch EXperiment’al' Watershed, Arizona, USA. In order to
dotermlne the condit;ona.l distribution of duration given the storm depth, they adopted a linear
_ :regressmn reia.tlonshlp between logarithms of depths (minus a lower threshold) and durations. This
;rglatronshlp 15-_e_:gnwalent to a power relationship of the_untra_,nsformed-quantl_tles similar to (20},
' .A cbﬁclus_i_on on :the.t;p:;elation' between mean intensity anid duration does not result directly from
their stu'dy (the regressidn made concerns duration versus depth; the converse regression is not
seen | in their paper) H.owever, it seems that there is a positive correlatlon between duration and
intensity (mtensny increasing with- duratlon), which corresponds to a positive scaling exponent,
The above _11.t.era_t_ure- -ﬁndmgs as well as the_;proposed scaling model are in disagreement with
any stationary mo&el; i.e. a model which does not assume any dependence of instantaneous or
“incremental i‘ainfaii'i:nten:sity on the dur&tibﬁ {(see also-section 7). In the case of a stationary model
_ ;-f_t.he mean. mtenmty is obvxousiy a constant, m&ependent of duration. This may seem at first view as
‘a special case of the sca.lmg model- with zero scaling exponent. However, as it will be shown later,

. the scailng mdel is stmctumﬂy dlﬁ'erent from any statmna.ry model.
. :25'_.'_2'_-; Coefﬂcmnt of.va;'x":-i}atiqn. of stiql}i_-_r_x;depzl:hiot average intensity

As poiii_i;éd out in section 41 a consequence of the scaling assumption is that the standard deviation
of the__._totﬁl storm dei}'t;}_f(i)r, equivalently, of the average intensity) is expressed as a power law of
“duration. Th;spower -lawi-is:.ﬁe‘:xa,ctly the sa:me with the power law of the expected value of the
fdepth {or a.veraggé_ intensity ) versus du.ratidﬁ; fThus the coéfﬁtient of variation is constant and equal.
{0 \/EE /c; : 'As WiH:'be shown later this propertj! is strongly supported by the data used in this
study. (see an 4) In addition, this property is consistent with other data sets and models of the
_'thera.ture o
‘Grace and’ Ea.gleson {1966} in order to-describe the rmidua,ls from the mean storm depth given
| the storm dura.t:on adopted a relat:onslup of the form

h(D D)~ E[h{D D)}
' E{h(D D) =
“ where ciga constant ‘and W is a beta distributed random variable, independent of D. Obviously
this fol_jm-le_ads to a-cons;-ant coefficient of variation of h(D, D), independent of D.

W~ 1 : {(33)

_Eagleson (1978} i_isixi_g-a data set from Boston and assuming that the average intensity and du-
_ ra,tion are inﬂéﬁ:gqﬁent -ra.nfdozp'_va,ria,bles ;wi:thj.exponentia:l-;_di._stribution's ﬁetermined the marginal -
&istribﬁtion' of the s’tbrui ‘depth in terms of a modified Bessel function of the first order. A sim-
ilar assumption was made by Bras and Rodriguez-Ifurbe (1976) in order to construct a rainfall
_.j-generatlon madel They asmmed that the distribution of the total depth (averaged over an area)

AL IR 2 o -« - R



conditional on: duration is given by an exponential function of the average intensity. This im-
_plies that thg:a,ve'fagg intensiﬁjr is independent of the duration and exponentially distributed. The
1--:;3,_3sumpti'oﬁf of an average intens’it-’yifindependgn:t of the duration apparently results in a constant
coefficient of v_ajjia'timi of .ﬁ'_he'--to'tal storm -dept'h as it easily obtained from WD, D) =1D . In fact,
~ this a,ssumptidn can .be ccmsi‘dered as a special case of the scaling model with zero scaling exponent.
-~ On the contrary, :my stauonary model cannot vield a constant coefﬁcrent of variation for total
) storm depth. Indeed any modei of this category would imply

E[h(_B_f-D)] =mD. (34)

Where This the mean mstantaneous mtensxty, and if a constant coefficient of variation is hypothesized
then it is reqmred tha,t

E{W(D, D] = mm | (35)

wh'eré 72 is a ¢constant. However as it is proved in Appendix 3, the last equation is impossible

_ -fox a stationasry model exeept for the case where the mstmtaneous intensity is constant with zero

5.3 : Autoco’r'relatio-n:'-s‘s’t-mct.-ure of incremental depth-s

3 j-Another 1m;1m'tant cnnsequence of the sca.lmg model is. tha,t the autocorrelation coefficient for a

certain lag is an’ mcreaﬁmg functlon of stcrm duration. Indeed from (29) we obtain, for example,

' ) -tha.t pxﬁ(l D) = pxm(l 2}3) w}:uch means that the lag-one autocorrelation coefficient of hourly

idata in a. storm of duta,tmn L i 1s equai to thﬁ la.g-one a,utooorrelatlon coefficient. of two-hour data

Cin & storm of duratmn 2D Smce, normally, the autocorrela,tlon increases with decreasing lag it
follows tha,t the lag—one a,utocorrela.tmn coefficient of the hourly data in 2 storm of duration 2D is

'-'_-ygrea.ter than the lag: one. autocorrela.tion caefﬁment of the honriy data in a storm of duration D.

“Thus,. the lag»nne a.ut.octmeiatmn coeﬂicient is an increasing function of storm duration and this is
also true for coefﬁclents of hlgher lags.

_ CAs wxll be seen in the next sect.lon the hourly data we analysed support this property. To the

-authors kxwwledge, thzs pmperty ‘has not been: discussed elsewhere in the hterature, though it is not

a,ssmated with the scaling model only. Tius property can be considered simply as a consequence
~of: the constant “coeffiient. of variation of the total storm. dei)th which was discussed earlier. As

'=::;'a, szmphﬁed_'example cons;der the dlsa.ggregatmn of the.total depth into incremental depths X A

for a. txme mcrement A and assume a Markovian dependence between X, with lag one correlation
E _j.:coefﬁaent equa,l to ,o Also c0n31der that the average mtensu;y is Independent of I}, In this case we

" have

10



coB.dition.al

. - Or

Z CW[X:&(’)XQ(J)*(??Z 77)D? | (36)

i A
: Dﬂ.‘n--l D{A :
{D/a+2 Y 3 P WarlXal= (- n)D? (37)
=1 J’*:i.-i-] .

o and zifter‘-a;gebra;ic ni-azi'ﬁpilati-bns

2D/8)0 - 1)1 P71
N Pk

WarlXal = (n2 - i)} D? (38)

- In equation (38). we observe that the left hand side depends lineasly-on D while the right-hand side

dependsion D?. Thué.: we conclﬁdé that either p or Var{X 5] should be an increasing function of D.

Another mterestmg pomt to note is that the theoretical autocorrelation coefficient of the incre-

L ';mental pmcess is. aﬂawed to take on negatlve va,lues (see eq. (F9)), a property exhibited by rainfall

data of this. study and others (e.g. Grace and Eagieson, 1966, pp. 91-92) but not allowed by many

- :statxon_a,ry mode_ls a.s,w;ll he d;scussed m_se_cglon 7.

