AN INTEGRATED MODEL FOR CONJUNCTIVE SIMULATION OF HYDROLOGICAL PROCESSES **AND WATER RESOURCES MANAGEMENT IN RIVER BASINS – Part 1**

European Geosciences Union (EGU) General Assembly, Vienna, Austria, 25 - 29 April 2005 Session HS4: Incorporating hydrological processes knowledge into catchment modelling A. Efstratiadis, E. Rozos, A. Koukouvinos, I. Nalbantis, G. Karavokiros, and D. Koutsoyiannis **Department of Water Resources, National Technical University of Athens**

What is HYDROGEIOS?

HYDROGEIOS is a **GIS-based** application, suitable for complex hydrosystems, where natural processes are significantly affected by human interventions. It integrates a **conjunctive** (surface and groundwater) **hydrological model**, based on a semi-distributed approach, within a systems-oriented management scheme, to ensure a faithful representation of hydrological mechanisms and, hence, a rational water management policy. It provides tools for automatic parameter estimation, based on multiple error criteria and a robust optimisation method, adapted for both single and multiobjective calibrations.

Objectives

- > Establishing a physically-based approach while keeping a parsimonious structure, by conceptually relating the hydrological responses of a watershed with its geomorphological and physiographic characteristics.
- Taking into account all available spatial and hydrological data.
- Understanding the main physical mechanisms along a river network, and their \geq interactions under a specific hydroclimatic scenario or management policy.
- Assessing the actual surface and groundwater yield at various control sites.

with very large base.

AN INTEGRATED MODEL FOR CONJUNCTIVE SIMULATION OF HYDROLOGICAL PROCESSES AND WATER RESOURCES MANAGEMENT IN RIVER BASINS – Part 2

European Geosciences Union (EGU) General Assembly, Vienna, Austria, 25 - 29 April 2005

Session HS4: Incorporating hydrological processes knowledge into catchment modelling

A. Efstratiadis, E. Rozos, A. Koukouvinos, I. Nalbantis, G. Karavokiros, and D. Koutsoyiannis Department of Water Resources, National Technical University of Athens

Case study: The Boeoticos Kephisos river basin

- Watershed area: 1955.6 km² (the largest of the Eastern Sterea Hellas water district)
- > Altitudes: 469 m (average), 2400 m (maximum)
- Geology: heavily karstified limestones (mountainous areas), alluvial deposits (plain areas)
- Hydrographic network: a main branch of length 100 km; last 35 km segment is an artificial channel, diverting flows to the neighbouring Lake Hylike (the basin has no physical outlet to the sea)
- > Hydrology: mean annual precipitation 765 mm, mean annual runoff 172 mm
- Groundwater: due to the karstic background, significant percentage (~50%) of runoff is baseflow, arising from large springs in the upper and middle part of the basin; unknown amount of groundwater is conducted to the sea
- Water uses: (1) abstractions from both surface and groundwater resources for irrigation (220 hm³/year); (2) abstractions from Lake Hylike and water supply boreholes lying in the middle part of the basin, directed to Athens

Permeability class

Slope

Groundwater hydrology

Multi-cell model schematisation

Sub-basins and HRUs union

HYDROGEIOS: Software implementation

- Monthly or daily simulation
- Flow routing procedures, in case of daily time steps
- Multiple goodness-of-fit criteria, for discharge and

- Model schematisation: 5 sub-basins, 6 HRUs, 30 groundwater cells
- Control period: 10-years (1984-1994), for monthly and daily simulation time steps
- Calibration data: daily discharge series at the basin outlet, sparse (1-2 per month) flow measurements along the river and downstream of the main karstic springs

- Objective function: formulation of a weighted performance measure, based on multiple responses and multiple fitting criteria
- > Optimisation method: evolutionary annealing-simplex (single- and multiobjective)

- groundwater level series
- Automatic calibration of selected parameters or groups of parameters
- Parameter uncertainty assessment, through multiobjective techniques
- Detailed (step-by-step) water balance for all hydrosystem components
- Visualisation of results and export to spreadsheets

Acknowledgments – Contact info

HYDROGEIOS is developed within the project "ODYSSEUS: Integrated Management of Hydrosystems in Conjunction with an Advanced Information System".

Project web page: http://www.odysseusproject.gr/

Research team web page: http://www.itia.ntua.gr/

E-mail contact: Hydrogeios@itia.ntua.gr