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[1] Most common methods used in optimal control of reservoir systems require a large
number of control variables, which are typically the sequences of releases from all
reservoirs and for all time steps of the control period. In contrast, the less widespread
parameterization-simulation-optimization (PSO) method is a low-dimensional method. It
uses a handful of control variables, which are parameters of a simple rule that is valid
through the entire control period and determines the releases from different reservoirs at
each time step. The parameterization of the rule is linked to simulation of the reservoir
system, which enables the calculation of a performance measure of the system for given
parameter values, and nonlinear optimization, which enables determination of the
optimal parameter values. To evaluate the PSO method and, particularly, to investigate
whether the radical reduction of the number of control variables might lead to inferior
solutions or not, we compare it to two alternative methods. These methods, namely, the
high-dimensional perfect foresight method and the simplified ‘‘equivalent reservoir’’
method that merges the reservoir system into a single hypothetical reservoir, determine
‘‘benchmark’’ performance measures for the comparison. The comparison is done both
theoretically and by investigation of the results of the PSO against the benchmark methods
in a large variety of test problems. Forty-one test problems for a hypothetical system of
two reservoirs are constructed and solved for comparison. These refer to different
objectives (maximization of reliable yield, minimization of cost, maximization of energy
production), water uses (irrigation, water supply, energy production), characteristics of the
reservoir system and hydrological scenarios. The investigation shows that PSO yields
solutions that are not inferior to those of the benchmark methods and, simultaneously, it
has several theoretical, computational, and practical advantages. INDEX TERMS: 1857
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1. Introduction

1.1. Combined Simulation-Optimization:
A Simple Example

[2] In contrast to other methodologies used for the control
of reservoir systems, the parameterization-simulation-opti-
mization (PSO) approach, which we will study in this paper,
is not widespread. Therefore we will present it here sys-
tematically by means of examples. Initially, we will con-
sider a very simple problem, the calculation of the firm
release from a single reservoir. The problem is stated as
follows: Given a reservoir with storage capacity k and a
sequence of inflows it for time t = 1, 2, . . ., n, where n is a
control horizon, find the maximum possible release d that
can be achieved on a year-to-year steady state basis.
[3] Let us start with an alternative, better-known formu-

lation of the problem, which is based on linear program-
ming and given by ReVelle [1999, p. 12], whose recent book

deals with design and operation of single and multiple
reservoirs (including problems like maximizing yield from
reservoir systems, maximizing hydropower production, al-
locating reservoir services among different water uses, etc.)
using linear programming. The linear programming prob-
lem formulation is

maximize d ð1Þ

subject to

st ¼ st�1 þ it � d � wt; st � k; st; wt; d � 0; sn � s0 ð2Þ

where st and wt are the reservoir storage and spill,
respectively, at time t. The equality constraint in (2)
represents the water balance in the reservoir whereas
nonequality constraints represent physical or methodologi-
cal restrictions. While the actual control (or decision)
variable is only one, the steady state release (or demand) d,
this formulation uses 2 n additional control variables, st and
wt, as well as a total 2 n + 1 constraints, not including the
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nonnegativity constraints in (2). (The number of control
variables increases by one if s0 is also regarded a control
variable, a case sometimes referred to as ‘‘the steady state
version’’ because in the problem solution, the last constraint
in (2) will be a binding one, i.e., sn = s0.) If a large control
horizon is considered, e.g., n = 1000, this will mean that the
control variables become 2001 instead of 1, and in addition,
the number of constraints becomes 2001. Even though
linear programming algorithms can solve problems with a
large number of control variables, the high dimensionality is
not fortunate.
[4] An alternative, low-dimensional solution is based on

simulation. We observe that if, in addition to the reservoir
size k and the inflow series, the target release (or demand) d
and the initial storage s0 are known, then all series related to
reservoir operation can be obtained using a simple simula-
tion model. Thus the series of release rt, spill wt, and
reservoir storage st are obtained by [Pegram, 1980]

rt ¼ min d; st�1 þ it � ltð Þ;wt ¼ max 0; st�1 þ it � lt � d � kð Þ;

st ¼ st�1 þ it � lt � rt � wt ð3Þ

where for generality of equations we have included a term lt
describing losses from leakage, which for this example is
assumed to be zero but in subsequent problems it will be
non ignorable.
[5] Now we define a performance measure as

L dð Þ :¼ min rt ; t ¼ 1; . . . ; nf g ð4Þ

which we wish to maximize subject to the constraint sn �
s0. In this way the problem became a one-dimensional
maximization problem. The objective function L(d) is single
variate but highly nonlinear with discontinuous derivatives
(because of the presence of min() and max() functions in
(3)– (4)). Furthermore, it can be evaluated only by
simulation (based on (3)–(4)) rather than by analytical or
other numerical means. The nonlinearity and discontinuity
are not serious problems though, if we have to solve a one-
dimensional problem.
[6] There are several arguments favoring the second, one-

dimensional formulation, over the first high-dimensional
one. First, a one-dimensional problem is simpler and
simplicity is always desirable. Second, the one-dimensional
formulation may be computationally faster, as it contains
only one control variable and one constraint, whereas, as we
saw, the linear formulation contains 2 n + 1 variables and
2 n + 1 constraints. In the former the solution time increases
linearly with n (since it only requires a number of simula-
tion steps equal to n to evaluate the performance measure
and the constraint) whereas the latter may require exponen-
tial or at least polynomial solution time (depending on the
algorithm [e.g., Chvátal, 1983, pp. 47, 52; Mays and Tung,
1992, p. 90]). This is important if n becomes large (and
indeed does to get accurate estimates; see discussion in
section 5.4). Third, the one-dimensional formulation allows
a more faithful representation avoiding simplifications of
the system. For example, in the above formulation we
considered the inflow it to be known and independent of
the reservoir storage; this can be true if inflow is the river

flow only. However, if evaporation and rainfall over the
reservoir surface are not ignorable, then it should be defined
to be the sum of river flow plus rainfall minus evaporation
over the reservoir area and thus it will depend nonlinearly
on the reservoir storage st. Also, we assumed that the
leakage lt from reservoir could be ignored. In many cases
leakage may be significant and depend nonlinearly on the
reservoir storage. Thus, if we include evaporation, rainfall
and leakage, then the reservoir balance equation will include
nonlinear expressions of storage and thus the linear formu-
lation in (2) can no longer work, unless artificial lineariza-
tion is applied, which is a simplifying and simultaneously
complicating and inaccurate procedure. In contrast, the
nonlinear formulation (3)–(4) implies no difficulty at all
to incorporate nonlinear terms of storage.
[7] A fourth argument is related to the stochastic nature

of inflow. Both the above formulations considered the
problem as a deterministic one. Obviously this is not
consistent with reality. In fact, the inflow series it, which
was assumed known, is one likely realization of a stochastic
process. Therefore it is not consistent to require that the
release rt equals the demand d in all time steps t. In fact,
such an assumption will result in zero release as n tends to
infinity (within an infinite series there would be sequences
of consecutive zero inflows that will lead to zero release);
obviously this zero outcome is not what we wish to
estimate. In other words, constraints (2) are not consistent
with the stochastic nature of inflows but at the same time (3)
are (in the latter the release rt does not necessarily equal the
demand d). A very slight adaptation is needed in the
nonlinear formulation to completely comply with the sto-
chastic nature of the problem; specifically, it suffices to
modify the definition of performance measure (4) to read

L dð Þ :¼ r b nð Þ ð5Þ

where r(m) denotes the mth smallest value of the series of
releases rt and b is an acceptable probability of failure (e.g.,
for n = 1000 and b = 1%, r(b n) = r(10) is the tenth smallest
value of the series of releases). We will call the quantity
L(d) in (5) the reliable release (with reliability 1 � b) rather
than the firm release. This adaptation is simple and general
(can perform in any situation) and does not increase
computational effort (except for determining the mth
smallest value of the series, rather than the minimum, in a
series). On the contrary, it is very difficult to adapt the linear
high-dimensional formulation. For the specific problem
examined, such an adaptation has been described by ReVelle
[1999, pp. 116–123]; this has been based on the idea of
chance constraints [Askew, 1974], which is comprehen-
sively discussed by Loaiciga [1988]. This adaptation is case
specific as it depends on the stochastic model of inflows and
cannot perform in more complicated situations (e.g., in
combination with seasonal models); at the same time, it
adds computational effort (requires a greater number of
constraints).
[8] Related to the stochastic nature of inflows, there is

another, perhaps the most important, difference of the two
approaches. In the low-dimensional formulation, if a suffi-
ciently large n is chosen, the control variable d is indepen-
dent of the series (the sample path) that was used to derive it
and depends only on the structure and parameters of the
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stochastic process of inflows. Indeed, the performance
measure L(d) in the probabilistic formulation (5) is in fact
a sample estimator of a population parameter and, as n tends
to infinity, L(d) will tend to this population parameter. (The
deterministic formulation (4) is inappropriate because, as
already mentioned, L(d) will tend to zero). Given that L(d)
is independent of the series of inflows, d will be also
independent of the inflows. In the high-dimensional ap-
proach, the control variables st and wt depend on the
specific series and obviously their optimal values for each
t will change if the inflow series changes. Thus, in the low-
dimensional formulation, once the control variable is deter-
mined, it can be used to run the system for any inflow series
without further optimization. On the contrary, in the high-
dimensional formulation the control variables need to be
determined again, by running again the optimization model,
each time the inflow series is updated.
[9] The high-dimensional approach, i.e., the use of series

