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Abstract The well-established physical and mathematical principle of maximum entropy 

(ME), is used to explain the distributional and autocorrelation properties of hydrological 

processes, including the scaling behaviour both in state and in time. In this context, maximum 

entropy is interpreted as maximum uncertainty. The conditions used for the maximization of 

entropy are as simple as possible, i.e. that hydrological processes are non-negative with 

specified coefficients of variation and lag-one autocorrelation. In the first part of the study, 

the marginal distributional properties of hydrological processes and the state scaling 

behaviour were investigated. This second part of the study is devoted to joint distributional 

properties of hydrological processes. Specifically, it investigates the time dependence 

structure that may result from the ME principle and shows that the time scaling behaviour (or 

the Hurst phenomenon) may be obtained by this principle under the additional general 

condition that all time scales are of equal importance for the application of the ME principle. 

The omnipresence of the time scaling behaviour in numerous long hydrological time series 

examined in the literature (one of which is used here as an example), validates the 

applicability of the ME principle, thus emphasizing the dominance of uncertainty in 

hydrological processes. 

Keywords entropy; fractional Gaussian noise; Hurst phenomenon; hydrological persistence; 

hydrological prediction; hydrological statistics; long-range dependence; power laws; risk; 

scaling; uncertainty.  
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Incertitude, entropie, graduation et propriétés stochastiques hydrologique  

2. La dépendance de temps et d’échelle de des processus hydrologiques  

Résumé  Le principe bien établi à la fois physique et mathématique de l’entropie maximum 

(ME), est employé pour expliquer les propriétés distributionnelles et d’autocorrélation des 

processus hydrologiques, y compris le comportement d’échelle dans l’état et le temps. Dans 

ce contexte, l’entropie maximum est interprétée en tant qu’incertitude maximum. Les 

conditions utilisées pour la maximisation de l’entropie sont le plus simples possible, c.-à-d. 

que les processus hydrologiques sont non négatifs avec coefficients de variation et 

d’autocorrélation fixés. Dans la première pièce de l’étude, les propriétés distributionnelles 

marginales des processus hydrologiques et le comportement d’échelle d’état ont été étudiés. 

La présente deuxième partie de l’étude est consacrée aux propriétés distributionnelles 

communes des processus hydrologiques. Spécifiquement, on étudie la structure de 

dépendance temporelle qui peut résulter du principe ME et on prouve que le comportement 

d’échelle de temps (ou le phénomène de Hurst) peut être obtenu par ce principe dans le 

condition générale additionnelle que toutes les échelles de temps sont d’importance égale 

pour l’application du principe ME. La omniprésence du comportement d’échelle de temps des 

nombreuses longues séries chronologiques hydrologiques examinées dans la littérature (dont 

une est employée ici comme exemple), valide l’applicabilité du principe ME, de ce fait 

soulignant la dominance de l’incertitude dans les processus hydrologiques.  

Mots clefs entropie; bruit fractionnel gaussien; phénomène de Hurst; persistance 

hydrologique; prévision hydrologique; statistiques hydrologiques; dépendance à longue 

portée; lois en puissance; risque; mise en échelle; incertitude.  
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INTRODUCTION 

Prediction is very difficult, especially of the future.  

Niels Bohr 

In the first part of this study, it is shown that the principle of maximum entropy (ME) can 

explain the statistical distributions of hydrological variables. In this context, maximum 

entropy is interpreted as maximum uncertainty, given that in the theory of stochastic 

processes entropy is a measure of uncertainty or ignorance (e.g. Papoulis, 1991, p. 533). The 

second part of the study is devoted to joint distributional properties of hydrological processes. 

Specifically, it investigates the time dependence structure that may result from the ME 

principle and attempts to explain, based on this principle, the time scaling behaviour, which 

was observed in many long hydrological and meteorological time series. 

 To define the time scaling property, a stationary stochastic process Xi on discrete time i is 

considered, from which the time averaged process X
 (k)
i  is formed by averaging k consecutive 

Xl , i.e., 

 X
 (k)
i  := 

1
k ∑

l = (i – 1) k + 1

i k

  Xl (1) 

where k = 1, 2, …, denotes time scale (obviously, X
 (1)
i  ≡ Xi). The time scaling is expressed by 

the following equation, relating the distributional properties of the time averaged process X
 (k)
i  

at scale k to those of Xi at the basic scale 1: 

 (X
 (k)

i  – µ) =
d
 kH – 1 (Xi – µ) (2) 

where the symbol =
d
 stands for equality in distribution, µ is the mean of the process and H is a 

positive constant known as the Hurst coefficient (or exponent) (where 0.5 ≤ H < 1; values H < 

0.5 are mathematically feasible but physically unrealistic). This time scaling property 

expresses a behaviour according to which the distribution function of a process does not 

change with scaling of the time scale by an integer k, except for a multiplicative factor which 

is a power law of the scaling factor k. A process exhibiting properties (2) can be called a 

simple scaling stochastic process (SSS process). 
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 This behaviour is usually validated for the second-order properties of the process. In this 

case, (2) is replaced by the following set of equations (adapted from Koutsoyiannis, 2002a): 

 σ(k) = k H – 1 σ,   ρ
(k)

 = ρj  ≈ H (2 H – 1) |j|2H – 2,   j   (3) 
 γ

(k)
j  ≈ H (2 H – 1) σ2 k 2H – 2 |j|2H – 2, s(k)(ω) ≈ 4 (1 – H) σ2 k 2H – 2 (2 ω)1 – 2 H  

where σ(k) and σ denote the standard deviation at scales k and 1 respectively; ρ
(k)
j  denotes the 

lag j autocorrelation at scale k, and is independent of the scale (thus equal to ρj of scale 1); γ
(k)
j

denotes the lag j autocovariance at scale k (with γ
(k)
0  ≡ [σ(k)]2); s(k)(ω) denotes the power 

spectrum of the process at scale k and frequency ω. All equations of the set (3) are of power 

type, all are virtually equivalent to each other and all express one single property, the time 

scaling. The second and third equations of this set are given in an approximate form (which is 

good except for |j| = 0 and 1) emphasizing the power law behaviour of autocorrelation (the 

exact relationship for ρ
(k)
j  is given in equation (20)).  