'6 Model ﬁttmg and perfarmance evaluation

“for the covarjance fu

Modei ﬁttmg pmcedure

In sect;ion 4 the covana,nce functnon of Xali, D} was denved in terms of the covariance function
'f:_;of £, D) In order_to_ be able to fit the model t0. incremental rainfall depths a parametric form.

on of {(t Dy must be spec;ﬁed and the covariance of Xa(f,J) must be .

| ;f-f;f_:zconsequently derived. As it is recalled from (16) the covariance functxon of £(t, D) involves a power

function of duration D and a function ¢(7/D) of the normalized lag, Here we agsume the following

L 'EfP-O“’ef-fla‘W' form for q?r(y)

=kt - (39)

i = Whlch xmphes the foﬁowing power law second product moment for {(1, D)

RE(T,D) wﬂ+2“f -5 (40)

Nute tha,t this s in. contra,st to. statmna,ry rainfall mtensxty models for which the above product -

moment wouid be a functlon of lag v cmiy and not duration.
Based on thls aznd a.fter the computa,tlcn of the mtegra.l in (26) it is shown that

Cxa(ﬁ D) = var[XA(z D)} = sz”“’az{zkf[u —BE2-p) 5 - &) (41)
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By considering CXb(Q;:-D) from the above equation (by setting 6 = 1) and equating it to (21) one

. can sée Z_lia-t fﬁhe;para;ﬁleters;.k,ﬁ of--t_h_e covariance function of £(¢, D) are related to ¢; and ¢; by

a+d ;_;-2‘,,5,[(_1_ ~ B2 - B)} | . (42)

By computmg the mtegra,l in (28) the covariance functlon of the mcremental storm depths is

C_x;fm; D)= D“”*”é?{(ca + P f(r, )~y m 20 | (43)
where o - . |

RETE m = 175 4 (ot P 2 P, >0 | (44)
and - - -

fop=1 | (43)
Consequently, _____ :

s (3 D) = (cg + R () - & (16)

et o) -
The model thus has four mdepenéent pammeters H Cz,(:g, and S (note that. ki is not an inde-

_.pendent parametér smce itis related with the others by (42)) which in-the empmcal analysis that

me the first relatmnsh’

_:-:follows were estlmated fmm the fo]low:ng mla.txonsh:ps

E[fz(D m} = cll?‘m'l o ! (47)

: Var[h(D m] = e D" +) (48)

(1+ ca/cl)é ‘9(21"5- |
(4 cafe)F -1 (49)

n(l D)

;--c;, and H ca;u be estlmated by least squa.res and t:2 and O can be

: :_.___estxma.ted fmm the se.comi a.nd thxrd rela,txonshlp, respectweiy (see also next subsection). Then
o 'usmg (42) the pammeter k ca.n be obtamed To further evaluate the model performance based on

| properties not expht:itly used for model ﬁttmg, the mean, varlance, and autocortelation function

AN of the hourly ramfa.ll depi:hs for storms: of dlﬁ‘erent durations were estimated and compared to the

. .;_ﬁheoretlca.l_:values for the ﬁtted__model (equations 24, 41, and 46, respectively).
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6.2 'Perfc;r‘rﬁnaqéé' evaluation

The data used to impiejrh’e_ﬁ__t the scaling model for £(2, D) consists of hourly rainfali depths for
.a,'-tqté;i' bf 89 '-'s't'br-m:'.éfrent_s of duratibﬁg gr_ea;t'é.r th_a.-ﬂ 61‘ equal to two hours. All évents occurred
~ -during, the month .éf;'_.Apr_ii-jand. during 13 years of record {1971 - 1983) at the Chalara station
(latitude 40° 39° N, longitude 21° 14’ E, elevation 880 meters a.s1.) in the Aliakmon river basin,
.iprovince of Macedoma ‘Greece. The rain recorder of this station is a weekly drum chart type with
" arain depth resolutlon of: tenths of millimeters. Due to a,bsence of tabulated data, the charts were |
. . manually’ dlg;quz_ed uz;der the_authors_ “supervision.- The set of one month {and not the complete
';'é,nnuai* sa.-mﬁi-é)-'was ;uéeii_i-n: order 16 avoid possible non -homo'ge_neity of the rainfall prope.rtiéé due
o seasoﬁél va,ria;bil'ity The reason for the selection of April is that this month is characterized by

“a suﬁicwntly high frequency of ramfail events leadmg to an adequate sample size, and, at the same

: 5_:t1me, the tempera,tures are greater than O°C thus preventing the rain recorder from freezing and.

. ='51ea,dmg to mamura.te data., a case not valid’ for previous (winter) months.
: Eveats were 1dent1ﬁed based on the assumption of mdependence between events. This amounts

g0 testmg for a Pozsson pmcess of storm arrivals or exponentlal distribution for interarrival times. A

s Kolmogomv-Snumov test was used for this purpose. Thus events were allowed to mclude periods of

--':'-Zero ramfall Startmg w*ith a tnal value of the. ma.mmum zero rainfall period a.liowed in an event (or;

o _:_eqmvalent]y, the mmmum penod for separating an event fmm the preceeding and succeeding ones),

. record of mterarrwa{umes was constructed a.nd tested for fitting an exponent:al distribution at

- a 50% sngﬂlﬁcance ievel Wzth an iterative apphca.txon of th:s method, the mipimum zero rainfall

f.';_'_penod sepamtmg twa events was found equal to 7 hoiits. This is very’ close to the aa-bxtra.ry value -

o .adopted by Huff ( 1967), ie., 6 haurs The 89 storm events had dll!‘&tl()lls varymg from 2 hrs to 45

seveml types Accordmg to a cla.ssxficatlon of the wea,ther typesin Gree{:e by Ma.heras (1982 1992)
| :""37% of the 89. events beiong to SW1 type, i.e. , passage of a depressmﬁ posably accompanied by a
© cold front (a.nd ra.rely a wa.rm front) havmg SW orbit. A 24% of the events is produced by SW2
| f::wea.ther type; i £, pa.ssage of a depression ongmated from the Sahara: desert A 13% is produced
-by a special wea.ther type (DO R) chara.ctenzed by-a cold npper air mass {determined at the 500 mb |

: :f'jlevel) pmducmg dynamic msta.bthty Aiso 11% and 6% of the tota.l events are produced by NW1 and .

_ NWw2 wea,ther types, respect:vely, chara.ctemzed by depressmns a.nd/or fronts with NW orbits. The
_ E:Q:remammg 9% of events is produced by the other four-of the total 16 wea.ther types of this specific

class;ﬁcamon The arography of the reglon { North Pindos mountaius) plays an :mportant role in all
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regional rainfall phenomiena. It was found that storm durations and depths of the examined data
. set are umformly dlstnbuted in each of the above five most frequent weather types (SW1, SW2,
';'DOR NWl, a d-:N W2), thh a likely exceptlon of the DOR type which is characterized by slightly
“':'hl_gher__durat_lo_ns a,nd _depths. Thus no speaa,l_treatment of the events cla,smﬁed by weather type
was done, though oﬁé could consider application of the model to different types of storms with
dlﬂ'erent parameter values (obwousiy, this would need a large set of data}.
- " To be able to; estimate ensemble statistics, the 89 storms were grouped in ﬁve classes (1 to 5)
a.ccordmg to their dumtxcn as shown in Table 2. For example, class 1 includes all 14 storms with
N duratmn 2 and 3 hours and class 5 all 17 events with duration between 19 and 45 hours. The basis
'.:ffar selectmg t

groupmg wa.s to have apprommately the same number of everts in each class.