of variables related to reservoir operation (such as storages
and releases at all examined time steps) as control variables
is not confined to the linear formulation described above.
On the contrary, it is common in most reservoir optimization
methodologies, reviews of which are given by Yeh [1985],
Wurbs [1993, 1996], and Mays and Tung [1992, 1996],
among others. These methodologies include, apart from
linear programming, dynamic programming (DP) [Buras,
1966] and modifications of it like incremental DP [Hall et
al., 1969], discrete differential DP [Heidari et al., 1971],
and gradient DP [Foufoula-Georgiou and Kitanidis, 1988].
They also include stochastic dynamic programming (SDP)
[Su and Deininger, 1974; Askew, 1974; Bras et al., 1983;
Stedinger et al., 1984; Terry et al., 1986; Tejada-Guibert et
al., 1993] and several improvements of it such as Bayesian
SDP [Karamouz and Vasiliadis, 1992; Kim and Palmer,
1997], demand driven SDP [Vasiliadis and Karzmouz,
1994]; sampling SDP [Kelman et al., 1990]. It is well
known that these methods suffer from the ‘‘curse of dimen-
sionality’’ [e.g., Pereira and Pinto, 1985]. In addition, when
such high-dimensional methods, whose decision variables
depend directly on inflows, are used for operating reser-
voirs, it is important to base the decisions on forecasts of
future inflows. The value of forecasts has been demonstrat-
ed by Stedinger et al. [1984], Karamouz and Vasiliadis
[1992], Tejada-Guibert et al. [1995], Vasiliadis and Karz-
mouz [1994], Kim and Palmer [1997], Faber and Stedinger
[2001], and Yao and Georgakakos [2001], who showed that
in general, better forecasts can improve reservoir operation.
[10] In contrast, as already mentioned, the low-dimen-

sional (variable-parsimonious) formulation is not so com-
mon in water resources literature. This methodology could
be characterized as combined simulation and optimization,
where simulation is used to obtain values of the perfor-
mance measure, which is optimized by a nonlinear optimi-
zation procedure. To avoid confusion, we must clarify that
combinations of simulation and optimization techniques
have been used in the water resources literature in different
contexts. For example, Lobbrecht [1997, p. 62] describes a
simultaneous simulation and optimization methodology
whose modules run in parallel. The simulation module
incorporates a description of the nonlinear relationships of
processes in the system whereas the optimization module
contains a simplified and linearized description of these

processes. The optimization model runs first and its outputs
are then refined (become more accurate) by the simulation
model. Similar is the control-simulation framework by
Georgakakos et al. [1999]. In this framework, a control
model based on the extended linear quadratic Gaussian
method [Georgakakos and Marks, 1987, 1989] is run and
its outputs, which for example are optimal reservoir
releases, are then fed to a simulation model. The latter tests
the feasibility of results and makes the necessary corrections
if needed. In a different context, Johnson et al. [1991] use
heuristic operating rules to drive a simulation of a reservoir
system in companion with an optimization procedure that
tries to minimize the departures of the real reservoir storages
from the target storages, which are set by the heuristic
operation rules. Clearly, in all these cases the kind of
combination of simulation and optimization is different
from the one discussed in our context for the firm release
calculation problem.

1.2. Role of Parameterization

[11] Obviously, the abovedescribed problem is too simple
to be considered as a representative problem of reservoir
management. Let us consider a more complex problem, i.e.,
the maximization of reliable release from a system of two
reservoirs. In a high-dimensional system representation
(based on series of variables), similar to the above linear
programming model, the number of variables is at least
double that of the single reservoir problem, as now in each
time step we have to deal with two storages, two spills, etc.
If we follow a low-dimensional approach, we may think that
the addition of another reservoir introduces one degree of
freedom for the simulation. This is related to the allocation
of the total release to each of the two reservoirs. Normally,
one can expect that one or two additional control variables
suffice to deal with one degree of freedom. Indeed, Nal-
bantis and Koutsoyiannis [1997] introduced a parametric
rule that can do this allocation of releases using one or two
parameters. In certain simple cases, the parameters can be
determined a priori by theoretical reasoning. For example,
the parametric rule takes the form of the well known ‘‘space
rule’’ [Clark, 1950, 1956; Bower et al., 1962; ReVelle, 1999,
p. 27] if the only concern is to minimize the spills from the
system. Other such special cases have been studied in detail
by Nalbantis and Koutsoyiannis [1997] and Lund and
Guzman [1999]. In the general case, however, the rule must
be considered as unknown and its parameters entered into
the optimization model as additional control variables. This
is the case in the studies by Lund and Ferreira [1996],
Oliveira and Loucks [1997] and Nalbantis and Koutsoyian-
nis [1997]. In this paper we have used the mathematical
formulation of rule of the latter study; a brief description of
it is given in section 2.2.
[12] Thus, for a system of two or more reservoirs, the

simulation itself cannot provide a unique portrait of the
system evolution, unless a system parameterization comes
before, which is then used within simulation to specify
certain unknown quantities when the system incorporates
some degrees of freedom. Adding this link to the combined
simulation-optimization approach we acquire the complete
methodological chain, which we have termed parameteri-
zation-simulation-optimization (for abbreviation referred to
as PSO or the parametric method or the low-dimensional
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method in this paper). The general idea of this methodology
is not new, as it has been applied before to multireservoir
systems in the references listed above. It can be also said
that several organizations (e.g., the US Army Corps of
Engineers) that develop operating policies, apply an empir-
ical version of the PSO method done by hand: one specifies
a rule, simulates the system based on this rule, and then
adjusts it to deal with problems that emerge in simulations.
In addition, the PSO method is applicable not only to
reservoir systems; for example, Schütze et al. [1999] have
applied a very similar methodology in urban wastewater
systems.
[13] It is almost obvious that in the single reservoir

example discussed above the two examined methodolo-
gies, the high-dimensional and the low-dimensional, will
result in exactly the same value of the firm release, despite
of the dramatic difference in the number of control
variables. However, in a system of reservoirs it is not
obvious at all that the two approaches will yield the same
results. It is possible that the PSO approach will yield a
suboptimal solution, as the solution depends on how good
the adopted parameterization is. On the other hand, a high-
dimensional nonparametric methodology is supposed to
yield the optimal solution if a good optimization algorithm
is used.
[14] The purpose of this paper is to evaluate the PSO

method in several reservoir-related problems that deal with
irrigation, water supply and power production, with several
targets such as maximization of reliable release, minimiza-
tion of conveyance costs, or maximization of power pro-
duction. The evaluation of the method is attempted by
comparing its results with those of a high-dimensional
optimization approach and a simplified one-dimensional
‘‘equivalent reservoir’’ method that merges the reservoir
system into a single hypothetical reservoir avoiding param-
eterization since a single reservoir involves no degrees of
freedom.
[15] The PSO method is formally presented in section 2

whereas the alternative methods used for the comparisons
are presented in section 3. The basic assumptions about the
test system are discussed in section 4 and the test problems
are described in section 5. The results of the solutions of 41
test problems are discussed in section 6 and the conclusions
are given in section 7.

2. Parameterization-Simulation-Optimization
Method

2.1. General Formalization

[16] According to the PSO approach, a reservoir system
problem becomes a typical problem of stochastic optimiza-
tion, which by definition [Fu and Hu, 1997, p. 1] aims at
determining the setting of various ‘‘decision’’ parameters of
a system with stochastic dynamics to optimize some per-
formance measure of interest. Stochastic optimization is
used when this performance measure cannot be obtained
through analytical means and therefore must be estimated
from sample paths, e.g., via stochastic simulation. The
general solution procedure for such a problem is described
by a typical sequence of mappings from the input parameter
space and sample path to the output system performance.
By adapting the typical sequence of mappings given by Fu

and Hu [1997, p. 2] we take the following solution
procedure for the reservoir system case:

Q;wð Þ ! X M;wð Þ ! Z X M;wð Þ;Lð Þ ! L Z X M;wð Þ;Lð Þð Þ

! J Qð Þ :¼ E L Z X M;wð Þ;Lð Þð Þ½ � ð6Þ

where Q: = (M, L) is a vector of all system parameters, which
are divided into two separate vectors, the vector M that
contains the parameters of hydrologic inputs to reservoirs
(e.g., mean values, standard deviations, autocorrelations,
cross-correlations, etc.) and the vector L that contains
parameters determining the reservoir system operation; w
denotes a sample path realization of the random variables
(that is, w can be thought of as representing the randomness
in the system, e.g., all random numbers in a simulation run);
X is the vector of hydrological inputs (river inflow, rainfall,
evaporation) to the reservoir system; Z is the vector
containing the outputs of the system (release, storage); L
is the sample performance measure of the system that
corresponds to the sample realization represented by w; and
J is true (population) performance measure defined to be the
expected value of L. This sequence is depicted in more
detail in Figure 1.
[17] We must distinguish the theoretical difference be-

tween the true performance measure, which is a function of
the system parameters only, from the sample performance
measure, which depends on the specific simulation run,
represented by w. So, to estimate J(Q), an ensemble of
simulations is needed to take the ensemble average of
L(Z(X(M, w), L)). However, if the system is stationary
and ergodic (in other words, if we have a steady state
simulation [e.g., Winston, 1994, p. 1220]), L will tend to J
as the simulation length tends to infinity. Therefore a single
instance of the sample performance measure, estimated
from a simulation with a large length, is an adequate
estimate of the true performance measure under the statio-
narity and ergodicity condition. For instance, this is the case
in the example problem considered in section 1.1, since the
target release is constant through time and the inflow series
can be assumed, as usually, stationary and ergodic. This will
also be the case in all problems examined here. Conversely,
if the target release is growing in time (a common situation
in practice) the simulation is no more a steady state one, and
numerous simulations must be performed to estimate the
true performance measure.