 The terms ‘Hurst phenomenon’ (due to Hurst (1951), who first observed this behaviour), 

‘Joseph effect’ (due to Mandelbrot, 1977, from the known biblical story) and long-range (or 

long-term) dependence or persistence (due to the implied high autocorrelations for high lags) 

have been used as alternative names for the same behaviour. Since its discovery, the scaling 

behaviour has been identified in several hydrological time series such as (to mention a few of 

the more recent studies) flows of several rivers such as Nile (Eltahir, 1996; Koutsoyiannis, 

2002a), Warta, Poland (Radziejewski & Kundzewicz, 1997), Boeoticos Kephisos, Greece 

(Koutsoyiannis, 2003a, b), Nemunas, Lithuania (Sakalauskienė, 2003), rivers in Canada (Yue 

and Gan, 2004); and inflows of Lake Maggiore, Italy (Montanari et al., 1997). It was also 

identified in other climatological time series including wind power (Haslet & Raftery, 1989); 

global or point mean temperatures (Bloomfield, 1992; Koscielny-Bunde, et al., 1998; 

Koutsoyiannis, 2003a; Maraun et al., 2004); indexes of North Atlantic Oscillation 

(Stephenson et al., 2000); and tree-ring widths, which are indicators of past climate 

(Koutsoyiannis, 2002a).  

 Even though the investigation of another time series, additional to those of the previous 

paragraph, may be redundant and not an important addition to the literature, in order for the 
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paper to be self-contained a simple real world example is given here. This deals with the 

longest of the time series already examined in the first part of the study and simultaneously 

one of the longest instrumental records worldwide, the time series of the mean annual 

temperature of Geneva with length 228 years. Plots of the time series on scales 1, 5 and 25 are 

given in Figure 1a. Using classical statistical estimators, the mean of the process is 282.8 K, 

the standard deviation 0.67 K and the lag one autocorrelation coefficient 0.33. For 

comparison, a synthetic series with these statistics was generated from the autoregressive 

process of order 1 (AR(1) or Markov, whose details will be given later) and was plotted in 

Figure 1b. It is observed that the fluctuations of the processes, especially for the 25-year time 

scale, are much greater in the real world time series than in the synthetic series, which does 

not exhibit scaling behaviour. Thus, the significant fluctuations in a time series on large scales 

gives a first sign of the scaling behaviour.  

 A clearer depiction of the scaling behaviour can be done by utilizing the first of equations 

(3), which calls for a double logarithmic plot of standard deviation σ(k) versus time scale k. In 

such a plot, the Hurst behaviour is manifested as a straight line arrangement of points 

corresponding to different time scales, whose slope is H – 1. The plot for the Geneva 

temperature series for scales k = 1 to 20 is depicted in Figure 2. The empirical standard 

deviations were estimated by two methods, the classical statistical estimator and an estimator 

appropriate for SSS processes (Koutsoyiannis, 2003a). The second one increases the standard 

deviation at the basic scale 1 from 0.67 K to 0.71 K. This shows that even the estimation of 

marginal statistical properties of a hydrological variable cannot be separated from the study of 

its correlation in time and thus hydrological statistics should be incorporated in a unifying 

framework of hydrological stochastics. In addition, the theoretical standard deviations σ(k) for 

two models, the SSS and the Markov, have been plotted in Figure 2. Clearly, the empirical 

estimates of standard deviation depart significantly from the Markov model and are close to 

the SSS model. The average slope of the arrangement of points of empirical estimates on the 

logarithmic diagram is –0.2, which means that the Hurst coefficient is 0.8. 

 Another depiction of the scaling behaviour is provided in Figure 3, based on the second of 

equations (3). Figure 3a depicts the empirical autocorrelation functions, again estimated by 
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two estimators, the classical and an SSS-consistent (Koutsoyiannis, 2003a). The two 

theoretical autocorrelation functions for the SSS and Markov models are also plotted. Again 

the diagram shows that empirical plots are close to the SSS model and very far from the 

Markov model. This confirms the scaling behaviour of the time series. In addition, Figure 3b 

depicts the lag one autocorrelation coefficient ρ
(k)
1  versus scale k. In an SSS process ρ

(k)
1  does 

not vary with scale (ρ
(k)
1  = ρ1, as shown in (3)), whereas in a Markov process it is a decreasing 

function of scale, plotted in Figure 3b. Clearly, the empirical estimates of lag one 

autocorrelation for scales 1-20 indicate that it is not a decreasing function of time scale (i.e. 

even for a 20-year time scale it keeps virtually the same value as in the annual time scale); 

again, this confirms the scaling behaviour. 

 The omnipresence of the Hurst phenomenon in hydrological (and other geophysical, 

technological and socioeconomical) time series has intrigued many to call it a mysterious 

phenomenon, others to “conjure it away” (to quote Klemeš, 1974) and others to propose 

explanations of the mechanisms that might generate it. Synopsis of older explanations and a 

couple of two more recent ones are given in Koutsoyiannis (2002a, 2003c, 2005). Generally, 

these explanations provide conditions under which the scaling behaviour might emerge, but 

they do not explain why these conditions are so common in nature that make the scaling 

behaviour be the rule rather than the exception.  

 In this respect, it is endeavoured in this study to link the scaling behaviour with the ME 

principle. The idea is that if the ME principle can result in a process with scaling behaviour, 

then this can be regarded as a sufficient reason for its ubiquity.  