:.::'1'0 each cla.ssa-fduratmn was: assigned equal to the mean duration of all events in that class. The

events Were further gmuped into two larger classes (A and B) were class A includes all 39 events

:'=---_of cla.sses 2 a;nd 3 anfl dass B all 36 events ‘of dasses 4 and 5. Again the mean dyration of each

tive duratmn of that class and events m classes A a.nd B were used

- :to estlma.te the ensembie a,utocorrela,tmn functxons for two different storm durations. The enlarged

. size of dasses A a.nd B was necessary in order to a;chieve reliable estimates of the autocorrelanon

o ?wefﬁcwnts for la.rge ia,gs _ .

Because there is va.rla.bﬂ,lty m the dﬁmmons of the: evernts of ea.ch cia.ss around the mean duration

D assagned fo. that cla,ss a correction procedum was applied (when necessary) in estimating the

- vagiance of thﬁ& tot.al depth in-each class. Thxs correction consssted of su,btra.ctmg from the calculated
-;_E_va.nance the qu 'tlty aﬂ(kz »§~ kz) where af_-, is the vana.nce of the dura.tmns in tha.t ciass and k;,kg
- are comstants obtamed from the hnea,nzat}on of the mean and standard devxatmn of total depths,

respectlvely, in the ne;ghbeurhood of D ie, E[h(D D)) & ky D and {Var[a(D, D)}? = ks D (the

N ?;:: proof for the. a,ppropnaten

0] uf the abov_e correctmn is ommited). For the scalmg process we have
ﬁ’y“ 22 k{ﬁ and g -ﬁﬂﬂ"'l) - kzﬁz and thus the correctlon applied was

ap(cl + cﬁﬁ‘*’ - | (50)

'_ZIt was {ound . at this correctxon was. neghglble for: all classes except the class with the larger

o 'dura.mons (class 5. The. necessxty of such a cotrection implies an iterative process for the estimation

< of eg (Dne 1tetation is’ usualiy sufﬁcmm)

: ;;'paz‘a.meter astxmates Were obta,med for th:s data set

_H_ ='-0.20, 5-1_;;@-1.05, éy =044, § =032 (51)
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_For these parameters the value of k is 2 = 088 The parameters H and c¢; were estimated by
. least 'squa.reéz on thé:' f;‘owef relationship of the mean total depth of each of the five classes versus
~the mean duration of the. class (eq. 47). ¢z was then estimated as the average over all classes of
.“"rVa'r[h(D D)]/DZ(H“) {eq. 48). Finally B was estimated with an iterative procedure for best fit
~of the thearetica,l curve-of pr_(l D) (eq. 49) to the -empirical lag one correlation coeflicients of all
classes (see- Fagure a)

‘The emplrlca,l mean and standard dev;a.tmn of total storm depth as a function of duration

- as weH as the theoretlcai curves from the ﬁtteri modei are shown in Figure 3. Fig 4 shows
| . the empmca.l coeﬂic:ents of variation of the total storm depth which is almost independent of
.".'.lii.duratian a.nd the theoretical coefficient of variation which is constant and equal to /e2/fer =

-0 63 The emp:rlcal and theotetical lag one ‘autocorrelation coefficents of ‘hourly rainfall depths

":fare shown in F:g 5 a8 a fnnctlon af storm- dura,txon Although devlauons between the empirical

: 5 a.nd theoretica.l va,lues a,re observed the model captums the general behavior of the empirical data

a.nd when 90% apprommate oonﬁdence mtervals (oomputed by using the Fisher-Z transformation
__for the a.utocorreia.tlon caeﬁicwnt) were postt;oned around the theoretlcal values only 1 -of the
JRR va.iuea was: ‘outside the mnﬁdence mterva.is a5 statzstlca.lly expected. Note that the empirical

' _:Eautocorrela.tmn coefﬁc:ents were calculated. mdependently of any other estlma.ted or theoretmaliy

: -52"-a.nt1(:1pmed pa.ra.meters, by conmdenng all posmbie pairs (w:th a fiked lag) of hov;rly depths located

o A ea.ch of the events of a: speclﬁc class.

Ta check the perfcrmance of the model we computed the empirical and theoretical mean and

" " _:.standaxd demnan of the hourly ram{a.ll depths for. different durations (shown i in Fig: 6) and the

: foa,utocorrela.uan functsons far dasses Aand B (shown in Fig. 7) It is seen that the scaling model

- _:_performs reasombiy we,ll in terms of capturing statistical properties of total and incremental storm

"55depths in storms of dlfferent durations. The la,rgest departure of the empirical statistics from the
= _theoretxcal ones. are ftmnd {for the standard devxatlon of storms of duration 2-3 hours (see, Fig. 6).
” Appa.tentiy, other: mterpretaans of the’ exmned data ‘set are possible and other models can
--be usesl to capmre the 3tat:st1cal structure of the data. For example, motivating by Figure 6, one
' ca.n canmder that the da,ta pomt {rom the- sma,ilest duratmn is anomalons and, for medium and
.::duxatmn However the selectmn a;nd ﬁttmg of the scaling model mmust’ be conmdered a8 a4 whoie,
i wath snmulta.neous regaxd to all properties of the total and incremental storm depths. In that
:respect the model- a.bxhty 1o capture the power function of the variance of the total depth or the

' : _censtant coeﬁiment of vanatmn (Flgure-s 3 and 4), and the.increasing with dnratlon autocorrelation

' :coefﬁ(nents (Figures 5 a,nd 7), is worth noting. As it will be seer in the next section it is not easy
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ot ﬁnd an alternative s;mple model capable of capiuring these second order properties, although

any model can. perform well with first order propertaes (1.e., expected va.lues)
It:-should_-b.e-:nqged that the above adopted parameter estimation procedure depends on the

selection of élasses which ta.ises a source of subjectivity and non-robustness. Another weakness of

- '_E'Ithe pmcedure may be the estlmatxon of the two parameters #H and ¢; from only the mean values of

the total depth Wlnle they a&so appear in the equations for variance of total and incremental depths,
. .'T_and autocérrelahen coefﬁczents of the 1ncremental depths A more robuﬁt paraimeter estimation
_prcroedure is a feas;ble future :mprovement of the model. Fma,l.ly, it is worth noting that the

-ﬁ:fédeve]nped el sh{mld not be conmd?red as-a very’ detalled and general modei that can explain

._.perfectly all pmpemes of the examined data set as well as of any other data set. The anthors
" are well a.wate of the ‘fa.ct that the rainfall sttuctum exhtblts a wide variety of patterns in different
- xegmus of the worid or even in the same region .under different weather conditions; thus making it
' '1mposs:blae to develop a smgle model applying to-all situations. The proposed model is better to

be viewed as an ;mpmved altema.txve to the sxmpie stationary models, still itself having a simple

' ':-structure (m splte of the somewha.t complicated mathematlca.l derivations) and bemg characterized

S jby pa,ysxmany of pa.ra,mei;ers It is empha.s:zed that the model has only four parameters while other

) 'deta;led models can:"have even tens ef para.meters {e. g the model of Woolh:ser a.nd Osborn (1985)
z'ig-fg__wiuch has & tetal._'_ .‘26 pa,rameters) o

T ﬁ Compamssen - ??#iathf::stat ionary models

o In thls ‘section we derwe the statistical propertles of total and incremental storm depths for two

' 'sunple statlonmy models, i e models satisfying (12) a.nd demonstrate both analytically and em-
.ﬁ;_'pmca,lly that these modeis are not ablé to capture important sta.t:stical -characteristics of storm
_ _ra.mfa.ll tha.t the sm‘lple scaimg model is able to capture.

