European Geosciences Union (EGU) - General Assembly

Vienna, Austria, 25 - 29 April 2005

Session HS1: Hydroinformatics

The multiobjective evolutionary annealing-simplex method and its application in calibrating hydrological models

Andreas Efstratiadis and Demetris Koutsoyiannis

Department of Water Resources, School of Civil Engineering, National Technical University, Athens, Greece

Hydrological modelling and multiobjective parameter estimation: The motivation

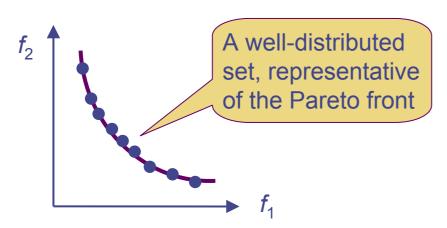
- Complex (semi- or fully-distributed) models generate multiple output variables at various sites → need for faithful reproduction of all model responses, that are representative of the watershed behaviour
- Due to the large number of parameters and their highly nonlinear interactions, alternative sets with similarly good performance may be detected (the "equifinality" problem) → need for establishment of "behavioural" (i.e., realistic, reliable and stable) parameter sets
- Models are too weak against data and structural errors → need to assess the sensitivity of parameters and the model predictive uncertainty
- Multiple error measures, when aggregated to a single objective function, formulate response surfaces that are strongly related to the aggregation scheme → need to distinguish the optimisation criteria, to avoid scaling problems and to investigate possible contradictory interactions
- Automatic calibration methods, involving too extended, high-dimensional and non-convex search spaces, are easily trapped by local optima or other peculiarities → need for reducing the parameter boundaries, to assist the searching procedure

Multiobjective optimisation: The story so far

- "Philosophical" foundation (1880-1900): the concept of Pareto-Edgeworth optimum, applied in sociology and welfare economics
- ➤ Mathematical foundation (1950-1960): formulation of the vector maximum problem by Kuhn and Tucker and first engineering applications
- Plain aggregating approaches (1970): a priori definition of the best compromise decision set, through the formulation of utility functions based on weighting coefficients, articulation of preferences, goal-vectors, etc.
- Population-based non-Pareto approaches (1980): formulation of sub-sets, each one evaluated according to different criterion (by switching objectives), and next shuffled and evolved through crossover and mutation (VEGA)
- Dominance-based evolutionary approaches (1990): use of ranking procedures, based on the principle of Pareto optimality, and techniques to maintain diversity through fitness sharing, to generate representative tradeoffs among conflicting objectives (MOGA, NSGA, NPGA)
- Modern approaches: revision of multiobjective evolutionary schemes, with emphasis on efficiency, using faster ranking techniques, clustering methods and elitism mechanisms (SPEA, SPEA-II, NSGA-II, PAES, MOMGA, etc.)

Multiobjective evolutionary algorithms: General principles

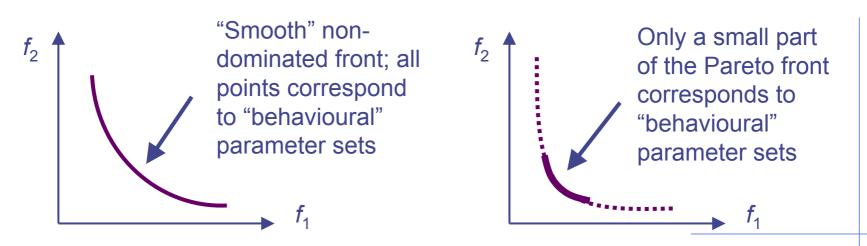
- 1. According to the principle of dominance, a **rank measure** r_i is assigned to each individual or group of individuals, where the best (lower) value corresponds to non-dominated points, thus guiding the search towards the Pareto front; a variety of rank values protects from high selection pressure.
- 2. A **density measure** σ_i is assigned to individuals, using sharing functions or nearest neighbour techniques, to maintain diversity within population, thus favouring the generation of well-distributed sets.
- 3. The **selection process** is implemented applying typical mechanisms (e.g., roulette, tournament), on the basis of dummy fitness of the form $\varphi_i = \varphi(r_i, \sigma_i)$.
- 4. The **evolution process** is implemented using the typical genetic operators.