2.2. Parameterization of a Reservoir System

[18] We consider a reservoir system with q reservoirs,
each having an active storage capacity k j, j = 1, . . ., q
(excluding dead volume), the sum of all being k. Let s
denote the total active storage in the system and s j be the
respective active storage for reservoir j. (Reference to the
time interval is omitted here for convenience.) Typically,
the actual problem in a reservoir system is to determine the
releases from all reservoirs so that their sum equals a given
total demand. Equivalently, the problem is to distribute s
into the q reservoirs. This can be done in numerous ways, as
the problem has several degrees of freedom. A specific way
to perform this distribution is termed an operating rule.
Nalbantis and Koutsoyiannis [1997] introduced a parame-
tric operating rule, with parameters determined by optimi-
zation, so that the optimal operating rule, valid through the
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entire control period, defines an optimal policy in the
reservoir system operation. Initially, this rule is written in
the following linear form

s
j

*
¼ k j � a jk þ b js ð7Þ

where a j and b j, j = 1, . . ., q are unknown parameters and s
stands for the target storage for the reservoir j, which
generally may differ from the real storage s j due to the
physical constraints that were not considered in this stage.
Note that (7) has been written in a form slightly different
from the original one by Nalbantis and Koutsoyiannis
[1997]. In this form, parameters a j and b j are dimensionless
nonnegative numbers, and since the sum of s must equal s,
each of the two sequences must add up to unity. That is, the
following constraints are imposed on the parameters

0 � a j � 1; 0 � b j � 1;
Xq

j¼1

a j ¼ 1;
Xq

j¼1

b j ¼ 1; ð8Þ

and thus the number of unknown parameters is finally
2(q � 1).
[19] Subsequently, because in (7) the physical constraints

that the storage cannot be negative nor can it exceed the
reservoir storage capacity k j are ignored, Nalbantis and
Koutsoyiannis [1997] modified (7) to form an adjusted
nonlinear parametric rule that respects these restrictions.
The final nonlinear operating rule is completely determined
by the initial parameters a j and b j, irrespectively of adjust-
ments. Figure 2 provides a graphical explanation of the
parametric operational rules in a system of three hypothet-
ical reservoirs both in their initial linear forms (equation (7))
and adjusted ones [Nalbantis and Koutsoyiannis, 1997,
equation (13)].
[20] After extensive analysis, Nalbantis and Koutsoyian-

nis [1997] concluded that the operating rule (7), with
parameters a j and b j obeying (8), is a convenient and
efficient parameterization of the problem. Generally, the

Figure 1. Schematic representation of the solution procedure for a reservoir system problem.
Rectangles represent the steps of the solution procedure, and parallelograms represent inputs and outputs
for the different steps.
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parameters can be considered constant in time or, alterna-
tively, as suggested by Johnson et al. [1991], they may be
different for the refill (wet) and the drawdown (dry) season.
Moreover, Nalbantis and Koutsoyiannis [1997] found that
the parameterization is still efficient even in the simplified
single-parameter form s

*
j = b js. This special form of the rule

is referred to as homogenous form, in which a j = k j/k.
Another interesting special case, referred to as symmetric
case, is when both parameters are fixed to the same value
a j = b j = k j/k. A similar case is the well-known Clark’s
‘‘space rule’’ [Clark, 1950, 1956; Lund and Guzman, 1999],
in which a j = b j = E[Qj]/E[Q], where E[Qj] is the expected
cumulative inflow (until the end of the refill cycle) to
reservoir j and E[Q] is the expected cumulative inflow for
all reservoirs.
[21] In addition to the parameters of the operating rule,

other control variables may be introduced depending on the
specific problem examined, as it will be clarified below. In
any case the number of control variables in this formulation
remains very limited.

2.3. Simulation

[22] As discussed before and also shown in Figure 1, two
simulation phases are performed in a reservoir system
problem. The first is the hydrologic simulation, i.e., the
simulation of the hydrologic inputs such as reservoir
inflows, evaporation and rainfall. This is performed using
multivariate stochastic models, which in the simplest case
are periodic autoregressive (PAR) models or periodic auto-
regressive-moving average (PARMA) models, typically
operated at a monthly scale (see Salas [1993] for a review).
In more faithful simulations, a model that reproduces long-
term persistence can be used (see Bras and Rodriguez-
Iturbe [1985] for a review and Koutsoyiannis [2000] for a
more recent development). Such a model produces annual
time series, which are subsequently disaggregated at month-
ly or finer scale using disaggregation models (see Grygier
and Stedinger [1988] and Koutsoyiannis [1992] for an

outline of such models and Koutsoyiannis [2001] for a
more recent development).
[23] The second simulation phase is the simulation of the

reservoir system. The outputs of the hydrologic stochastic
model become inputs for the reservoir system simulation. In
addition, the parametric reservoir rules are used in this
phase. To build a simulation model for a reservoir system
is a rather simple task. Such a model is based on the water
balance equations of each reservoir (given in (3)) and
additionally uses the physical and operational constraints
of the system such as those dealing with reservoir storage
capacities and aqueducts discharge capacities. The parame-
tric rule is used in each time step to allocate the total
withdrawal into the different reservoirs.

2.4. Optimization

[24] Clearly, in the PSO approach all problems are
nonlinear and therefore linear programming algorithms
must be excluded. In addition, the performance measure
may incorporate multiple local optima and discontinuous
derivatives. Therefore gradient-based nonlinear program-
ming methods must be excluded, too. An appropriate choice
is to use evolutionary methods, such as genetic algorithms
[e.g., Goldberg, 1989; Michalewicz, 1996], which can
tackle problems with discontinuities and multiple local
optima, or the shuffled complex evolution method [Duan
et al., 1992]. Such methods have been coded in general-
purpose algorithms and can be found as ready-to-use
software tools (see also section 5.4).

3. Alternative Methods

[25] The testing of the PSO method is done by means of
comparing its results with those of two alternative methods.
The first, referred to as high-dimensional or perfect fore-
sight method, is similar to the linear method discussed in the
example of section 1.1, as it uses a large number of control
variables. However, it is not a linear method. To make the
comparison as reliable as possible, the formalization of the
high-dimensional method was as close as possible to that of
the parametric method adopting the same performance
measure and the same global constraints. The main differ-
ence is that in the high-dimensional method we do not use
parameterization. Specifically, instead of parameters, the
control variables are the complete series of releases (or
transformations of them) from the reservoirs (see section 5).
Evolutionary optimization methods such as those discussed
in section 2.4, have been used in the perfect foresight
method, as well. It should be emphasized that the values
of control variables in this method depend completely on
the inflow series. Therefore the assumption behind this
method is that the inflow series are perfectly known for
the entire control horizon (hence the name ‘‘perfect fore-
sight’’ method). Obviously, this is not feasible in real world
and thus it cannot be regarded as a method for operating
reservoirs [Faber and Stedinger, 2001]. However, it can be
regarded as the gold standard against which any other
method (in our case the PSO method) can be compared.
[26] One may argue that if the number of control varia-

bles becomes too large in the perfect foresight method, it
will be too difficult to locate their optimal values even using
evolutionary algorithms. Therefore we used, as an addition-
al means of comparison, another method with one control

Figure 2. Graphical representation of operating rules for
three hypothetical reservoirs; dashed lines represent the
initial linear rules (equation (7)), and thick solid lines
represent the adjusted nonlinear ones [Nalbantis and
Koutsoyiannis, 1997, equation (13)].
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variable only, which is similar to the aggregation method
that has been used to overcome the ‘‘curse of dimensional-
ity’’ in large reservoir systems [Pereira and Pinto, 1985;
Terry et al., 1986; Saad et al., 1994]. In this method, which
we termed the equivalent reservoir method, the reservoir
system is replaced by one hypothetical reservoir with
characteristics merging those of the different reservoirs of
the system. In this way, we drastically simplified the
problem, making it one-dimensional and avoiding parame-
terization since a single reservoir involves no degrees of
freedom.
[27] The initial thinking behind the equivalent reservoir

approach is that a single reservoir merging the character-
istics of the complete system would possibly exhibit non-
inferior performance in comparison with the system of
separate reservoirs. Indeed, it can be proved [Koutsoyiannis
and Economou, 2003] that the single equivalent reservoir
whose storage capacity, inflows and losses equal the re-
spective sums of those of the separate reservoirs, has always
noninferior performance in comparison with the system of
separate reservoirs, if the objective is maximization of
release or reliability. Therefore the performance of the
single equivalent reservoir is an upper bound for that of
the system, and thus it is very interesting to know this limit;
furthermore, it is easy to calculate it accurately because of
the simplicity of the calculations (one-dimensional prob-
lem). If the objective is maximization of power production,
it turns out that the equivalent reservoir is not necessarily
superior in performance (see in section 6). Even in this case,
where the performance of the single equivalent reservoir is

not an upper bound for that of the system, it provides a good
and easy-to-find means of comparison.
[28] It should be emphasized that the equivalent reservoir

method is not a method to operate a reservoir system. It only
provides a means for comparison of the performance of the
real reservoir system as it determines in a simple manner a
‘‘benchmark’’ performance measure that in certain cases is
an upper bound for the reservoir system.