THE ENTROPY CONCEPT 

A detailed presentation of the entropy concept including definitions and generalizations are 

given in the first part of the study. Here the elements required to study the dependence 

structure of a stochastic process that might represent a hydrological process are summarized 

and also extended to cover the notion of a stochastic process. 

 For a continuous random variable X taking values x with probability density function f(x) 

satisfying 
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 ⌡⌠
–∞

∞

 f(x) dx = 1,  (4) 

the (Shannon or extensive) entropy is by definition (e.g. Papoulis, 1991, p. 559) 

 φ := Ε[–ln f(Χ)] = –⌡⌠
–∞

∞

 f(x) ln f(x) dx   (5) 

 If the density f(x) is defined in the interval (a, b) then application of the ME principle 

results in the uniform distribution in (a, b). If any of a and b tends to ±∞, the ME principle 

cannot be applied unless additional constraints are imposed. The most common ones, which 

are also used in this paper, are the requirements for finite first and second moments, i.e. 

  Ε[Χ] = ⌡⌠
–∞

∞

 x f(x) dx = µ1 ≡ µ  (6) 

 Ε[Χ 2] = ⌡⌠
–∞

∞

 x2 f(x) dx = µ2  (7) 

 Application of the ME principle with constraints (4), (6) and (7) results in the normal 

distribution (e.g. Papoulis, 1991, p. 571; Dowson & Wragg, 1973; Tagliani, 1993, 2002a, b) 

with mean µ and variance σ2 = µ2 – µ2. The maximized entropy is  

 φ = ln(σ 2πe) (8) 

This shows that the entropy of a normally distributed variable depends only on its standard 

deviation, not on its mean. As discussed in detail in the first part, the fact that hydrological 

variables are non-negative (x ≥ 0) implies that the ME distribution is the truncated normal 

distribution, in which the entropy depends on both µ and σ. Furthermore, if the variation is 

very high, i.e. σ/µ > 1, then the (extensive) ME distribution does not exist. However, a 

generalization of the extensive entropy concept enables, even in this case, derivation of the 

ME distribution, which turns out to be power-type (Pareto). In the limiting case σ/µ → 0 the 

truncated normal distribution becomes identical to the normal distribution whereas in the 

limiting case σ/µ = 1 both the truncated normal and the Pareto distributions are identical to the 

exponential distribution.  
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 The case studies of the first part showed that temperature exhibits very low variation, even 

on small time scales, and thus follows virtually normal distribution on all time scales; in 

contrast, rainfall and runoff on small time scales (e.g. hourly, daily) exhibit high variation and 

thus follow Pareto distributions. As time scale becomes larger, the variation becomes lower 

and the ME distribution tends to be the normal distribution. In this paper it is assumed that 

time scales are not finer than annual and thus the normal distribution is a good approximation 

of the ME distribution for all processes of interest; thus no other distributions except normal 

are examined in this paper. This simplifies calculations as the normal distribution is preserved 

in aggregate time scales and, besides, the multivariate distributions, either unconditional or 

conditional, are normal too. The annual scale allows also the convenient hypothesis of 

stationarity, which was already mentioned; had the basic scale been shorter than annual, such 

a hypothesis would not be plausible due to sub-annual periodicity of hydrologic phenomena. 

In some cases, over-annual periodicities have been observed in natural phenomena, due to the 

11-year sunspot cycle, or to the periodicity of El Niño and La Niña anomalies (e.g. Tomasino 

et al., 2004). Obviously, the stationarity assumption is not valid in such cases and the 

subsequent analysis would not be applicable, unless the process is appropriately transformed 

to remove periodicity.  

 With the notational convenience already described in the Introduction, the basic scale k = 1 

is assumed to be the annual scale, so Xi represents the annual value at discrete time (year) i. 

Further, it is assumed that time i = 0 represents the present, time i = 1, 2, … represents the 

future and time i = –1, –2, … represents the past. The stationary process Xi is determined in 

terms of its nth order joint distribution function F(xn) or the density f(xn) defined as 

 F(xn) := P{Xn ≤ xn},   f(xn) = 
∂nF(xn)
∂x1 

…
 ∂xn

,  xn = (x1, …, xn),  Xn = (X1, …, Xn) (9) 

where upper- and lower-case symbols denote respectively random variables and their values 

and P{ } denotes probability. The nth order joint entropy is defined as (Papoulis, 1991): 

 φn := Ε[–ln f(Χn)] = –⌡⌠
Dn

 

 f(xn) ln f(xn) dxn   (10) 
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where Dn is the n-dimensional space. φn can be interpreted as the uncertainty about the 

variables x1, …, xn and equals the information gained when they are observed.  

 The conditional entropy of order m of the process Xi is defined as (Papoulis, 1991) 

 φcm := Ε[–ln f(Χ1|X0, …, X–m + 1)]   (11) 

where f(Χ1|X0, …, X–m + 1) denotes the conditional density of Χ1 given X0, …, X–m + 1. The limit 

as m tends to infinity (i.e. the conditional entropy when the entire past is observed) is called 

simply the conditional entropy φc, i.e.,  

 φc := limm → ∞ Ε[–ln f(Χ1|X0, …, X–m + 1)]   (12) 

The difference of unconditional and conditional entropies, i.e., 

 φ – φc =: ψ (13) 

is a non-negative number that represents the information gain when past and present are 

observed.  

 In the case that the process Χi is Gaussian, which is of interest here, the joint entropy of 

order n and the conditional entropy are given as (Papoulis, 1991, pp. 564 & 568): 

 φn = ln (2 π e)n δn,   φc := limm → ∞ φcm,   φcm = ln 2 π e δm + 1/δm (14) 

where δn is the determinant of the covariance matrix cn defined as  

 cn := Cov[Χn, Χn] = 

⎣⎢
⎢⎡

⎦⎥
⎥⎤

γ0 L γn – 1

M O M

 γn – 1 L  γ0

  (15) 

 Application of the ME principle in a multivariate setting can be done by maximizing either 

φn (for any n) or φc. In both cases, maximization of entropy with constraints (4), (6) and (7) 

results in a process Xi that is Gaussian white noise, i.e. all Xi are independent variables with 

Gaussian distribution with mean µ and variance σ2 ≡ γ0 = µ2 – µ2 (Papoulis, 1991, p. 576). 