7. 1 .Derwatwn of Statistlcal prbpertles

:'.:: It i zs easy to see. that |

D) = Etfa(ﬂ}] R | (52)
E{Xa(e D)] = Eles(%)I =mb | q (53)

. _’J\}here m .'.A__ '[E('t D)] E[{(t)] -To derive the expressions for the variance and covariance of
' h.(D) and X A(z we need to specify funct:onal forms for the autocorrelation function of £(t) The

f,fall_ompg t.wq;common_;quels (power law and markovian) are examined:
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Model 1:  Ce(ryD) = Ce(r) = kyr = : . . (54).
Model 2: Ce(r,D)= Ce(r) = kse "’ (55)

" After algebraic manipulations it can be shown. that for model 1

Var[h(D)] = (1__ BQ)’Z T (56)
Var[X&(z]] (1 ﬁf)?? ) AZ-B - (57)
Pra(m) = §ln =177 4 (m 4 1] - (59

i __where 0 < ﬁ1 < 1 1f k; >0(or1<pl< 2 lf k1 < 0), as it becomes apparent from (56) and {54).
:rif-Simila,rly for model 2

Var{h(D)] = 2(&:@%_)({329—»1 4 D) (9)
 VerlXa@l = A3/BNAA - 14 %) (60)
g P:X.df(m) (1 — e~fR0)2 o=Balin—1)A (61)

2(ﬁ A = 1 + e~Pds)

~ Note that in both: of the above models the coefficient of variation of the total 'stor_m_ depthis
. ngt oonstant ‘but is-& function of the storm duration. For examj)le, for model 1 the coefficient of
vana.tlon is (/2ky JH1 ﬁi)(2 Bil/m)D™ A1/2, This property of the'model is in disagreement with
the: empmca.l evidenne (see section 5 and Fig, 9) that the coefficient of variation of total strom

depths is constant and independent of storm duration.
In the next sectmn these two models are ﬁtted to the data from the 89 storms described earher

7.2 Model fittmg and performance evaluation

. Beth mndels ha,ve three pa:ameters Equation (52) can be used {o estimate m using the sample
..__':of tota.l deptlm Equatmus (58) and (61), When setting. m = 1, can be used to estimate f; and

B, respectlvel}’ “The emplrlcal lag-one. a,utocorrelatmn coefficient used in these equations can be

' _ _ca.'[cuia.ted from the whnle sa.mple of hourly data. Fmal}y ki and k; afe estimated from equa.tlons

(53’) and (60) respectlvely, by using the sample of total depths. The followmg parameters were

'eshma.ted for the above two models:

U Model 1:7 =065, k=061, f, =051
- Model 2:1), =065, k=125 f,= 158 (62)
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Fig. 8 shows the. empirlcal and. theoretlca.l mean ‘and standard deviation of the total storm
_depths Itis abserved that both stationary models are not able to capture the duration dependent
"stmcture{ _o_f these statxs_tlcs. This is _further verified by Fig. 9 which shows the empirical and
theoretical _coefﬁc_iem,:bf varniation of the total storm depths as a function of duration. The empirical
-~ and theoretit:a'i'I'.ﬁ-r'st':a,ntocorrelation' me’fﬁtiént' of the-hcurl'y rainfall depths is shown in Fig. 10
as a funct}on Uf duration. As was analytfcally seen from (58) and (61) the autocorrelation of
-_'honrly ramfall depths is independent of the duration and cannot obtain negative values. As the
lag i increases p xn(m D) is alwa.ys positive in (61) and if the ranges of £y and &, are as given in the
- previous subsectmn, this is ‘aldo the case for px,{m; D) in (58). This is in disagreement with the
-_emplrxcai observatlons (see, for example, Fig. 10). -

- To further eva.iuate the model performance based on properties not explicitly used in model
.-__'ﬁtt;u,g we: evaluated the empmcal and theoretical mean and standard deviation of the hourly rainfali
'éepths (equatwns 53 57, a.nd 60) a.nd autocorrelatlon functions (equations 58 and 61) for model
1 and model 2 respectwely “Thesé ﬁgures together with Figs. 8, 9, and 10 demonstrate the.
: supenorlty of the sc.almg model and the inability ‘of the stationary models to capture important
| _"_sta,tnstlcal pmpertles of storm rainfall. '

8 '--;Ma,-'ss_'c;?x_rikés' -

x _In thm aect.wn we exannne the cc:n.cept of normahzed mass curves in reference to the scaling model

e 'a.nd a]so for compa.nson, in reference to the sta,taona.ry models. We will see that the stationary

) :-.:madels are: xmmpahbie with this concept w]ule a sca.hng model can he oompatlble and, thus, can.

o pmvxde 2. means for stochastlcaliy generatmg miass curves for storms with independently generated

tota.ls In the next section, we will see how the mode] can be practically applied for the stochastic
generat:on of storm hyetagraphs and as 2 result of this apphca.tmn, we will observe that the
'praposed mod.el mth only four para;meters can be a relatively good representation of the traditional
mass curves determmed a8 a. sét of curves each correspondmg toa spec:ﬁc probabihty level.

The use- of dlmensmﬂess mass curves, i.c., normalized rainfall depth h"(t/ D) versus normalized
_-tlme ‘t/D 1mpbes that. S stochastlc functmn h"‘( ) <¢an be found such that

g, D)= h*(z/p)h(ﬂ D) - (63)

. where h(D, D) w a stcchastlc variable (the total storm. depth) apparently mdependent of ¢, whereas

Rt/ DY is a stochastlc funct:on mdependent of ‘both. D and h(D, D) satisfying £*(0) = 0 and
R ()= 1 A sxmila,r rela.tmnshap holds for the mstanta.neous intensity, that is,

e(t D)= 5 (z/ma(m o | (64)
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. where £*(.). deﬁotes -t.he- derivative of A*(.) and D) = h{D, D)/ D. Taking k moments in {63) and
(54) we obtain respectwely

Elhit; D)k] _[h‘_(t{D)’?]-E[h(D,D)"] (65)
and
Efg(t, D= BI¢*(¢/ D)|EGDY) (66)
Similar Tela;tl(_)nshipﬁ__.h_{)ld for__the (k, £} second prodqct moments, i.e., |
Blh(ts, D)h(tz, DY) = EIA"(on/DYh(ts/ DYIELD, D)4 (67)
L o .
 BlE(t, D) €(ts, DY) = EIE(/ D) 2/ DYIEGDYH] (68)

Under the assumptaon of stationarity over time none of the above relationships can hold. Con-
s:der, for example, model 1 for wluch

Bih, D) = mt =m(t/DD (69)

and

E{ﬂ(‘?i?-)?f:'w' %2 {2k1/[(1 — Bi)2 = AIHTA
- = »f{t/D)W {2/l - B)@ - B)]} (/D) PP (70)

‘It becemes apparent that for k =2 no function k"‘(t/D) can be found to satisfy (70). A generalized
:.proef of the mcompa,txblhty of any- sta,tmnary model with the concept of mass curves is found in