4. Basic Assumptions

[29] For generality and flexibility regarding the system
characteristics and services, we assembled a hypothetical
reservoir system for this study, based on experience from
several existing reservoir systems and avoiding using a
specific real-world system, which would confine the system
characteristics and water uses. For simplicity we assumed
that our hypothetical system comprises two reservoirs, as
shown in Figure 3. To keep our calculations as simple as
possible, we used a sequence of simple simulation models,
describing the essentials of the system. It is reminded that
our purpose in this exercise is a comparison of different
methodologies, and not the most detailed representation of a
reservoir system. For all simulations we adopted a monthly
time step, which is a good compromise between simplicity
and accuracy, also assuming that all months are equal in
duration.
[30] For hydrological simulation we neglected rainfall

and evaporation at the reservoir area and modeled only
the monthly river flow. For the latter we adopted a periodic

Figure 3. Schematic of the test reservoir system.
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(or seasonal) autoregressive process of order 1 (PAR(1)).
The assumed monthly distribution of the mean inflow is
shown in Table 1. The coefficients of variation, skewness,
lag-one autocorrelations and lag-zero cross-correlations of
inflows for simplicity were assumed constant for all months
with values shown in Table 2. Especially for the monthly
coefficients of variation, two alternative values were adop-
ted for both reservoirs, thus forming two hydrological
scenarios. These are referred to as low variation (LV) and
high variation (HV) scenarios, with monthly coefficient of
variation 0.50 and 0.70, respectively. These values result in
annual coefficients of variation of about 0.35 and 0.50 for
the LV and HV scenarios, respectively. The other annual
statistics are almost equal for both scenarios (skewness
coefficients 0.56–0.59 and 0.68–0.69 for locations 1 and
2 respectively; lag one autocorrelation coefficients 0.07 and
0.09 for locations 1 and 2 respectively; lag zero cross-
correlation coefficient 0.62).
[31] For the simulation of the reservoir system operation,

it is assumed that the relationship between water elevation,
z, and storage, s, is

s ¼ k z=zmaxð Þz ð9Þ

where zmax is the maximum water elevation (measured from
the elevation where s = 0), which corresponds to the storage
capacity k, and z is a constant of the reservoir.
[32] The water balance is given by (3) applied either to

each reservoir or to the entire system. In addition to spill,
leakage losses are also assumed, given as a function of
storage as

l ¼ x0 þ x1s ð10Þ

where x0 and x1 are characteristic constants of each
reservoir. As explained before, the linear form of (10) is
not plausible. Apparently, in the PSO approach there is no
restriction about the form of loss equation; however the
linear form was necessary to apply the concept of equivalent
reservoir (otherwise the equivalent reservoir losses cannot
be identical to the sum of the losses of the two reservoirs for

any values of storage in them; see Koutsoyiannis and
Economou [2003]).
[33] Three alternative water uses are assumed: irrigation

(IR), urban water supply (WS) and hydropower energy
production (HP). Water for irrigation is supplied seven
months per year, with the monthly percentages given in
Table 1. Urban water supply is assumed to vary from month
to month (for all months of the year) with the monthly
percentages given again in Table 1. Hydroelectric energy is
attempted to be steady in each month and year (see section
5.3) but to avoid spill when a reservoir is full, energy is
produced in excess of the steady value by increasing the
release from the reservoir. The reservoir spills only when
release reaches an upper limit, or discharge capacity c (hm3/
month).
[34] Hydroelectric energy is proportional to the release r

and the net hydraulic head h, i.e., e = h r g r h where h is the
efficiency (<1), r the density of water and g the gravity
acceleration. We define the specific energy

y :¼ h r g h= z0 þ zð Þ ð11Þ

where z0 is the elevation difference from the elevation
where s = 0 to the penstock outlet. This quantity takes a
maximum value y = 0.2725 GWh/hm4 (= 9810 kg m�2 s�2)
when the energy conversion losses and the hydraulic losses
are insignificant (h = 1 and h = z0 + z, respectively). Here
we assume that y has a constant value smaller than y =
0.2725 GWh/hm4. Combining (11) and (9) we get

e ¼ y r z0 þ zmax s=kð Þ1=z
h i

ð12Þ

which is the final equation used in simulations.
[35] Two versions or types of the reservoir system are

studied, which are named symmetric (S) and nonsymmetric
(NS). All characteristics of the system including constants
for the power production equation are given in Table 3. The
basic difference between them is that in type S the extensive
characteristics, such as storage capacity and discharge
capacity, are proportional to the inflows and the intensive
characteristics, such as constants of several relationships,
are equal for both reservoirs. The equivalent reservoir
approach was used with the type S system only and the
characteristics of the equivalent reservoir are shown in
Table 3.

5. Test Problems

[36] The problems studied fall into three categories,
whose objectives are, respectively, the maximization of

Table 1. Monthly Distribution of Inflows and Demands

Month
Month
Number

Mean Inflow,a Demand, and %

Reservoir 1 Reservoir 2 Irrigation Water Supply

November 1 2.2 2.7 0.0 7.7
December 2 8.2 8.2 0.0 7.7
January 3 22.0 21.0 0.0 7.7
February 4 25.3 24.0 0.0 7.1
March 5 20.2 19.3 0.0 7.8
April 6 10.3 10.2 5.0 7.7
May 7 5.2 5.4 10.0 8.6
June 8 2.6 3.0 20.0 9.2
July 9 1.3 1.8 23.0 9.6
August 10 0.6 1.2 22.0 9.0
September 11 0.3 0.9 15.0 9.3
October 12 1.8 2.3 5.0 8.6
Year 100.0 100.0 100.0 100.0

aThe mean annual inflow expressed in equivalent water depth is assumed
225.0 mm and 316.5 mm for the catchment of reservoirs 1 and 2,
respectively.

Table 2. Basic Characteristics of the PAR(1) Model for Reservoir

Inflows (Constant For All Months)

Scenario LV Scenario HV

Reservoir
1

Reservoir
2

Reservoir
1

Reservoir
2

Coefficient of variation 0.5 0.5 0.7 0.7
Coefficient of skewness 1.0 1.5 1.0 1.5
Lag one autocorrelation 0.7 0.8 0.7 0.8
Lag zero cross-correlation 0.6 0.6 0.6 0.6
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the reliable release for a certain reliability level (for con-
sumptive uses, i.e. irrigation and water supply), the mini-
mization of the cost to convey water into consumption
(again for consumptive uses), and the maximization of the
benefit from energy production. A description of the prob-
lems of each category follows.

5.1. Maximization of Reliable Release

[37] The problem of maximization of the reliable release
has been already posed in the introduction on an annual
basis. Here we describe it on a monthly basis for a reservoir
system with two reservoirs.
5.1.1. Parametric Approach
[38] Considering two instances of the parametric reser-

voir rule, one for the refill period and one for the drawdown
period, the unknown parameters will be four, namely the
parameters a1 and b1 of the first reservoir for both periods
(those of the second reservoir are determined from (8)). The
annual demand or target release, dann, from the system is an
additional unknown; the monthly demands dt are deter-
mined in terms of dann and the monthly percentages given
in Table 1. Thus the problem involves five control variables
to be determined by optimization, which compose the
vector

L ¼ dann; a
1
r ; b

1
r ; a

1
d; b

1
d

� �
ð13Þ

where the subscripts ‘‘r’’ and ‘‘d’’ refer to the refill and
drawdown period, respectively. If we assume the homo-
geneous form of the reservoir rule (ar

1 = ad
1 = k1/k), or if we

do not distinguish between refill and drawdown period, then
L will have three items. Furthermore, if we assume one
period and simultaneously the homogeneous form of the
reservoir rule, L will have two items.
[39] An appropriate performance measure can be based

on the adjusted average release from the system, i.e.,

L ¼ 1

n

Xn
t¼1

rt þ
1

n
sn � s0ð Þ ð14Þ

where the release rt and storage st are the sums of the
respective quantities of both reservoirs. The adjustment
(1/n) (sn � s0) expresses the mean annual increase (or
decrease) of the storage of the system throughout the
simulation period, and its incorporation is required for a fair

comparison of different solutions. L is evaluated by means
of simulation.
[40] The parameters obey the inequality constraints in (8),

which in fact facilitate calculations as they narrow the
domain of the control variables. There is one additional
constraint, the restriction of the reliability (in satisfying
demand) above an accepted limit a, which in yearly basis
is expressed by

