

Sediment yield estimation from a hydrographic survey: A case study

for the Kremasta reservoir, Western

Greece

5th International Conference *"Water Resources Management in the Era of Transition"*, Athens, 4-8 September 2002

D. Zarris⁽¹⁾, E. Lykoudi⁽²⁾ & D. Koutsoyiannis⁽¹⁾

(1) Department of Water Resources, Faculty of Civil Engineering, National Technical University of Athens, 5 Heroon Polytechneiou St., Athens 15780, Greece
(2) Department of Geological Sciences, Faculty of Mining Engineering and Metallurgy, National Technical University of Athens, 5 Heroon Polytechneiou St., Athens 15780, Greece

Sediment delivery processes

- Sediment source (wash load versus river bed material)
- Magnitude and proximity to the outlet of the source erosion areas
- Characteristics of the drainage network (density and frequency, slope gradients, watershed area)
- Frequency, intensity and duration of the erosion producing storms (wash load)
- Geological formations and soil characteristics (erodibility)
- Geomorphologic characteristics (faults, orographic uplifting, etc.)
- Depositional potential of the catchment (surface roughness, depressions, man-made sediment storages)

Results –	- Deposits'	Volume
-----------	-------------	--------

ACHELOOS R. 4 AGRAFIOTIS R. 1 MEGDOVAS R. 1	1.3		5.7
AGRAFIOTIS R. 1 MEGDOVAS R. 1			
MEGDOVAS R. 1	3.1	INIT	TAL DESIGN STUDY
	2.2	ESTI P	IMATE FOR DESIGN PERIOD 50 YEARS
TOTAL 6			394 hm ³

Sediment yield of Kremasta reservoir					
watershee	1				
Subcatchment	Mean annual sediment yield S _y (t/km²)	Mean annual sediment discharge Qs (kg/s)	Subcatchment area A (km²)		
ACHELOOS R.	1184.6	66.0	1733		
AGRAFIOTIS R.	2034.8	20.9	320		
MEGDOVAS R.	489.4	19.5	1239		
TOTAL	1005.6	106.4	3292		

Subcatchment	Mean annual sediment yield S _y (t/km²)	Soil erosion A (t/km²/y)	Sediment delivery ratio
ACHELOOS	1184.6	7077	0.17
AGRAFIOTIS	2034.8	4847	0.42
MEGDOVAS	489.4	2251	0.22
TOTAL	1005.6	5040	0.20

Conclusions

- Measurements of deposited sediments within a reservoir could be an effective method for reconstructing long term catchment sediment yields
- The reservoir under study should be large enough so that trap efficiency could be assumed as unity
- This method is unable to estimate sediment yield of finer time scales (e.g. annually) unless more frequent hydrographic surveys are accomplished
- This method combined with sediment discharge measurements in an upstream site and/or alternative measurement techniques (e.g. turbidity) can be an effective tool on integrated catchment management

Conclusions (cont.)

- Dead volume principle, at least for large reservoirs, should be reconsidered in terms of the spatial accumulation of deposited sediment as described
- Catchment sediment yields under study exhibit considerably higher values than other published data from throughout the globe
- Geomorphologic controls such as tectonic activity, orographic uplifting, hydrological parameters (e.g. intense storms) and also the dominant geological formation (e.g. highly erodible flysch) are responsible for this considerable difference