This, however, is a trivial case. The situation becomes more interesting and closer to the 

nature of hydrological processes if temporal dependence of the process is assumed. In the 

simplest case, the dependence can be described by postulating a positive lag one 
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autocovariance γ1 ≡ ρ γ0 (where ρ ≡ ρ1 is the lag one autocorrelation), so that an additional 

constraint is imposed:  

 Ε[Χi Xi + 1] = ⌡⌠
–∞

∞

  xi xi + 1 f(xi, xi + 1) dxi dxi + 1 = γ1 + µ2  (16) 

Under this additional constraint, the ME principle results in a process Xi that is Gaussian and 

Markovian (Papoulis, 1991, p. 577).  

 Thus, if nothing is known about the dependence of a process, then the ME principle results 

in a Gaussian white noise and if the consecutive variables are correlated then the same 

principle results in a Markovian Gaussian process. However, to obtain these results only the 

basic time scale, the annual scale, was considered. One may think that the uncertainty should 

be considered in other time scales, as well, since there is no reason to assume that the annual 

time scale is unique or more important in nature than other scales are. Thus, the ME principle 

should be combined with a postulate of importance of all time scales. In this case the 

application becomes much more difficult. Seeking a formal formulation of this postulate and 

application of the combined to this ME principle, a heuristic stepwise approach will be 

followed in the next sections.   

 Here, it should be noted that if the covariance function γj is defined at the basic time scale, 

then the covariance γ
(k)
j  at any scale k is completely determined in terms of γj from the 

following equation, which is a consequence of (1): 

 γ
(k)
j  = 

1
k ∑

i = –k + 1

k – 1
   γj k + i ⎝⎜

⎛
⎠⎟
⎞1 – 

|i|
k   (17) 

BENCHMARK PROCESSES AND INITIAL OBSERVATIONS 

Before attempting to apply the ME principle in a multivariate and multiple time scale setting, 

it is interesting to examine some of the simplest typical stochastic processes. Four such 

processes are examined in this section and are also used in subsequent sections as sort of 

“benchmark” processes. These are the already mentioned Markovian (AR(1)) process, the 

also mentioned SSS process, which, combined with the normality assumption, is identical to 
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the fractional Gaussian noise (FGN), the moving average process (MA), which implies the 

least possible autocorrelation, and a process with the highest autocorrelation which will be 

called the grey noise (GN).  

 In the Markovian or AR(1) process at the basic scale k = 1, the autocorrelation is 

 ρj = ρ|j| (18) 

The unconditional entropy is given by (8) whilst the conditional entropy and the information 

gain are respectively  

 φc = ln[σ 2 π e (1 – ρ2)],     ψ = –ln 1 – ρ2 (19) 

At aggregate scales, the autocorrelation and the entropy expressions become more 

complicated (the process is no longer AR(1)). Thus, analytical expressions are not convenient 

and numerical calculations based on equations (17) and (14) are preferable. 

 In the FGN process, the autocorrelation is independent of time scale, as already expressed 

in equation (3). The exact expression of autocorrelation (e.g. Koutsoyiannis, 2002a, b) is  

 ρ
(k)
j  = ρj = (1/2) [(|j + 1|)2H + (|j – 1|)2H ] – |j|2H (20) 

where the Hurst coefficient is determined from ρ1 = ρ. Combining (3) and (8), it is obtained 

that the unconditional entropy at scale k is 

 φ(k) = ln(k H – 1 σ 2πe) (21) 

The conditional entropy can be estimated numerically from (14). Systematic numerical 

investigation for H ranging in (0.5, 1) allowed the construction of the following 

approximation 

 φ
(k)
c  ≈ ln{k H – 1 σ 2 π e 1 – (2H – 1)2 [0.72(H – 1) + 1]} 

  (22) 
 ψ(k) ≈ –ln 1 – (2H – 1)2 [0.72(H – 1) + 1]  

which shows that the information gain is independent of the scale k. The approximation error 

of ψ(k) is smaller than ±0.4%.  

 The next two benchmark processes are chosen in an attempt to establish the least and the 
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highest, respectively, autocorrelation function that is mathematically feasible and physically 

reasonable. An autocorrelation function is mathematically feasible if the implied covariance 

matrix cn (defined in (15)) is positive definite for any n. Given that the processes considered 

here are stationary (as already justified earlier) and have a certain lag one autocorrelation ρ, it 

may be assumed that an autocorrelation function is physically reasonable if it is non-negative 

and non-increasing. The non-negativity postulate is consistent to the stationarity assumption, 

given that processes with over-annual periodicities, which might cause negative correlations, 

are not considered here. The non-increasing postulate will be replaced later by a more 

restrictive one.  