12

n

Xn=12

p¼1

min U rt � dtð Þ; t ¼ 12 p� 1ð Þ þ 1; . . . ; 12pf g � a ð15Þ

whereU(x) is theHeaviside’s unit step function, withU(x) = 1
for x� 0 and U(x) = 0 for x< 0. The sum in the left-hand side
of (15) counts the years where the monthly release rt (the
sum of both reservoirs) meets the demand dt in all months of
the year. Note that there is a fundamental difference between
constraints (8) and (15). The former is a parameterization
constraint and is evaluated directly at the parameterization
phase, while the latter is a global constraint that can be
evaluated only after the simulation is complete. A third
category of constraints, referred to as simulation constraints,
includes upper bounds for releases, storages etc. (as
described in section 4), which are handled directly by the
simulation model and are not entered into the optimization
problem formulation at all.
[41] In brief, the statement of this problem is to maximize

L(L), as defined in (14), subject to (8) and (15). It is a low-
dimensional nonlinear optimization problem. The problem
statement and algorithm is exactly the same for both
consumptive water uses, irrigation and water supply.
5.1.2. Perfect Foresight Approach
[42] The perfect foresight approach followed here is to

split the demand dt of each time step (month) t into two
partial demands dt

1 and dt
2, one for each reservoir. Utilizing

the fact that dt
1 + dt

2 = dt, we introduce the sequence of
numbers xt with

0 � xt � 1; t ¼ 1; 2; . . . ; n ð16Þ

such that dt
1 = xtdt and dt

2 = (1 � xt) dt. Thus the control
variables to be optimized are the n numbers xt (rather than
the 2 n variables dt

1 and dt
2) plus the annual release dann.

Given the values thereof and consequently those of dt
1 and

Table 3. Basic Characteristics of the Reservoir Systems

System NS System S

Reservoir 1 Reservoir 2 Reservoir 1 Reservoir 2
Equivalent
Reservoir

Catchment area (km2) 500 600 500 600 1100
Storage capacity k (hm3) 150 300 150 253.2 403.2
Max water level zmax (m) 60 70 60 60 60
Coefficient of stage-storage relationship (equation (9))

Exponent z 3 3 3 3 3
Coefficients of leakage relationships (equation (10))

x0 (hm
3/month) 1 0 0 0 0

x1 (hm
3/hm3/month) 0.01 0 0.01 0.01 0.01

Characteristics of power plants (equation (12))
y (GWh/hm4) 0.25 0.25 0.25 0.25 0.25
z0 (m) 30 20 30 30 30
c (hm3/month) 50 100 28 47.3 75.3
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dt
2, we can estimate the sequences of release, storage and

spill from (3) applied separately for each reservoir.
[43] The performance measure is the same as in the

parametric approach, i.e., as in (14), and the constraint
(15) is valid here as well. The essential difference is that
in the high dimensional approach the vector of control
variables contains the n variables xt plus the annual demand
dann. The performance measure L and the left-hand side of
the constraint (15) are functions of this vector. In brief, in its
high dimensional form the problem is to maximize L(dann,
x1, . . ., xn) as defined in (14), subject to (16) and (15).
5.1.3. Equivalent Reservoir Approach
[44] The equivalent reservoir approach is a one-dimen-

sional approach, as the only unknown to be optimized is the
annual demand dann. The formulation is very similar to that
already described in the introduction, but with a monthly
rather than annual time step. In brief, in its one-dimensional
form the problem is to maximize L(dann) as defined in (14),
subject to (15).

5.2. Minimization of Cost

[45] If the maximum reliable release from the system
exceeds the demand, then we can apply a different oper-
ating policy, which will result in a smaller release from the
system. This problem becomes interesting if there is some
conveyance cost kj per unit water, different for each
reservoir j. Here we have assumed that the demand is
about 90% of the maximum reliable release and the
conveyance cost for reservoir 1 is 30% higher than that
of reservoir 2 (i.e., k1 = 1.3, k2 = 1, in arbitrary units). As
this problem relies on the different characteristics of the
two reservoirs, the equivalent reservoir approach is not
applicable here.
5.2.1. Parametric Approach
[46] The vector of parameters L contains one parameter

less than in equation (13) as now the annual demand dann is
a known constant. The performance measure is the mean
annual cost, i.e.,

L ¼ k1
12

n

Xn
t¼1

r1t þ k2
12

n

Xn
t¼1

r2t ð17Þ

whereas constraint (15) remains valid. Thus our problem is
to minimize L(L) as defined in (17), subject to (8) and (15).
5.2.2. Perfect Foresight Approach
[47] The control variables are the n numbers xt as defined

in section 5.1.2. The problem is to maximize L(x1, . . ., xn) as
defined in (17), subject to (16) and (15).

5.3. Maximization of Benefit From Energy Production

[48] In general, the value of produced energy may vary
through the months of the year, as demonstrated by Kelman
et al. [1990], who introduced the concept of monthly
‘‘subjective coefficients’’ that adjust the monthly generated
energies assuming low values for months with plentiful of
hydroelectric energy and high values otherwise. This con-
cept is directly applicable to the PSO approach by setting
different energy targets and values in different months; for
simplicity of the demonstration, however, we assumed
constant targets and values for all months. It is also known
[e.g., Georgakakos et al., 1997] that the value of hydro-
electric energy vary in real time subject to various water-
and power-demand states and constraints, so that real time

operation of hydropower plants requires optimal allocation
of turbine load to maximize the energy value; this, however,
is beyond the scope of this paper.
[49] In the simplified approach followed here, we distin-

guish between two kinds of energy with different prices
[e.g., Stevens and Davis, 1969, p. 24.8; Mays and Tung,
1992, p. 283; ReVelle, 1999, p. 59]. The firm or primary
energy is that produced at a constant rate (target energy)
throughout the entire simulation period and has a higher
price pf. The energy produced in excess of primary energy
is the secondary or excess energy and has a lower price ps;
here we assume that pf = 1 and ps = 0.5 in arbitrary units.
Energy production in deficit of the set monthly energy
target is penalized by applying the price ps, rather than pf,
for all produced energy of that month. The problem is to
maximize the total benefit from both primary and secondary
energy minus the penalties for deficit.
5.3.1. Parametric Approach
[50] With reference to the problem of maximization of

reliable release, as formulated in section 5.1.1, the essential
difference here is that we do not have a constant annual
water demand dann but rather an annual energy target dann
which is equally distributed over all months. Therefore, if
we assume different parameter sets for the refill and the
drawdown period, the vector of unknown parameters is
similar to that in equation (13) but with dann replacing dann.
[51] The simulation procedure in this case is somewhat

more complicated than in the case of maximization of the
reliable release. In each simulation step, given the target
energy dmon = dann/12, the required releases rt

1 and rt
2 from

each reservoir are estimated by an iterative procedure which
terminates when the target energy is met (first condition)
and simultaneously the reservoir storages fulfill the para-
metric rule (second condition). These two conditions, in
conjunction with (12), which transforms release to energy,
are sufficient to determine a unique set of releases rt

1 and rt
2

at each time step t. The procedure does some special
processing when the reservoirs become empty (the pro-
duced energy is less than the target energy) or are about to
spill (the produced energy is greater than the target energy).
[52] The performance measure will be the mean annual

benefit minus penalty, i.e.,

L ¼ pf dmon

12

n

Xn
t¼1

U et � dmonð Þ þ ps

12

n

Xn
t¼1

et � dmonð Þ

 U et � dmonð Þ þ ps

12

n

Xn
t¼1

et 1� U et � dmonð Þ½ � ð18Þ

where the energy et is the sum of the energies produced
from each reservoir, as estimated from (12). The first sum of
Heaviside’s functions U() in the right-hand side of (18)
counts the months with produced energy et greater than or
equal to the target dmon; thus the first term represents the
value of primary energy. Likewise, the second term
represents the value of secondary energy whereas the third
term represents the penalized value of energy during months
with deficit of energy production.
[53] To avoid intentional emptying of the reservoirs (by

the optimization algorithm) at the end of the simulation
period, a constraint is required, i.e.,

sn � s0 ð19Þ
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Thus the problem formulation is to maximize L(L) as
defined in (18), subject to (8) and (19).
5.3.2. Perfect Foresight Approach
[54] We follow an approach similar to that in section

5.1.2 based on the partial demands dt
1 and dt

2, one for each
reservoir. However, in this case the sum of demands is not
known and therefore we cannot use the fractions xt as
control variables. Rather, we use both series dt

1 and dt
2 as

control variables, a total of 2 n variables, satisfying

0 � d1t � c1; 0 � d2t � c2; t ¼ 1; . . . ; n ð20Þ

Given the values of dt
1 and dt

2, we can estimate the
sequences of release rt

j using (3), then the energies et
j from

(12) and their sum et.
[55] The performance measure is the same as in the

parametric approach, i.e., as in (18), and the constraint
(19) is valid here as well. The essential difference is that
in the perfect foresight approach the vector of control
variables contains the 2 n variables dt

j plus the target energy
dann. Thus the problem statement is to maximize L(dann, dt1,
dt
2, . . ., dn

1, dn
2) as defined in (18), subject to (20) and (19).