Append;x 3

o | On the contrary, the self similar models are not mcompa,tnble with normalized mass curves. It
e easy to shaw thax af tha-e process £(t, D) is defined by (64) {or, equtva.len,tly, if k(t, D} is defined by

S (ﬁS)) a.ml at the same tlme the dependenoe between total depth and duration is of a power type,

'.“1e

WD, D) = DHw (71)

. .where W is a, ra,ﬁdﬁm vana,ble mdependent of D {or, equivalently, the logarithm of the total depth

W is hnearly dependeut on dura.tmn), then é(t, D) i is a self-similar (simple-scaling) process, as defined
| B -by (6). The prO(}f is obv:{ms and will be omltted As we will see below, the reverse is not valid in all

' 'ca,ses ie., net any scalmg; model can sa.tlsfy (63) or (64)in a strict and complete way. Nevertheless,

_.;equz;t;gns. (60) an:d_-(ﬁﬁ) are satisfied for any stmple scaling model. Indeed, for a scaling model
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the-.reve.rse

Eln{t, D))= DM OER(Y/ D, 1)) | (72)

while

E(D, DY = DHHHOBM(L LK ” (73)
Mence” o _

e o = R ppo (74)

E[h(1,1)F]
. whw.h is consiatent wath (65) since it.results to

E[hctw 4
ETh(1, 1]

w}uch is a function of on.ly t/D. The ahove equatmn deﬁnes completely the marginal distribution

| E[fz"(t/D)-"] '. (75)

f-of B*() a.t evary djmensmnless time posnmn Concermng the multivariate distnhutmn and joint
product maments the sxt.zmtmn is more comphca,ted It can be shown that there exist sitnple scaling

. models that sa,tlsfy (6?) and (68) but this is not true for any model. The problem originates from

N the constramt h“‘(l) = 1 along with the reqmrement for full independence of h*(1/D) and h(D D).

L | Z:'In Appendlx 4itis pmv&d that the' assumpmcm of weak stationarity which was made for reasons of
o "_-fsxmphaty (eq (11)) is mconslstent with (68) ’I‘he task to buzl{i a model fully consistent with the

_ mqwremant of complete statzst:ca,l mdependence of h*(t/l)) and h(D DYis possible but implies
_-?:.__-_mathema‘acai compimty a.nd mﬂexn‘mhty 8o we preferred in this study to baild a simple and easﬂy_
'apphca,ble model by redumng the requrrement of complete independence to the that of orthogonahtyj '

R § h*(t/D}* and h(D D)’c (for k& = 1,2,..). Apparently, the condition of orthogonality is assured
B ) by: (65) Whlch is va.hd for- s,ny sca.hng model As will be shown later (Sectaon 9 and Figures 13-14)

:'this compromise is pr_a;,cncaliy negligible.

. g - Géﬁéraﬁiﬁg: -Stb_rm: hyétbg-raphs

= :-_The s:ahng model can he apphed for generating storm hyetographs at an incremental basis for |

' a;ny tlme step A One can recogmze that the correlation structure implied by the scaling model, .

 even n the case’ of the. wea.k sta.tiona.nty, is somevwha.t complicated and differs from the structure

of a typzca-i lmaea.r modal ie., an ARMA(p, q) model However, the: introduction: of a nanlmear
model fm' the generatmn is not necessary. Smce the consecutwe events are isolated and the number
Of genera.tioﬂ steps in eaach event is. hmlted ~a proper linear model can be established to carry"

' -.ﬁ:(_m_t the__geng;:a,thn,_ _’I‘wg pos_sxb_ie procedures are discussed below both presuming a given storm

o duration- D. 3.';'1_-‘:_h¢: ﬁrstlsa, typical sequénti_a!':;prﬁcediire where the _ihcrezxiéhtal depths Xa(i, D}




:.afre genera.ted one at a. time and the tota,l storm depth h(D D) is then obta.med by summation.
-The second is & dlsaggrega.tzon procedure where a given total storm depth is disaggregated into
'-_mcremental depths In both cases the scalmg model is utilzzed to determine the parameters of the
.-generai;lon model 'enotmg X = [XA(l D),XA(Z D), Xalk, D)]T where k= DfA (assumed-
to be ; an mteger) the para.meters required are the first moments E{X] given by (24) a.nd the second
:moments CO‘!}[X X] gwen by {27) or more speclﬁcally by .(43). Also required is an assumption
: '..a.bout ‘the maxgmal d:strlbutlon Here after examination of the data set of this study and in light
“of other’ studies the. two»pa.rameter gamma dtstnbntlon was_adopted. The generation scheme for

the sequent;al procedure can be based on
- X=QV . {76)

where £2 = "[w;,] isa k x & matrix of coefficients and V = Vi, .. Vk] is a vector of mutually inde-
'--pendent ra.ndom vanables w1th unit variance and a three- parameter gamma. dastrlbutmn function.

T}xe paxameters of tlns scheme are determined by t.he follo“rmg equations which a,re easily obtained

__ ﬂn?' x_.Cdn[X,_Jﬁ]'- o 1)
' ' S el '
qu[V] X}"Zw«E[Vc] (18)
R 21
.,pam ,uam(z, D)l S alvil (79)
. £=1

Where ;zg[V] s the third moment of V; a.nd ,ug[X a (3, D)) is the third moment of Xa(, D) determined
K analytxcaﬂy from the assumed marginal distribution. The §2 matrix is considered as lower triangular
and is. oomputed by deconvolutlon of QQT In the case of the disaggregation procedure first one

S 'mlght have to generate- h{D, D) (if it is not already known). This can be done by using (20)

?'a.nd (21) a;fter assummg a dlStI‘lbuthl’l funct;on (a two-parameter gamma distribution was adopted
here) L

_ Motivaxed by the concept of normalized mass curves, the following procedure was adopted for
-the disa%regatlon S '

o L. Apply the sequennal procedure as described above to obtain an initial sequence X, (i,D),i =
1: '1k; . .

- 2. Determine a normalized sequence X3 (i, D)= X, (i, D)/5’, where §' = T XA D) . This

- sequence determities a réalization of a dimensionless mass curve;
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3 Calcu]ate thae ﬁnal sequence X&(i D) = X4(i, DYR(D, D).

Both the above procedures have some sources of inaccuracy. The generated by the sequential

o proi:edﬁi'e valuesef Xa (i,ﬁ)'-can be. negative, a possibility arising either from the three-parameter

gamma. d1stnbutmn of v or from possibly negative values w;;. To avoid this when negative values
Xali, Dy axe genera,ted they can be set zero, a correction consistent with the definition of a storm
whxch aliows for zem incremental depths. Furthermore the sum of three-parameter gamma vari-
: “ables implied by (76) theoretlcally is not gamma distributed, though a good approximation can be
fobtamed by the mt.mductmn of third moments. Fmally, a third source of inaccuracy is expected in

S the case of. the dlsaﬁfegatmn pmcedure due to the non- ~complete independence of the total depth

of the genera.’s;o'

;and normahzed mass curve discussed in Sectlon 8. To delimit such an effect during the execution

»

WE can reject sequences X &(: D) 1eadmg to-a ratio h(D; D)/S’ quite far from

umty
an By usmg the pa.rameter set of Sectlon 6 we: apphed both the above procedures for generat-
':'-mg 10,000 synthetzc hyetcgraphs ina hmlrly basts for a storm of duration of 20 hours, A series
of comparigons between theoretical velues of several statistics with- the corresponding values ob-

tamad by snmula.tlon were made The. exammed statistu:s a,re first, second and third order marginal

moments, ma.rglnal dxstnbutmns, and a,utocorrelatmn coefﬁcaents of hourly depths. All the com-