 In this sense, the least non-negative autocorrelation function is given by the MA(1) 

process, in which  

  ρ0 = 1,    ρ1 = ρ,     ρj = 0, |j| > 1 (23) 

This, however, is mathematically feasible when it yields positive determinants δn for any n > 

0, which happens when ρ ≤ 0.5. For ρ > 0.5 the least feasible non-negative autocorrelation 

function corresponds to a higher order MA(q). For each q, a maximum lag one autocorrelation 

ρ*(q) can be determined by maximizing ρ1 subject to constraints δn > 0. For example, 

numerical application of this method results in ρ*(1) = 0.5, ρ*(2) = 0.707, ρ*(3) = 0.809, 

ρ*(4) = 0.866 and so on. Thus, given a specific value of ρ, the minimum order q of the 

required MA(q) model can be determined so that ρ*(q – 1) ≤ ρ ≤ ρ*(q). Then, to find the least 

feasible non-negative autocorrelation, the exact values of the remaining nonzero 

autocorrelation coefficients (ρ2, …, ρq) can be estimated by minimizing the sum ρ2 + … + ρq, 

again subject to constraints δn > 0. For example, for ρ = 0.75, the MA(1) and MA(2) models 

are infeasible, whereas MA(3) (and beyond) is feasible (because ρ*(2) = 0.707 ≤ ρ = 0.75 ≤ 

ρ*(3) = 0.809). Furthermore, by numerical application of the same method it is obtained that 

the least feasible autocorrelation function of MA(3) is ρ0 = 1, ρ1 = 0.75, ρ2 = 0.470, ρ3 = 

0.175, ρj = 0 for |j| > 3. At aggregate scales k > 1, the MA(q) model yields another MA(q΄) 

with q΄ ≤ q. Entropy calculations at any scale can be done numerically because derivation of 

analytical equations is too complicated.  
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 The highest feasible non-increasing autocorrelation function is  

  ρ0 = 1,    ρj = ρ,   |j| > 1 (24) 

It can be shown that the power spectrum of this process is constant s(ω) = 2 (1 – ρ) at any 

frequency ω that is a rational number (ω = m/n, where m and n positive integers with m ≤ 

n/2). By analogy to the white noise, which has constant s(ω) = 2, this process that has again 

constant s(ω), but smaller than 2, has been called the grey noise (GN). Clearly, GN is a non 

ergodic process since limj →∞ ρj = ρ ≠ 0 (Papoulis, 1991, p. 432), whereas the other three 

benchmark processes described earlier are ergodic processes. This means that the statistics of 

the process cannot be deduced from a time series. Furthermore, if a physical process were 

GN, a realization of it, i.e. a single time series, could not reveal that the process is GN. A 

simple simulation experiment shows that a time series generated from this process behaves 

like white noise. In this respect, GN may not be a useful model to describe some physical 

phenomenon. However, it is useful as a limiting benchmark case in the context of comparison 

of different stochastic models. 

 Figure 4 depicts comparisons of the four benchmark processes in terms of the implied 

unconditional and conditional entropies as functions of time scale for four different values of 

the lag one autocorrelation, i.e., ρ = 0, 0.25, 0.5 and 0.75. The time scales used for these 

comparisons and in all subsequent sections range from 1 to 50. It is noted that the increase of 

time scale increases dramatically the required calculations as in most cases these are 

numerical and intensive (e.g. involve computations of determinants). The conditional entropy 

(which is a limit for m →∞ as shown in (14)) was estimated for m = 50, which in all cases 

was found to yield sufficient approximation). With these values (kmax = 50, m = jmax = 50), it 

can be seen from (17) that about 2550 autocovariance terms are required for the calculations. 

For simplicity and without loss of generality, in all cases the variance at the basic scale was 

assumed to be unity. 

 In the case ρ = 0, all four benchmark processes become identical to white noise and 

simultaneously conditional entropy is identical to the unconditional entropy. For the other 

three values of autocorrelation, the following can be observed in Figure 4: 
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• For scales k = 1 and 2, all three models result in the same unconditional entropy φ.  

• For larger scales, GN corresponds to the maximum unconditional entropy followed by 

FGN, AR and MA. 

• For scales k = 1 and 2, the maximum conditional entropy φc is given by AR and MA, 

respectively.  

• The GN model, which gives the highest, among the four models, unconditional 

entropy, simultaneously gives the least conditional entropy at almost all scales. 

• For large scales, the model which gives the highest, among the four models, 

conditional entropy, is the FGN. 

• For large scales (and with the exception of GN), the increase of autocorrelation ρ 

results in increase of both unconditional and conditional entropy. This may be 

contrary to the common perception that strong autocorrelation decreases prediction 

uncertainty (which is directly linked to conditional entropy), which however is correct 

for small time scales, e.g. 1-2. 

 In addition, Figure 4 manifests the difficulties in applying the ME principle. Given the 

antagonistic behaviour observed in different scales and different entropy types, one may think 

that the application of ME should involve many time scales and both unconditional and 

conditional entropies. For, it would be unreasonable to accept that the ME principle would 

result in the GN model, which on the one hand maximizes the unconditional entropy and on 

the other hand minimizes conditional entropy, i.e. it minimizes uncertainty in the case that the 

past were observed.  

PARAMETRIC MAXIMIZATION OF CONDITIONAL ENTROPY  

A general conclusion of the previous section is that the maximization of merely the 

unconditional entropy would result in the GN model at any time scale, whereas maximization 

of merely the conditional entropy at scales 1 and 2 result in the AR and MA models, 

respectively. Although these results were obtained by comparison of four benchmark 

processes, it can be shown that they are general. It is interesting to find the autocorrelation 

function that maximizes merely the conditional entropy but at large scales. To this aim and to 
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avoid the extremely high computational effort that would be required if all autocovariance 

terms were considered to be unknowns in the optimization, a parametric expression of the 

autocovariance function is assumed, i.e.,  

 γj = γ0 (1 + κ β |j|α) –1/β  (25) 

This generalized Cauchy-type expression with parameters κ, α and β that are positive numbers 

was studied by Koutsoyiannis (2000) in a simpler Pareto-type form, i.e. with α = 1, and later, 

in some modified forms, by Gneiting and Schlather (2004). When β = 0, (25) takes the 

Weibull-type form  

 γj = γ0 exp(–κ |j|α)  (26) 

In the case examined, since ρ1 = γ1/γ0 is fixed to ρ, (26) and (25) involve respectively one and 

two free parameters, because κ can be determined from 

 κ = 
⎩
⎨
⎧(ρ–β – 1) / β‚     β > 0
 –ln ρ‚      β = 0 (27) 

 It can be seen that all four benchmark processes of the previous section can be obtained 

from the generalized Cauchy-type expression. Specifically, the AR(1), MA(1) and GN 

processes are obtained for β = 0 and respectively α = 1, α → ∞ and α → 0. The FGN model is 

obtained for α / β = 2 – 2 H and α → ∞. Furthermore, (25) yields a rich family of 

autocorrelation functions as it can be seen in Koutsoyiannis (2000) and Gneiting and 

Schlather (2004). Therefore, (25) is a proper parametric model to use in conditional entropy 

maximization. 