5.3.3. Equivalent Reservoir Approach
[56] The equivalent reservoir approach is again a one-

dimensional approach, as the only unknown to be optimized
is the annual target energy dann. Given the monthly target
energy dmon = dann/12, we can determine the corresponding
water demand from (12). Then the problem becomes very
similar to that already described in the introduction, but with
a varying rather than constant demand at each time step. In
brief, in its one-dimensional form the problem is to maxi-
mize L(dann) as defined in (18), subject to (19).

5.4. Other Considerations

[57] It can be shown with simple statistical calculations
that the required years of simulation m to obtain an accurate
estimate of the failure probability b on an annual basis (in
satisfying a certain demand) with an acceptable error ±eb
and confidence g, is m = (z(1 + g)/2/e)

2 (1/b � 1), where zp is
the p-quantile of the standard normal distribution. Assuming
b = 6% (or reliability a = 1 � b = 94%), e = 10% and g =
95% (so that z(1 + g)/2 = 1.96) we get m � 6000 years or n �
72 000 months. This indicates that the required simulation
lengths in reservoir problems must be of the orders of
thousands to tens of thousand years.
[58] It is a matter of a second to perform a simulation of

that length using the PSO method or the method of
equivalent reservoir when applicable. However it is intrac-
table to use a high dimensional methodology because in this
case the number of control variables would be 72 000 or
144 000 depending on the type of the problem. Apparently,
this is a serious advantage of the parametric method over the
high dimensional one. However, our purpose here is not to
obtain as accurate estimates of some quantities as possible,
but rather to compare the results of different methods.
Naturally, this can be done using much smaller simulation
lengths, in order for the high dimensional method to be
applicable.
[59] As an optimization tool, a commercial solver devel-

oped by Frontline Systems (http://frontsys.com), which uses
a number of methods from the literature on genetic and
evolutionary algorithms, was adopted for all three methods
used in this paper. It uses a real-number representation

rather than a bit-string or encoded representation of the
problem, and it handles both integer and general continuous
variables. The solver uses both mutation and crossover or
recombination to generate new points. Some of the specific
methods are proprietary, but uniform mutation, bounds
mutation, and convex combination in crossover are all used.
Most-fit members are selected through tournament selection
and least-fit members are selected for elimination via a
proprietary method. The population is updated incremental-
ly rather than entirely replaced at each generation. Con-
straints are handled by a combination of penalty functions
and ‘‘constraint repair’’ methods. Some parameters of the
algorithm are adapted during the solution process (D. H.
Fylstra, personal communication). This solver can handle
problems with up to 400 variables. This means that a
simulation period of 50 years is tractable for the irrigation
problems (50 years � 7 variables per year = 350 variables;
note that irrigation lasts 7 months per year) and 16 years for
the energy production problems (16 years � (2 � 12)
variables per year = 384 variables); for the water supply
problems a period of 16 years was chosen, too (16 years �
12 variables per year = 192 variables).

6. Application and Results

[60] Combining the three categories of problems de-
scribed above, the three solution methods, the three water
uses, the two versions of the reservoir system and the two
hydrological scenarios, we constructed and resolved 41
different problems marked as 1 to 41 (not exhausting all
possible combinations), whose characteristics are listed in
the first two columns of Tables 4 (first category, maximi-
zation of release), 5 (second category, minimization of cost)
and 6 (third category, maximization of benefit from energy
production). The problems are forming 13 groups marked as
I to XIII, so that the problems of each group have exactly
the same characteristics apart from the method followed to
solve them and the number of control variables. For
example, as shown in Table 4, problems 1–5 belong to
group I; the objective in all of them is to maximize the
reliable release (MR); the water use is irrigation (IR); the
reservoir system is type NS; and the hydrologic scenario is
LV. For problem 5 the perfect foresight method is followed
whereas problems 1–4 are remedied using the PSO meth-
odology, with varying number of seasons (one or two) and
parameters per season (one or two) in each case, as shown
in column 2 of Table 4.
[61] The results of calculations are shown in Tables 4–6

as well. The results for the problem group I in Table 4 show
that the PSO methodology with 5 control variables (problem
1; 2 parameters per season � 2 seasons + annual demand)
resulted in practically the same performance as in the
perfect foresight method with 351 control variables (prob-
lem 5). When the number of parameters of the PSO
methodology becomes smaller than 5 (problems 2–4) there
is a slight reduction in performance, but even with one
parameter (problem 4; two control variables) the parame-
terization is very effective as the reduction in performance is
only 1.68%. Similar are the results for the other problem
groups of the same category regardless of the water use
(irrigation or water supply). The reduction in performance is
0–0.2% for the parameterized schemes with 4 parameters
and up to 2.9% for the parameterized scheme with one
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parameter only. Notably, the equivalent reservoir method-
ology, which was applied to problem groups III and VI
(problems 9 and 19, respectively) resulted in performance
practically as good as the perfect foresight method and the
PSO method with 4 parameters. It is noted that in group III
the slight (by 0.05%), superiority of the perfect foresight
method (problem 10) in comparison to the equivalent
reservoir method (problem 9) is artificial: during a year
with failure, the perfect foresight method increased artifi-
cially the deficit of that year by saving some water in the

reservoir, thus avoiding the failure in the next year and
subsequently increasing slightly the target release for the
entire period.
[62] Furthermore, in Table 5 we may observe that the

results of the parametric method with 4 parameters are
almost identical to those of the perfect foresight method
with 350 variables (irrigation) or 192 variables (water
supply). The biggest difference in performance (minimum
cost) appears in problem group IX and is 0.24%, an
insignificant value.

Table 4. Definition and Results of Problems of the First Category (Maximization of Release)

Problem Groupa Problemb

Mean Annual Volumes, hm3

Attained
Reliability,

%

Performance
Reduction,f

%Inflow Demand Spill Leakage
Storage

Differencec Release Deficitd
Adjusted
Releasee

I (IR/NS/LV) 1 (PSO/2/5) 311.9 244.4 48.7 20.3 �0.7 243.7 0.7 243.0 94.00 0.00
I (IR/NS/LV) 2 (PSO/1/3) 311.9 242.7 48.5 22.2 �0.8 242.0 0.7 241.2 94.00 �0.72
I (IR/NS/LV) 3 (PSO/2/3) 311.9 241.3 55.7 16.0 �0.4 240.7 0.7 240.3 94.00 �1.11
I (IR/NS/LV) 4 (PSO/1/2) 311.9 240.1 52.2 20.8 �0.5 239.3 0.7 238.9 94.00 �1.68
I (IR/NS/LV) 5 (PF/-/351) 311.9 244.4 48.7 20.3 �0.7 243.7 0.7 243.0 94.00 0.00
II (IR/NS/HV) 6 (PSO/2/5) 317.1 217.5 85.3 16.0 �0.2 216.0 1.5 215.8 94.00 �0.20
II (IR/NS/HV) 7 (PF/-/351) 317.1 217.5 84.3 16.5 �0.2 216.5 1.1 216.2 94.00 0.00
III (IR/S/LV) 8 (PSO/2/5) 311.9 235.7 49.7 29.3 �1.1 234.0 1.7 232.9 94.00 �0.12
III (IR/S/LV) 9 (ER/-/1) 311.9 235.7 48.5 30.3 �1.1 234.2 1.5 233.1 94.00 �0.05
III (IR/S/LV) 10(PF/-/351) 311.9 236.8 49.3 29.4 �1.1 234.3 2.4 233.2 94.00 0.00
IV (WS/NS/LV) 11 (PSO/2/5) 298.2 258.3 23.8 11.0 5.7 257.6 0.6 263.3 93.75 0.00
IV (WS/NS/LV) 12 (PSO/1/3) 298.2 256.8 29.6 8.4 4.0 256.2 0.6 260.2 93.75 �1.18
IV (WS/NS/LV) 13 (PSO/2/3) 298.2 254.6 18.8 19.3 6.1 253.9 0.6 260.1 93.75 �1.25
IV (WS/NS/LV) 14 (PSO/1/2) 298.2 250.0 20.9 21.7 6.3 249.4 0.6 255.6 93.75 �2.93
IV (WS/NS/LV) 15 (PF/-/193) 298.2 258.3 23.8 11.0 5.7 257.6 0.6 263.3 93.75 0.00
V (WS/NS/HV) 16 (PSO/2/5) 297.6 228.2 48.7 14.4 6.7 227.8 0.4 234.5 93.75 0.00
V (WS/NS/HV) 17 (PF/-/193) 297.6 228.2 48.7 14.4 6.7 227.8 0.4 234.5 93.75 0.00
VI (WS/S/LV) 18 (PSO/2/5) 298.2 240.6 23.5 30.0 4.7 240.1 0.6 244.7 93.75 0.00
VI (WS/S/LV) 19 (ER/-/1) 298.2 240.6 23.5 30.0 4.7 240.1 0.6 244.7 93.75 0.00
VI (WS/S/LV) 20 (PF/-/193) 298.2 240.6 23.5 29.9 4.7 240.1 0.6 244.7 93.75 0.00

aExplanation of symbols in parentheses: (1) water use (IR, irrigation; WS, water supply; HP, hydropower production), (2) type of reservoir system (S,
symmetric; NS, nonsymmetric; see Table 3), and (3) hydrologic scenario (LV, lower variation; HV, higher variation; see Table 2).

bExplanation of symbols in parentheses: (1) method (PSO, parameterization-simulation-optimization; ER, equivalent reservoir; PF, perfect foresight), (2)
number of seasons, and (3) total number of control variables.

c(sn � s0)/n.
dDemand – release.
ePerformance measure = release – storage difference.
fWith regard to performance measure of the PF problem.