' ;':_=‘_:;pa,nsons (whu:h are not presented here, expect for the following three examples) had satisfactory

B ':_results Ongmatmg fmm this’ exercise, Flgure 13 indicates the degree of inacctracy due to the

:'::z:are can'_ ned to; values

_ ﬁrst two of: the a.bave discussed smtrces of ma.ccumcy in reproducmg the d:strlbutlon of the hourly
- depzhs It is showxl that the devm;tlon of the mmnlated frequency curves from the theoretlcal ones
uf X1(10 2{]) 0 5 mm Remarkable are the smaller depa,rtures of the
| 'd;saggmgatmn model sxmuiated ciirves as compared with the ones of the sequential model. Fig-

- o oure 14 shows tha:l: bt}th (sequentxal and dlsa,ggregatlon) procedures perform well in reproducing

“the oova.nance structum of hourly depths as theoret;cally determined by the scaling model. Note
that Fxgure 14(b) correSpondmg to the disaggregation procedure does not differ in performance

E_from 14(3) oorrespondmg to the sequezltlal procedure Thls means that. the potentially expected

maccura.cy due to the prevnously discussed violation of the complete independence of h*(t/ D) and

L :.h(D., D) (We only_.-'sansﬁed arthogonahty) is not 1mp0rtant and, consequently, this weakness of the

B model in bsemg. fﬁ]ly compa,tlble With mass cnrves is not substantial,

Fl.lga_l_ly, F_x_g_u_r_e 15, __r_e-fe:t_l_pg__ta the normalized inass curves was constructed from hyetographs

| .:'f:'ﬁi_zi'of thé éa'ca:lle:(i'_(a;ftéi‘;'ﬁuﬂ "15967) sec;:)ﬁd' quartiié' group. (ae hyetographs having their the heaviest -

pa.rt in the second qua.rter of their duration). The curves presented are similar and were drawn with

ik .éfgthe sa.me methﬂd pmposed b}’ Huff (1967) and corre‘;pond to the 50% (median) as well as 10% and
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: --.90% probabihty Ievels Three groups of curves- appea.r in Figure 15. First are the synthetic curves
o cotmputed at the step 2 of the d:sa,ggregatmn procedure from that portion of the hyetographs that
belong ‘to the second quartlle group. Second are the curves computed from the historical data of
this study.: Speczﬁcally, from the total historical sample, 19 storms of a total of 75 (about 1/4) were

_ found to belong to the second qua.mie type (note that the storms of class 1, i.e., those of duration
'to the lack of a sufﬁc:ent sample size of hrstoncal da,ta, in the month of Apnl we plott.ed also a third
group - of curves from hnstoncal data of 140 second quartile storms recorded at the same station

_ Chala.m but for all months of the year: The third group of curves originates from another study
o -(Styhamdou, 1985) The compa.nson plot shows - that all three synthetic and historical groups of
- ir:urwes are very close to each other thhout any remarkabie deviation (perha,ps -except for the lower
~ part of the 90% synthehc carve). Thus Figure 15 gives a good indication that the scaling model
w1th.as few as four pafameters can represent or summarize effectively the statlstlcal characteristics
of a storm popula;tiarij'othéﬁvise given by a fa.mily of curves. Additionally, note that the curves of.

' .Fagure 15 a.re hased on.the assumpnan of the weak stationarity, i.e., a "mean” mass curve which

I }1é 2 straaght Ime of uniform mean. mtenszty However, as observed {rom Figure 15, the synthetlc

N curves (even the. medmn curve) have nonhnea.r sha.pe in accordance with the historical curves. To
understra.nd this one must cons;der thaf. the curves correspond to a portion of the totaily generated
-:-._hyetographs cené:tmna.]ly selected 50 as to have. the main-slope located. at the second quarter of

' '.';:: :f;-'thear duratlon

: It must be empha,swed that the above model is not a complete ramfall generator but rather is

a ga:ng__:a.tor of hy.etog;aph_s of individual storms. However, it can be easily extended to a complete

generator by appending a comporent for the storm and interarrival time durations.
10 Concluding remarks

" The: deveioped sxmple scalmg model for the temporal structure of storm rainfall has a simple

mathematlcal structure. with only four parameters but it explains reasonably well the statistical
propertles of the exammed hlstonca,l data provxdmg thus an efficient parametrization of storms of
”_s;va:rymg dura,tlons _a.nd total depths In addition, }t is. consistent wnth and provides a theoretical

e -f.-'_::bams for, the Uoncept of. normabzed HIass CUrves.

It was found th,a,t the scalmg model is supenor to the examined stationary models, which

were unable to capture 1mportant statistical: properties of storm rainfall and were inconsistent

- with the concept of im.rma_lizgd__mass curves. Furthermore, the scaling model provides a stochastic

_giiondimensi@_n’-alizﬁa}tion approach which is apparently superior to the popular use of mass curves,
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because of the con-tth;ttien in a few parameters of all the iﬁformation otherwise given by a family of
: 'curveé_ ;é:.hd the;mphcatmn of a s;tochastic_apprda;ch to storm hyetdgrapll generation, which is not
possible 'by.tihé t.r.adifidﬁ'al method of mﬁss curves.
The proposed modei when combined with a stochastic process of the storm arrivals (e.g. a
' '::Pmsson pro{:ess) a.nd a sét of dlstr:butxon functlons for the rainfall duration and intensity can give
.. a complete ramfall generator at a point or on an areal basis. Moregver, merely the scaling model
.:_can be’ useful e hydroiog:c applications, such as in evaluation of design storms, as an evolution of
‘the concept of mass curves.
: Dlﬁ'erent canﬁguratmns of the model can be ‘obtained by usmg e.g. different forms of the
cova.rla,nce functlon of the rainfall mtensnty In addition, the weak stationarity condition, used
.'r-':;here as. a cenvement assumptmn is not a. necessa.ry stmctara.l constrmnt and it can be removed

or. substltuted in cases where the hlst;oncal da.ta exhibit nonstationarities w;thm each event. A

' -_..:;more mbust pa,ramezer eatlmatzon techmque and: model evaluation at tlme scales different than the

'hour}y is a._feg.slble -fut.ure 1mpr0vemgnt_ of the model.
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11 Appendix 1: Self-similarity of h(t, D)
et us cdﬁSiié.l;ér the (k £) second product moment of h(t, D)
” | E{h(zl,D)"h(tg,D)’f} |
= B{([ " &5, D) ds[ [ €00, D) gt

N I R
dsy -+ dspdgy - dg, (80)
Similasly, . .
E{h(Atl, XD)eh{(Aty, ADY}
- f L B{E(51,AD) -+ E(sk, AD)E(1, AD) -+~ £(at, AD)}

_ dsy -« dspdgy -+ dge
: § i3 tl.
=Lk

: j E{£(A01,AD) - <€(AoR AD)EC1, AD) - f(x\we,w)}/\"“
doy -+ dogdipy - - dify (81)

- 3 where the last equality. has been obtained by setting s; = Ao and: 4= Af. Note that this last

f'_equa,hty would not Kol if any product moment’ conta,med dirac delta terms. This can be seen by
conmdenng for. simphcnty one term only,. say E[§(8 ).D)], and observing that if that term had the

- form f(s)ﬁ(s = 80) then: j;,‘“ Elt(s;AD))ds = f 4 _f(s)é(s__— So}ds = f(sp) while the term obtained

by substituting s = Ao would give [¢ BIE(\r, AD)Ado = [§ f(A0)6(Ao =~ s0)Ado = Af(s0) # f(s0).