 For a given variance γ0, lag one autocorrelation ρ and scale k, the autocorrelation function 

ρ
(k)
j  and, consequently, the conditional entropy φ

(k)
c  are functions of parameters α and β. 

Therefore, the problem is to determine the values of α and β that maximize φ
(k)
c . This can be 

done only numerically. Examples of the optimized autocorrelation functions for γ0 = 1, ρ = 

0.5, and k = 1, 2, 4, 8, 16, 32 and 50 are shown graphically in Figure 5. In all cases, the 

optimized β is zero, which corresponds to Weibull-type autocorrelation. For k = 1 and 2, as 

expected, the optimal autocorrelation functions are those of AR(1) and MA(1) processes, 

respectively. For larger k, the optimal autocorrelation function gradually raises from the 
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MA(1) case approaching and then surpassing the FGN case (Figure 5a). Similar behaviour is 

observed in the plots of the corresponding unconditional and conditional entropy and 

information gain (Figure 5b, c, d, respectively). The general conclusion of this experiment is 

that the maximization of conditional entropy at large time scales results in processes that are 

Hurst-like (with fat tails of autocorrelation functions) but not precisely scaling. 

 Given that in all cases depicted in Figure 5 the optimized β was zero, i.e. the resulting 

autocorrelation function was Weibull-type with one free parameter α as in (26), it is 

interesting to investigate the variation of entropies and information gain with the variation of 

α or equivalently, with the variation of the ratio of lag two to lag one autocorrelation which 

will be denoted by λ. From (26) it is obtained that λ = ρ1 – 2α, which shows that if ρ1 ≡ ρ and λ = 

ρ2/ρ1 are fixed, then α and the complete autocorrelation function are fixed, too.  

 This investigation is shown graphically in Figure 6 for ρ = 0.50 and scales k = 1, 2 and 50. 

As already mentioned, for scales k = 1 and 2, the unconditional entropies are constant, 

independent of λ. As shown in Figure 6a, for scale 50, the unconditional entropy is an 

increasing function of λ and thus it takes its maximum value for λ = 1 (values λ > 1 have been 

excluded as physically unreasonable). The conditional entropy for scale k has a maximum at a 

certain λk which is different for different scales, i.e. λ1 = 0.5 (corresponding to the AR(1) 

case), λ2 = 0 (corresponding to the MA(1) case) and λ50 = 0.85 (corresponding to the 

maximized autocorrelation function plotted in Figure 5a). Figure 6b shows the information 

gain as a function of λ. For scale k = 1, this function is concave with its minimum at λ1 = 0.5 

(corresponding to the AR(1) case). For larger scales, it is an increasing function of λ attaining 

its maximum at λ = 1. For some value λ*k (where λ*2 = 0.77 and λ*50 = 0.87) the information 

gain for scale k becomes equal to that for scale 1, i.e. ψ(k) = ψ(1), while beyond λ*k, ψ(k) > ψ(1). 

Here one may notice that the case ψ(k) > ψ(1) may be not physically reasonable. For, it is not 

reasonable to assume that observing the present and past will lead to information gain for the 

next k time steps (i.e. ψ(k)) that is greater than the information gain for the next single time 

step (i.e. ψ(1)). Thus, in the optimization of ME, all values λ > λ*2 should be excluded as being 

physically unreasonable. 

 Extending this thinking, the postulate for a non-increasing autocorrelation function may be 
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replaced by the postulate for a non-increasing information gain function, assuming that the 

latter postulate assures a physically reasonable autocorrelation structure. It is likely that this 

postulate may be produced from other considerations. As an attempt to this aim and also as a 

further clarification, an additional demonstration is provided with the help of the sketch in 

Figure 7. For simplicity, the demonstration is done for scales 1 and 2 (the generalization is 

direct). At these scales, the process of interest is described by the variables X
 (1)
i  and X

 (2)
j  with 

standard deviations σ(1) and σ(2), respectively, where i and j denote discrete time and (due to 

(1), X
 (2)
j

 = (1/2) (X
 (1)
2j–1 + X

 (1)
2j ; e.g. X

 (2)
2

 = (1/2) (X
 (1)
1  + X

 (1)
2 )). Let σ

 (1)
i  and σ

 (2)
j  denote the 

conditional standard deviations (at times i and j and scales 1 and 2, respectively) in the case 

that the process has been observed at present and past times (i, j = 0, –1, –2, …). Clearly, σ
 (1)
i  

is not the same for all i, but it is zero for i ≤ 0 and an increasing function of i for i > 0. As i 

tends to infinity, σ
 (1)
i  tends to the unconditional σ(1), so that σ

 (1)
i /σ(1) tends to unity (see Figure 

7). σ
 (2)
j /σ(2) behaves similarly. Intuitively, it is reasonable to accept that the aggregation of 

scale results in a more flat shape of σj/σ, i.e. that the plot of σ
 (2)
j /σ(2) will be flatter than that of 

σ
 (1)
i /σ(1). In this respect, it seems reasonable to accept that the first coordinate at scale 2 would 

be in between the first and second coordinate at scale 1, i.e. σ
 (1)
1 /σ(1) ≤ σ

 (2)
1 /σ(2) ≤ σ

 (1)
2 /σ(1). If the 

logarithms of the first of these inequalities are taken, it is obtained that ln σ
 (1)
1  – ln σ(1) ≤ ln σ

 (2)
1  

– ln σ(2). Observing that ln σ(1) is proportional to the unconditional entropy φ (equation (8)) 

and ln σ
 (1)
1  is proportional to the conditional entropy φc (equations (8) and (12) along with the 

normality of f(Χ1|X0, …, X–m + 1)), and using (13), it is obtained that ψ(1) ≥ ψ(2). This is the non-

increasing property of ψ for scales 1 and 2, extendable to other scales by the same thinking. 