Table 5. Definition and Results of Problems of the Second Category (Minimization of Cost)

Problem Groupa Problemb

Mean Annual Volumes, hm3

Attained
Reliability,

% Costf

Performance
Reduction,g

%Inflow Demand Spill Leakage
Storage

Differencec Release Deficitd
Adjusted
Releasee

VII (IR/NS/LV) 21 (PSO/2/4) 311.9 218.9 70.2 27.3 �2.3 216.7 2.3 214.4 96.00 223.9 0.00
VII (IR/NS/LV) 22 (PF/-/350) 311.9 218.9 70.2 27.3 �2.3 216.7 2.3 214.4 94.00 223.9 0.00
VIII (IR/NS/HV) 23 (PSO/2/4) 317.1 191.7 101.4 27.7 �0.7 188.7 3.0 187.9 96.00 192.6 0.00
VIII (IR/NS/HV) 24 (PF/-/350) 317.1 191.7 101.4 27.7 �0.7 188.7 3.0 187.9 94.00 192.6 0.00
IX (WS/NS/LV) 25 (PSO/2/4) 298.2 230.9 39.6 25.5 2.3 230.8 0.2 233.1 93.75 242.2 0.24
IX (WS/NS/LV) 26 (PF/-/192) 298.2 230.9 39.0 26.8 1.8 230.4 0.5 232.3 93.75 241.6 0.00
X (WS/NS/HV) 27 (PSO/2/4) 297.6 205.4 58.8 27.3 6.4 205.1 0.3 211.5 93.75 213.3 0.00
X (WS/NS/HV) 28 (PF/-/192) 297.6 205.4 58.8 27.3 6.4 205.1 0.3 211.5 93.75 213.3 0.00

aExplanation of symbols in parentheses: (1) water use (IR, irrigation; WS, water supply; HP, hydropower production), (2) type of reservoir system (S,
symmetric; NS, nonsymmetric; see Table 3), and (3) hydrologic scenario (LV, lower variation; HV: higher variation; see Table 2).

bExplanation of symbols in parentheses: (1) method (PSO, parameterization-simulation-optimization; ER, equivalent reservoir; PF, perfect foresight), (2)
number of seasons, and (3) total number of control variables.

c(sn � s0)/n.
dDemand – release.
eRelease – storage difference.
fMinimized performance measure. Cost is in arbitrary units.
gWith regard to performance measure of the PF problem.
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[63] Some more significant differences in performance
appear in the problems of the third category, those dealing
with the maximization of the benefit from energy produc-
tion, as shown in Table 6. It is noted that in all cases all
methods managed to meet the target release, thus avoiding
penalization. The biggest difference in performance of the
parametric method with four parameters with regard to that
of the perfect foresight method is 1.9%, and appears in
problem group XIII (problems 39–41). Notably, however,
the parametric method (problem 39) performs slightly better
than the method of the equivalent reservoir (problem 40).
[64] To acquire a better insight of the behavior of the

three methods we give more detailed results for problems
39–41 of group XIII, which seems the most interesting, as it
gave the biggest differences in the performance of the three
methods. Thus Figure 4 provides a graphical representation
of parametric operating rules for problem 39. We may
observe that the optimization procedure resulted in different
rules for the refill period (November to April) and the
drawdown period (May to October), which both depart
from Clark’s space rule. In this case, the latter rule coincides
with the symmetric rule (see section 2.2). We remind that
the reservoir system used in this problem is characterized by
symmetry and the latter rule represents the symmetry in the
reservoir operation. Had we adopted the space rule for the
system operation, the resulting benefit would be 49.4 units,
the same value resulted from the equivalent reservoir
method (problem 40). Interestingly, by breaking the sym-
metry and using different parameters for the refill and
drawdown periods, we were able to slightly increase benefit
to 49.6 units. Specifically, the increase is caused by the
significant change of the rule during the drawdown period.
In this period the probability of spill is insignificant and it
may be better to store as much water as possible in the
smaller reservoir 1, because in this case we will have greater
hydraulic head for the same amount of water. This is exactly
represented by the rule of the drawdown period shown in

the middle of Figure 4. Even though the increase of
performance of 0.2 units is small (0.4%), it indicates that
a reservoir system operated with the parametric rule can be
more efficient than a single equivalent reservoir merging the
characteristics of the different reservoirs of the system.
[65] Figure 5 depicts the evolution of the storage, release,

leakage, spill, and produced energy from the reservoir
system in problem group XIII (problems 39–41). The
curves for the PSO method (problem 39) are almost
indistinguishable from those of the equivalent reservoir
method (problem 40), which means that the parametric rule
guides the system very close to the ‘‘symmetric’’ evolution
of the equivalent reservoir, although some slight differences
exist (not distinguishable in the figure) which are responsi-
ble for the already discussed slight (0.4%) improvement of
performance. Furthermore, the curves for the PSO method
(problem 39) are almost indistinguishable from those of the
perfect foresight method (problem 41) for most of the time
apart from months 140–192. Specifically, we observe that
both PSO and the equivalent reservoir methods resulted in
spill from the system at months 161 and 172, whereas the
perfect foresight method avoided that spill by increasing the
releases of previous months, and thus it was able to produce
some additional secondary energy. In addition the perfect
foresight method increased the releases at the last months of
the simulation period so as to yield a total storage at the end
of simulation (sn) equal to that of the beginning (s0). We
remind that in the problems of this category we have posed
the constraint sn � s0 (relationship (19)). Thus, in the perfect
foresight method this became a binding constraint whereas
in the other two methods this was not a binding constraint
(there is a surplus sn � s0). These two facts explain how the
perfect foresight method was able to increase the system
performance.
[66] Interestingly, inspecting the evolution of the separate

reservoirs 1 and 2 (not shown in Figure 5, which depicts
aggregate quantities of both reservoirs), it is observed that

Table 6. Definition and Results of Problems of the Third Category (Maximization of Benefit From Energy Production)

Problem Groupa Problemb

Mean Annual Volumes, hm3 Annual Energy, GWh

Benefite

Performance
Reduction,f

%Inflow Spill Leakage
Storage

Differencec Release
Adjusted
Released Target

Produced
Primary

Produced
Secondary

XI (HP/NS/LV) 29 (PSO/2/5) 298.2 0.1 21.1 7.6 269.4 276.9 48.7 48.7 7.9 52.7 �1.35
XI (HP/NS/LV) 30 (PSO/1/3) 298.2 0.1 23.9 7.9 266.2 274.1 48.2 48.2 7.7 52.1 �2.48
XI (HP/NS/LV) 31 (PSO/2/3) 298.2 0.0 21.1 7.6 269.4 277.0 48.9 48.9 7.5 52.6 �1.44
XI (HP/NS/LV) 32 (PSO/1/2) 298.2 0.1 23.9 7.9 266.2 274.2 48.2 48.2 7.7 52.1 �2.49
XI (HP/NS/LV) 33 (PF/-/385) 298.2 0.0 20.9 0.0 277.3 277.3 48.7 48.7 9.4 53.4 0.00
XII (HP/NS/HV) 34 (PSO/2/5) 297.6 0.9 20.4 8.0 268.3 276.3 43.8 43.8 12.3 50.0 �1.66
XII (HP/NS/HV) 35 (PSO/1/3) 297.6 0.9 23.2 8.4 265.1 273.5 43.0 43.0 12.5 49.3 �2.99
XII (HP/NS/HV) 36 (PSO/2/3) 297.6 0.9 20.4 8.0 268.3 276.3 43.8 43.8 12.3 50.0 �1.66
XII (HP/NS/HV) 37 (PSO/1/2) 297.6 0.9 23.2 8.4 265.1 273.5 43.0 43.0 12.5 49.3 �3.00
XII (HP/NS/HV) 38 (PF/-/385) 297.6 0.0 20.2 0.0 277.5 277.5 43.8 43.8 14.0 50.8 0.00
XIII (HP/S/LV) 39 (PSO/2/5) 298.2 4.2 33.9 6.1 254.0 260.1 46.4 46.4 6.3 49.6 �1.92
XIII (HP/S/LV) 40 (ER/-/1) 298.2 4.0 34.1 6.0 253.9 260.1 46.2 46.2 6.4 49.4 �2.33
XIII (HP/S/LV) 41 (PF/-/385) 298.2 0.0 32.1 0.0 266.0 266.0 46.6 46.6 7.9 50.6 0.00

aExplanation of symbols in parentheses: (1) water use (IR, irrigation; WS, water supply; HP, hydropower production), (2) type of reservoir system (S,
symmetric; NS, nonsymmetric; see Table 3), and (3) hydrologic scenario (LV, lower variation; HV, higher variation; see Table 2).

bExplanation of symbols in parentheses: (1) method (PSO, parameterization-simulation-optimization; ER, equivalent reservoir; PF, perfect foresight), (2)
number of seasons, and (3) total number of control variables.

c(sn � s0)/n.
dRelease – storage difference.
eMaximized performance measure. Benefit is in arbitrary units.
fWith regard to performance measure of the PF problem.
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the parametric and perfect foresight methods guided the
separate reservoirs to very different evolutions, although the
aggregate quantities of the reservoir system are close as
discussed above. Furthermore, it is observed that in PSO
both reservoirs spilled simultaneously at the two spill
periods discussed above. If only one reservoir had spilled
whereas the other had free space to store water, this would
indicate inappropriateness or misspecification of the para-
metric rule in allocating the storage in each reservoir.