1n-_?iéw of (9)"1.1123 .a.bove;_jequality can be further written as
I:,{h()«tl, ADY*h(At2,ADY}

o ARHEH{E /“ /“ f’ f E{£(0ay,AD).-- f(,\ak,,\D){(Aqbl,AD) (A, AD))
dory -~ - doy dy - - (82)

By ccmpﬁri_ng_-_(saj.::a}i.ﬁ-d_-.(_s-z) we obtain
- '}\-“{H"'-’")(’“*'-‘)E{k(A-tl,-Aﬂ)“h(Atg', MDY} = E{h(ti, DY h(t2, D)} (83)

T!us result can he samlla.rly extended to the product momeits of any ‘order and thus we conclude
that '

| {h{tD)} 4 {,\if;{*_‘ff%(,\z,w)}' | | | (84)



coaclti.de

12 .-A'}-p'peiid'ix-;_z:--'Covarianc’é function of incremental depths
~From the definition of XA (4, D) in (2) we obtain
A A
Elt(ty, D)E(ty, DYdty dt
=-£=f_-1}a ‘L-‘:Uﬁ Kt D)z Qﬁ 1 dty

pEA A .
f f  Re(ty — bz D) dh dta
G-1a Ji-1a

&
= [ ReriD)iA - rdr
. J-a .

n

- E(Xali, DY}

A
— 2 ]0 " Ry(rDYA - 7)dr (85)

- . wherethe last but one eqna.lity results from simpiiﬁcation of the double integral by setting 7 = 1 ~#;

) a.nd obsm:ng that the mtegra.tlon area is equivalent to |A ~ rfdr with 7 va,rymg from ~A to A,

?Wherea.s the iaﬂt equal:ty comes from recogmmng tha.t Re(r, D) is a.n even functlon of T contaning’
- no concentrated ma.sses Subs’mtntmg Re(r;.D) from. (16) in the above expression we obtain

- B{{XaG, D)]z}:.-.: DA, ) (86)

“whre 6 = Af D. &nd q&(ﬂ 6) is as defined in (26) From the above the expression (25) can be easily
g obta.tned :
Sumlarly, the second product mcrment of X A(z DYis given as

Bxa(mD) = Xatm 41 ; D)Xa(1; D))
| Ly T:.. f f Ef§(ts, D)E(t2, D) dia diy
SO s mana
= f . / . Rg(i]_ — ta; D) dt; dip
WO Imh

| ift.':l.;m&(f;_p)(r ~(m-1)a)dr

k

s
[ Relri DY+ )8 - r)ar (87)
': .Substi-futing-.&{(r B) .frém (16} and setting § = A/ D we obtain

Rx(m B) = 92(H+*)¢(m 5 (88) .

-_:55where Pimy 6) m ﬂeﬁneﬁ in (28) Equatmn 20 ior the covariance function of X (i, 4) is then easily
j-obta.med fmm the above :
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Appendlx 3: Incompatibility of stationary models with scal-
mg. _p_mp.ertle_s

:The expected value of the storm depth in any sta,tlonary model is gwen by

E[h(ﬂ D)l | | | (89)

- where M is the “mean mstantaneous intensity. Let us examine the possibility that the second

margma.l moment is. gnen by a power functlon of D, ie.,

B{W{(D, B)21 =Dt | | (90)

where R and 8 a,re constants, In the case of a stationary model we have

EMD, DY f / ElE(t)E(t2))dtydty = / fo Re(ty — ta)dtydt (91)

'~ where RE{-.')ins the se(;Qn.d product moment: for the instantaneous intensity £(¢) (which is not a

function of D). The last double integral can be simplified (e.g., as in Papoulis, 1965, p. 325), and

: -'.-ézthen equated to (9(}) to: g:ve

9 f Rf(»r)(z; ~nir=md® g (92)
o . _:Takmg denvatwe of the above equatxon with respect to D we get |
g f Rf(r)dr e mw"* '- | (93)
o :Takmg once mare denvatxves and. substituting' D with T we obtain the form of Rf('f), that is,
 By(r) = -’3335%—1—):#-2, T>0 (94)

_ _Be'mdes --the Variance of the storm depth is

Vm“[h(D D)] = mD" ~ i D* = i D*(m/n})D’7* - 1 | (95)

'. -"Nﬂw we can- observe thit: the case where @ > 2 is impossible since it implies that Var{h(D, D)

: -would be nega.twe for some. Iarge D and, also would yield a correlation function of the instantaneous
mtensnt.y mcreasmg wath 1a.g 7, which is unreasona.ble Likewise, the case where # < 2 is also
. xmposmble since it ;mphes a negative Var{h(D, D})} for some small D (though in this case we
.&on’t have a.ny pmbiem Wlth the auntocorrelation function). Finally, the only possibility with
:;'ma.thematmal meaaa.mg is, the case where # = 2. But, as results from (94} in that case Re(.) is

N _consta,nt and consequently, the instantaneous intensity would be constant with zero variance, a

' Now let us examme the compa.tlmhty of the sta.uona.ry model with mass curves in the general

“case. From (65) for i» = 2'we get
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Elh{t, DY} = E{h (t/D)?]E[h(D DY | (96)

.Note that _thg-ieft_«hand Slde of the above equatio_l_l, in the case of a stationary model, is in fact a
function of only ¢. Thus denoting ¢(¢) = E[h(1, D}*] and ¢(A} = E{A*()A)?] we can rewrite (96) as

HOD) = YD) (o7
. :@n_d_ since |
SOUD) = YD) = HOW(K)(D) (99

while a_._t_'t_he samé time

uD) = WD) (99)
we conclude that o
‘4.&(’*#) = 1{;(,\):1;(;;) - (106)
ff_;_':I‘hus-_ :
RO ES V. (101)
for goxzfze constant@ Furthermore, with the substitution of the above into (97) and after setting
P I/E -w’e-get f

#D) = D’ o (102)

;whxére the oonstant m ¢(1) The above. equatwn is equlvalent to (90) and thus it cannot be

sta.t_lona,ry mo_del_ is mcompa,tlbl_e with the co_ncept of nnrma.hzed mass curves.