Obviously, all this discussion is not a mathematical proof, nor a formulation of a 

mathematical principle (as is, for instance, the requirement for a positive definite 

autocovariance matrix discussed earlier); in contrast, violation of ψ(1) ≥ ψ(2) is mathematically 

feasible. Rather, this discussion is a demonstration based on physical intuition; therefore, the 

postulate for non-increasing ψ is put as a postulate for a physically reasonable autocorrelation 

function.  

 Coming back to Figure 5d, it may now be seen that the autocorrelation functions optimized 

so far (those for scales ≥ 16) do not satisfy this postulate for physical reasonability, as they 
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result in information gain that for small scales is an increasing function of scale.   

CONSTRAINED PARAMETRIC ENTROPY MAXIMIZATION  

After the discussion of the previous section, the maximization of entropy, conditional or 

unconditional, should be done with the additional constraint that the information gain should 

be a non-increasing function of time scale. A systematic numerical maximization experiment, 

similar to that of the previous section but with this additional constraint, is depicted in Figure 

8. For small time scales, i.e. k ≤ 8, the results are the same as in Figure 5 but for larger scales 

are different. Clearly, Figure 8a shows that, as the time scale used for maximization increases, 

the autocorrelation function approaches that of FGN model, now without surpassing it. Again, 

for all scales the autocorrelation functions that maximize conditional entropy correspond to β 

= 0. Intuitively, the FGN model can be obtained as the limit of the ME autocorrelation as the 

time scale of interest tends to infinity.  

 It is reminded that the maximization of unconditional entropy leads to the GN model for 

any time scale k > 2. However, if the constraint of non-increasing information gain is 

imposed, then the resulting model is the FGN. This is depicted in Figure 9 for ρ = 0.50. If the 

optimization is done for time scales k = 4 or k = 8, the same ME autocorrelation is obtained 

for both cases, which corresponds to β = 0 and is close to that of the FGN model. For all 

larger time scales, a single autocorrelation function is obtained, which corresponds to β > 0 

and is practically indistinguishable from that of the FGN model. Similar results were found 

for other values of ρ; Figure 10 shows the results of another experiment for ρ = 0.75.  

 In conclusion, if the constraint of non-increasing information gain is imposed and if the 

time scale of interest is large enough, the maximization of either the unconditional or 

conditional entropy leads to the FGN model. The convergence of the ME autocorrelation to 

the FGN model is faster in the case of maximization of the unconditional entropy.  

CONSTRAINED NONPARAMETRIC ENTROPY MAXIMIZATION  

All previous experiments were based on the parametric autocorrelation function (25), which 

was optimized for a single time scale of interest. As a final step of this investigation, a non-
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parametric approach is elaborated, according to which all autocorrelation coefficients ρj for j 

= 1 to 50 are considered as unknowns. To avoid an unnecessarily high number of control 

variables, the parametric autocorrelation function (25) is kept for lags j > 50 and its 

parameters α and β are additional unknowns, so that the maximization includes 49 + 2 = 51 

control variables in total. In addition, instead of using one time scale for the maximization, a 

range of time scales k = 1 to kmax is considered and the average unconditional entropy over all 

scales k of this range is maximized. The non-increasing information gain constraint (i.e. ψ(k) ≤ 

ψ(k – 1) for any k) is also used. The optimization is done numerically using a widespread solver 

by Frontline Systems (www.solver.com) combining classical and evolutionary optimization 

techniques. 

 The results of this nonparametric optimization experiment for ρ = 0.5 and maximum scales 

kmax = 4, 8, 16, 32 and 50 is shown in Figure 11. It is observed that if the optimization is done 

for scales 1 to kmax, then the resulting ME model is practically indistinguishable from FGN for 

scales 1 to kmax/2 and as the maximum scale of interest kmax increases, the ME model tends to 

be identical to the FGN model. It is not reasonable to designate a special importance to some 

specific finite maximum scale kmax, so eventually the optimization should be done for kmax → 

∞. Although this case cannot be elaborated with numerical calculations and an analytical 

solution may be hard to establish, it may be conjectured, based on the numerical results 

shown in Figure 11, that for kmax → ∞ the ME model will be precisely the FGN model.  

SYNOPSIS, CONCLUSION AND DISCUSSION  

In the first part of this study, the principle of maximum entropy (ME), representing maximum 

uncertainty, was used to explain the statistical distributions met in hydrological variables. The 

only assumptions used for the maximization of entropy are that a hydrological variable is non-

negative and possesses a certain variability, expressed by the coefficient of variation. The 

results of the analysis of the first part can be summarized as follows: 

(a) Maximum entropy + Low variation → Exponential-type (truncated normal) 

distribution 

(b) Maximum entropy + High variation → Power-type (Pareto) distribution 
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(c) Maximum entropy + High variation + High return periods → State scaling (as an 

approximation) 

 This second part of the study is devoted to the joint distributional properties, specifically to 

the time dependence structure of hydrological processes, and the potential explanation of the 

time scaling via the ME principle. The analysis of this part considers time scales not finer than 

annual that are characterized by variation so low that the truncated normal distribution is 

virtually identical to the normal distribution. The results can be summarized as follows: 

(d) Maximum entropy + Low variation → Normal distribution + Time independence  

(e) Maximum entropy + Low variation + Time dependence + Dominance of a single 

time scale → Normal distribution + Markovian (short-range) time dependence  

(f) Maximum entropy + Low variation + Time dependence + Equal importance of time 

scales → Normal distribution + Time scaling (long-range dependence) 

 The assumption used in the second part (except in case (d)), in addition to those of the first 

part, is that a process exhibits time dependence expressed by a specified lag one 

autocorrelation coefficient which is a positive number. The maximization of entropy was done  

in terms of determining an unknown autocorrelation function, which should be (1) 

mathematically feasible, i.e. result in positive definite autocovariance matrices, and (2) 

physically reasonable, i.e. be non-negative and result in information gain that is a non-

increasing function of time scale. 