Conversely, the simultaneous spill confirms the good per-
formance of the parametric rule.
[67] Following the observations regarding how the per-

fect foresight method improved by 1.9% the performance of
the system, it is almost clear that this is due to the fact that it
modified the releases at past times to better exploit the
inflows at future times. This, however, is the result of the
assumption that the future inflows are perfectly known,
which is unrealistic. For example, it cannot be accurately
predicted at month 150 that the system will spill at month
161 so as to increase the release at time 150, as actually the
perfect foresight method did. Therefore the improvement is
artificial and cannot be implemented in practice.
[68] On the other hand, the parametric method does not

necessarily rely on forecasts of future inflows. To better
investigate this, we applied the parametric and the equiva-
lent reservoir methods 20 more times using different inflow
series with the same length (16 years) generated with the
same stochastic model. The series were chosen in a manner
that the average annual inflow of the 16 years does not
differ from that of the initial series more than 5%. We did
not perform any optimization but rather we used the values
of the control variables estimated in problems 39–41. The
average performance measure (benefit) of the 20 simula-
tions was 49.6 and 49.5 for the PSO method and the
equivalent reservoir method, respectively, i.e., almost iden-
tical to the values 49.6 and 49.4 shown in Table 6 for
problems 39 and 41, respectively. The application of this
technique with the perfect foresight method would not have
a sense, as the decision variables of the latter are tightly
connected to inflows and the change of inflow series would
cancel the validity of the results.
[69] Similar investigations, using 20 alternative inflow

series, were done for other problems as well and in all cases
they showed a good performance of the PSO method. Thus,
in problem group V of the maximum release category, the
average (over the 20 runs) attained reliability for the
parametric method was 94.1% (the minimum acceptable is
93.75%) and the performance measure (adjusted release)
was 229.3, 2.2% smaller than the optimized performance for
the original series. Furthermore, in the problem group IX,
which belongs to the cost minimization category, the
performance measure of the parametric method was 242.3,
almost equal to the optimized performance for the original
series, and the attained reliability 97.5%, higher than the
acceptable 93.75%.
[70] These results do not necessarily mean that forecasts

of inflows do not have any value for the PSO method.
Available forecasts (extending, e.g., a few months) can be
utilized in several ways. First, the forecasts should be
incorporated in the early part of the longer inflow series
that are used for the reservoir system simulation. Then,
during that early simulation period, a separate set of
parameters of the parametric rule could be used, which
are entered into the optimization procedure as additional
control variables into the vector L. Another possibility is to
use a hybrid approach in which for the first few months the
releases from different reservoirs are not determined by the
parametric rule but rather entered directly into the vector of
control variables L whereas beyond the forecast lead-time
the releases obey the parametric rule. The above results
show that such modifications would lead to only marginal

Figure 4. Graphical representation of parametric operating
rules for problem 39; top panel: rule for the refill period
(November to April); middle panel: rule for the drawdown
period (May to October); bottom panel: Clark’s space rule
coinciding with the symmetric rule (for comparison only).
The parameters of the rules are a1 = 1 � a2 = 0.375 and b1 =
1 � b2 = 0.350 for the refill period, a1 = 1 � a2 = 0.372 and
b1 = 1 � b2 = 1 for the drawdown period, and a1 = b1 = 1 �
a2 = 1 � b2 = 0.372 for the space rule.
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improvement of the performance a system. However, it may
be interesting to study such modifications in critical sit-
uations, e.g., in cases where initial system storage is
extremely low (near emptying) or extremely high (near
spilling). Such a study is beyond the scope of this paper.

7. Summary and Conclusions

[71] In contrast to most common methods for optimal
control of reservoir systems, which require a large number

of control variables, PSO uses a handful of control varia-
bles. Specifically, the set of control variables consists of a
‘‘target variable’’ depending on the objective of the problem
examined (e.g., target release or target energy) and a few
parameters that determine a simple expression for allocating
the degrees of freedom of the reservoir system operation,
known as the parametric reservoir rule. The performance
measure (or objective function) of the reservoir system
operation, which is to be optimized, is a function of these
control variables. Its value for a given set of values of the

Figure 5. Evolution of the storage, release, spill, leakage, and produced energy in the reservoir system
of problem group XIII as obtained through the PSO method (problem 39; solid lines), the equivalent
reservoir method (problem 40; crosses), and the perfect foresight method (problem 41; dashed lines).
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control variables is obtained by simulation of the reservoir
system. The control problem involves also constraints (e.g.,
dealing with the acceptable system reliability), which are
either handled within simulation or evaluated at the end of
simulation. An optimization algorithm is used to obtain the
optimal values of control variables; for each trial set of
values of the control variables it runs the simulation model,
evaluates the performance measure and the constraints, and
subsequently modifies the control variables guiding them
toward their optimal values.
[72] To evaluate the parameterization-simulation optimi-

zation method we have compared it to the high-dimensional
perfect foresight method, which, although perfect foresight
is not feasible in real world, can be regarded as the gold
standard against which any other method can be compared.
As an additional means of comparison, a simplified method
that merges the reservoir system into a single hypothetical
‘‘equivalent reservoir’’ was used, which, although does not
suffice for the system control, can determine in a simple
manner a ‘‘benchmark performance measure that in certain
cases is an upper bound for the system. The comparison is
done both by theoretical reasoning and by empirical inves-
tigation of the results of the alternative methods in a large
variety of test problems.
[73] In the theoretical level, the PSO method exhibits

several advantages over a high-dimensional method. First is
its simplicity due to the low dimensionality, i.e., the fact that
it uses a handful of control variables only, in comparison
with hundreds or thousands control variables that may be
required in a typical high-dimensional method for the same
simulation period. Because of the low dimensionality, PSO
is very effective and efficient in locating its optimal solu-
tion. Second is the fact that the required computing time in
PSO increases only linearly with the number of simulation
steps n whereas in a high-dimensional method this time may
increase even exponentially with n. Because of this, the
performance measure in PSO can be based on a large
simulation period, thus avoiding situations of defining it
on a short (e.g., one- or two-year) basis in which case the
system operation ignores future impacts of management of
today. Third is the fact that PSO is directly (by definition)
combined with a simulation model of the system, incorpo-
rating stochastic and deterministic components, and describ-
ing the system dynamics as accurately as possible, thus
avoiding simplifications of the system (e.g., linearization of
equations or discretization of the state-space). Fourth, the
parametric method is theoretically consistent with the sto-
chastic nature of the reservoir problems and very easily
incorporates concepts like probability, reliability, expected
value, etc., also assigning values to such quantities. Fifth,
the optimal values of the control variables do not depend on
a specific realization (sequence) of inflows (or any other
quantity that has a stochastic behavior) and they do not have
to be changed if this realization changes (unless the system
characteristics, the inflow statistics, or the operational
objectives and constraints changed). Sixth, once the system
is optimized with the PSO method, it can be very easily
operated applying the parametric reservoir rule (even in its
graphical form) without model runs at all. Similar to this,
the model parameters and, consequently, the operation
policy do not depend on forecasted values of inflows, which
could be highly uncertain.

[74] In the empirical level, the comparison is done in
terms of the results of 41 test problems that combine the
three solution methods, three categories of objectives, three
water uses, two versions of the reservoir system and two
hydrological scenarios. The results show that the PSO
method if used with two pairs of parameters per reservoir,
one for the refill period and one for the drawdown period,
yields solutions that are not inferior to those of the high-
dimensional perfect foresight method, despite of the huge
difference of the number of control variables of the two
methods. Specifically, if the objective is to maximize the
reliable release or to minimize the conveyance cost, the
performance measures obtained by the two methods are
almost identical. When applicable, the equivalent reservoir
method yielded results identical to the other methods as
well. If the objective is the maximization of the benefit from
energy production, the perfect foresight method was able to
seemingly improve the solution of the parametric method
(with two pairs of parameters per reservoir) by up to 1.9%
and that of the equivalent reservoir method by 2.3%.
However, a more thorough investigation of the results of
all methods shows that this improvement relies on the
assumption that future inflows are perfectly predicted for
an arbitrary large lead-time, an assumption that is obviously
unrealistic.
[75] The problems examined in this study were intention-

ally simple in order to serve as a convenient means for
comparisons. What these simple problems did not demon-
strate is the high flexibility of the PSO approach and its
ability to model very complex reservoir systems with a large
number of reservoirs, a complicated topology of aqueducts
and a variety of simultaneous water uses and operational
goals. This ability, which has been demonstrated elsewhere
[Koutsoyiannis et al., 2002], is owing to the small number
of control variables and mainly to the incorporation of the
simulation with its well-known competence in analyzing
complex systems.
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