. ._:_14 Appandlxélz Incompatibility of the independence of normal-
- wed and total depth with the weak stationarity condition

Stamng mth the obvmus rejation

f g*(u)acu =1 | (103)
_'_::wnf‘.ten in the form B
f £ (u)du + ] £ (u)du =1 (104)
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cannot.be

' 'whe_retﬁ is aﬂ-f-:afbitrarSI-nu-mbe_r (6 < 6 < 1) we obtain that
f ] e (we"(s)}duds ] f BIE (w)e*(s))duds
= ] E-[‘E"-(“)]d“ﬁ_#.f Eg (u)ldu (105)

To prove. the abave equa.tlon mult;ply (104) successwely by the first and second mtegral terms of

s left-hand mde, then subtm{:t the two obta.med equations, and take expected values It is easy

to show that equatzon (105) is 1ncon51stent with the following concurrent equations

[5 (ﬂ)]-3==31 | . DR (105)

E[f* (ﬂ)&“(S)] =¢ (l‘v- - 8|} (107)

'.;where cl is an a.rbltra.ry constant and ¢*(.} is an a.rbltra,ry function. Indeed, (107) implies that (see

o - analagaus ca,ses m Appendlx 2 and 3)

ﬁ_- or

f / 5 (u){;’ (s) duds = 2 j ¢ (r)(é-—‘r)dr (108)
f / Eté e (s)}duds =2 f 6 ()t ~ 6= r)dr (100)
Thus (105) becﬁmes R -
N ¢*(rJ(5~—r)df-*f_'6 8 CIL~ 8= r)dr = 6= 172 o aw
o a,nd aﬁer ta,kmg denva,twes thh respect to §
/ (,b*(r)dr-—f #(dr =] | (111)
. :.5..- B o : | . |
- / #(r=c (112)

c '-=Appafrent1y there is 16 functmn ¢»*( ) consistent.- with ‘the above equation {except for the case

é‘(r) 9) Thus the fnm:txonf {r) cannot have concurrently both properties (106) and (107). At

_:' the same txme the a.ssumptmn of weak- ;sta,tmnanty (eq. {13) -(14)) along with (64} implies that

E{E(h,ﬂ)&(fvz,m] Dw«'ﬁ(lh ~tl/D)= E[g"(ty] DYE*(t2/ DY DY) (113)

a ':E'.-a;_vd_-, lf-f"‘(t/D-) an:d: t(;‘D)-are hypot_iresrzed mdepen_dent, then
E{E (t1/19]€ (tzfp) = (it ~22 /9)/(02 te) - (114)
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: whic_h-isifequ-iva.{eilﬁ_];fj_::;('li}’.?) with ¢"(n) = $(u)/(e2 + c}). We conclude that either £*(¢/D) and
(D) should not be hypothesized independent (but only orthogonal) or the covariance function
- Ce(t1,12; D) should not be considered as a function of ({t1 — t2|/D). If one wants to keep the

0 :camﬁle_té'indepéhi;i}gnbéfassunﬁpiion he/she has to adopt a complicated covariance function which

adds con-si.d-e_ré@ble c@'mpléﬁ_;y to the. model.

31 -

R - - i e i Y e T et




‘Min - Max Mean Std

Duration (h)- 2 45 118 8.9
| Interarrival time.(h) 10 470 1013 1062 |
Total depth (mm) 0.3 389 75 7.7

‘Mean intensity (mm/h) 0.1 255 0.60 0.48

. Hourly depth (mm) 0.0 82 064. 093

.g:-':l_:‘égble'i:QJjCj:‘_'c;neral:c}_laxa,cter_isti_cs of the 89 storms used in the analysis.

"No. of 'I?ota,i no. (_if-:;
events hourly depths {
oy Ny o Ny

o
18
ity
IE
I
il

ke 2 3 .22 04 14 31
2 4 7 54 12 20 108
38 197 L1 19 184
4 12 18 142 18 19 269

5 .19 45 21 62 17 461

o lA=@243)0 4 1L T4 24 39 292

UB=(445) 12 45 203 79 36 730

Total 2 45 118 89 89 1053

' Table 2:'fblh.§s'iﬁcastiqﬁ-of- %;tb_‘rms according to their duration. The storms in each class were used
.. to estimate the ensemble statistics of that class.




‘Figure 1: Definition of terms.
. Figure 2: Schiematic for explanation of scaling.

_Flgure 3: Scaling model empmcal and theoretlcal means (squares and solid line, respectively) and
. standard deviations. (tna,ngies and dotted line, réspectively) of total storm depths as a-function of
storm duratmn { Iagwlog plot)

N _:-'.Fzgme 4 Sca.lm,g model empirical (squa.res) and theoretical (solid hne) coefficient of variation of
o mtal storm depths @b a funct:on of duration. -

| F 1gure 5 Sca.hng model empmcal (squa.res) and theoretlcal {solid hne) first autocarrela.hon ¢oeffi-
. clent of hmu'iy ramfaﬂ de"pths 28 a functmn of duration Dotted lines represent the 90% apprommate

. _ '__-conﬁdence Imnts

:-:-1F1gure 6 Sca]mg; mndei empmcai and theoretical mean (squares and solid line, respectively) and.
- standard. dav;amon (tnamgles and dotted hne, respectweiy) of hourly rainfall depths as a furiction

o of duratlon

o Flgure 7 Scahng model empmca,l and theoretical autocorrelation function of houtly rainfall depths |

. as a ﬁmcﬁwn of duration, Squa:es a.nd thm line represent small darations (4h < D < 11h and
D = Th, respectively), while i;mmgles and tluck lines represent la.rge dura.tlons (12h < D < 46h

"?*-:_-_a.ndD 2.h réépﬁctnvely)

:"':Figure 8 Smt_aonary models emplrlcal and theoretical means  (squares and dsshed lme, A

.;_;.-txvely) a,nd st 'ndard dema.tmns (tna.ngies a:ad dotted lme for model 1, sohd line for model 2,

- _. .-_'Figure 9 Statmﬁar}' mode]s empirtical (squa,res) and theoretical (dotted line for model 1, solid line

_for model 2) coefﬁaent of varlatxon of tota.l storm dépths as a function of duration.

Fxgure 10: Statwna.ry models emp:r:cal {squares) and theoretical (solid line) first autocorrelation
 ¢oefficient of: hourly rainfall depths as a functmn of duration,. Dotted. linas fepresent the 90%
--*appmxxmazte conﬁdence hmxts :

| Flgure 11: 'S'taxionaﬁry mo&els empmcall'and theoretical mean (squares.and dashed line) and stan-

- '_ | - "dard deviation {tnmgles and dotted line for model 1, solid line for madel 2; respectively) of houtly
_ramfa.ll depths a.s & funcmon of durataon

;;gf:f‘agure 12: Statmna.ry madeis empirical and theoretical autocorrelation function of hourly rain-

 fall. depths as a ‘function of duration. - “Squares and: tr:a,ngles represent empirical values for small

;.-1(4?1 <D < 1Ih) and: iarge durations (12h < ‘D < 45h) respectively, while thick and thin lines
; __'_represent modeis i and 2, respectwely (same for all dura,tzons)




~ Figure 13: Theoretical (solid line) and simulated (triangles) distribution function of the incremen-
“tal depth )Ll(ll} 20) (the tenth hourly depth of a sterm with duration 20 hrs). The simulated
dfstrrbutmn is obtmned (a.) by the sequential mode] and (b) by the disaggregation model.

Flgum 14: Theoret ca.l '(sohd lines} and sxmuia,ted {points) correlation structure of the incremental
urly j depths storm of duration 20 hrs. The simulated structure is- obtamed (a) by the_
L sequentlal madel and (b) by the disaggregation model.

) . Figure 15: Companson of historical and synthetic normalized mass curves of second quartile storms
-at Chalara station, Greece, for 10%, 50% (median) and 90% probability levels. Synthetic curves

Lo _'_._-3(t}uck sohd lines) are obtained from a simulated sample by using the disaggregation procedure.
-\ The two groups of historical curves correspond to the records of April {circles) and all months of

T 'the Yyear (squa,res) respectwely
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