 Eventually, it is hard to imagine a hydrological process without any time dependence, at 

least at a fine time scale, which, obviously, will be inherited to coarser scales, too. In addition, 

it is difficult to find justifiable reasons that make a single time scale dominant. In this respect, 

among the above listed cases (d)-(f), the last one (f) appears to be physically more realistic. 

This justifies the omnipresence of the Hurst behaviour. It should be noted that in short time 

series (e.g. shorter than 100 years) the Hurst behaviour may be not visible because classical 

statistics tend to hide it (Koutsoyiannis, 2003a).  

 The study of maximum entropy in this paper involves three quantities: the unconditional 

entropy, i.e. the uncertainty when nothing is observed about the process, the conditional 

entropy, i.e. the uncertainty when the past and present states of a process are observed, and 
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the information gain, i.e. the difference of conditional and unconditional entropies, which is 

always non-negative. As time scale increases, both the unconditional and conditional entropy 

decrease. In a scaling process, they decrease at equal rates, so that the information gain is 

constant, independent of the time scale. In non-scaling processes such as the Markovian, the 

information gain decreases rapidly with the increase of time scale. However, the constant 

information gain of the scaling case does not favour prediction at large scales. In fact, the 

constant information gain is closely related to the fact that both unconditional and conditional 

entropies are much higher in a scaling process than in a Markovian process or in a process of 

independent variables. Thus, the scaling behaviour, despite its high autocorrelation function, 

implies greater prediction uncertainty when large time scales are considered. It is generally 

believed that an accurate prediction of a process state at a long time horizon is impossible, but 

a prediction of the mean future conditions for this horizon is much easier. For example, it is 

believed that the prediction of weather in the next 30 years is impossible, but the prediction of 

the mean weather of the next 30 years, i.e. the climate, can be accurate. The studied entropy 

properties of the time scaling behaviour show that this may be wrong and that predictions of 

the future are difficult (as expressed in the quotation in the beginning of the Introduction) both 

on small and large time scales.  

 Several issues related to the application of the ME principle to hydrological processes 

should be addressed with further research. A first important issue is the study of the 

consequences of the ME principle on small time scales, in which the variability of a 

hydrological process can be high and the sub-annual periodicity makes the stationarity 

assumption invalid. Another related issue, also requiring further research, is the application of 

the ME principle in the case of over-annual periodicities, whence again the stationarity 

assumption is not applicable. A further important issue is the explicit use of the ME principle 

to stochastic generation algorithms, especially in a multivariate or even multidimensional 

framework. Finally, the general conclusion of this study, i.e. the dominance of the principle of 

maximum entropy in hydrological (and meteorological) processes must be exploited further to 

make a more consistent assessment of predictability of these processes and to widen our 

estimates of nature’s uncertainty.  
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Figure 1 Plot of (a) the mean annual temperature of Geneva and, for comparison, (b) a 

synthetic series generated from a Markovian process with statistics same with those of the 

mean annual temperature of Geneva. 
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Figure 2. Logarithmic plot of standard deviation versus scale for the time series of the annual temperature 

of Geneva.  
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Figure 3 (a) Autocorrelation coefficient vs. lag and (b) lag one autocorrelation coefficient vs. 

time scale for the time series of the annual temperature of Geneva. 
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Figure 4 Comparison of the four benchmark models in terms of the implied unconditional 

and conditional entropies as functions of time scale assuming lag one autocorrelation (a) ρ = 

0; (b) ρ = 0.25; (c) ρ = 0.5; and (d) ρ = 0.75. The autoregressive (AR) process is AR(1) 

whereas the moving average (MA) process is MA(1) in (b) and (c) and MA(3) in (d). 
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Figure 5 (a) Autocorrelation functions that maximize conditional entropy at each of the 

indicated time scales (k = 1, 2, 4, 8, 16, 32 and 50) assuming lag one autocorrelation ρ = 0.50. 

(b-d) Resulting unconditional and conditional entropy and information gain, respectively, as 

function of time scale k. In all panels, the relevant plots of benchmark models are also given 

for comparison. 
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Figure 6 Variation of conditional and unconditional entropy and information gain for scales k 

= 1, 2 and 50 assuming ρ = 0.5 and Weibull-type autocorrelation (β = 0) with varying 

parameter α, versus the ratio λ := ρ2 / ρ1, which is determined from α.  
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Figure 7 Explanation sketch for the postulate of non-increasing information gain.  
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Figure 8 (a) Autocorrelation functions that maximize conditional entropy at each of the 

indicated time scales assuming lag one autocorrelation ρ = 0.50 and constraining information 

gain to be non-increasing function of time scale. (b-d) Resulting unconditional and 

conditional entropy and information gain, respectively, as function of time scale. In all panels, 

the relevant plots of benchmark models are also given for comparison.  
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Figure 9 Similar to Figure 8 but for maximizing unconditional entropy. 
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Figure 10 Same as Figure 9 but for ρ = 0.75. 
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Figure 11 (a) Non-parametric autocorrelation functions that maximize unconditional entropy 

averaged over the indicated ranges of time scales, assuming lag one autocorrelation ρ = 0.50 

and constraining information gain to be non-increasing function of time scale. (b-d) Resulting 

unconditional and conditional entropy and information gain, respectively, as function of time 

scale. In all panels, the relevant plots of benchmark models are also given for comparison. 
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