In multiobjective evolutionary search, due to the use of the concept of dominance in fitness evaluation, a **discrete response surface** is created, which is reformed at each generation.

Applying multiobjective evolutionary algorithms for model calibration: Some drawbacks

- Search is computationally demanding, especially in the case of complex models with many parameters.
- > There is too little experience regarding problems with more than two criteria.
- Fitting criteria are conflicting only in case of ill-posed structures or data.
- The concept of dominance is not necessarily consistent with the concept of "equifinality"; hence multiobjective search may result to non-behavioural, albeit Pareto optimal, parameter sets, providing extreme performance, i.e. too good against some criteria, too bad against the rest ones.
- A best-compromise parameter set is required for operational purposes.



The multiobjective evolutionary annealingsimplex (MEAS) method

Phase 1: Evaluation

A performance measure (fitness) is assigned, consisting of:

- a **rank measure**, based on a strength-Pareto scheme, which both ensures convergence to the real Pareto front and diversity preservation;
- an **indifference measure** for further discrimination of indifferent solutions in case of multiple (more than two) objectives;
- a **feasibility measure**, for guiding search toward a desirable region of the Pareto front, thus providing acceptable trade-offs among conflicting objectives.

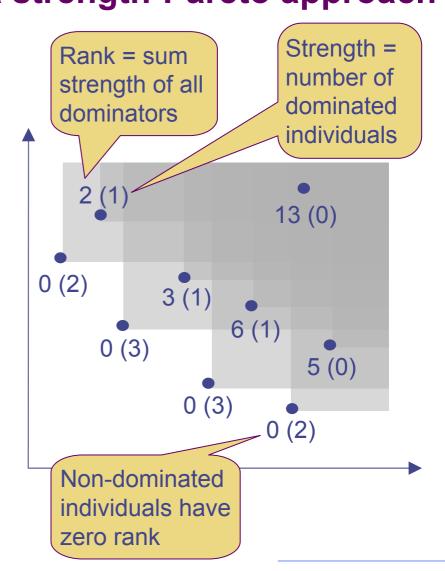
Phase 2: Evolution

Evolution is implemented according to transition rules that are based on a simplex-annealing approach, where:

- a **downhill simplex pattern**, combining both deterministic and stochastic transition rules, is employed for offspring generation;
- an **adaptive annealing cooling schedule** is used to control the degree of randomness during evolution.

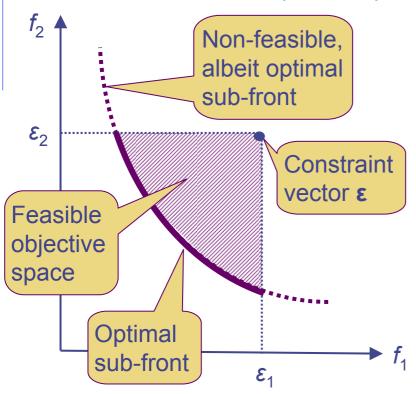
The MEAS method: Fitness assignment through a strength-Pareto approach

- The concept is based on the SPEA and SPEA-II methods (*Zitzler and Thiele*, 1999; *Zitzler et al.*, 2002).
- For each individual, both dominating and dominated points are taken into account.
- Formulates a integral response surface that changes whenever a new individual is generated.
- Provides a large variety of rank values (larger than any other known ranking algorithm), as well as a sort of "niching" mechanism, to preserve population diversity.
- A non-integral term is added to fitness, to penalise individuals excelling in fewer criteria than other indifferent ones, with identical rank



The MEAS method: Restricting the feasible objective space

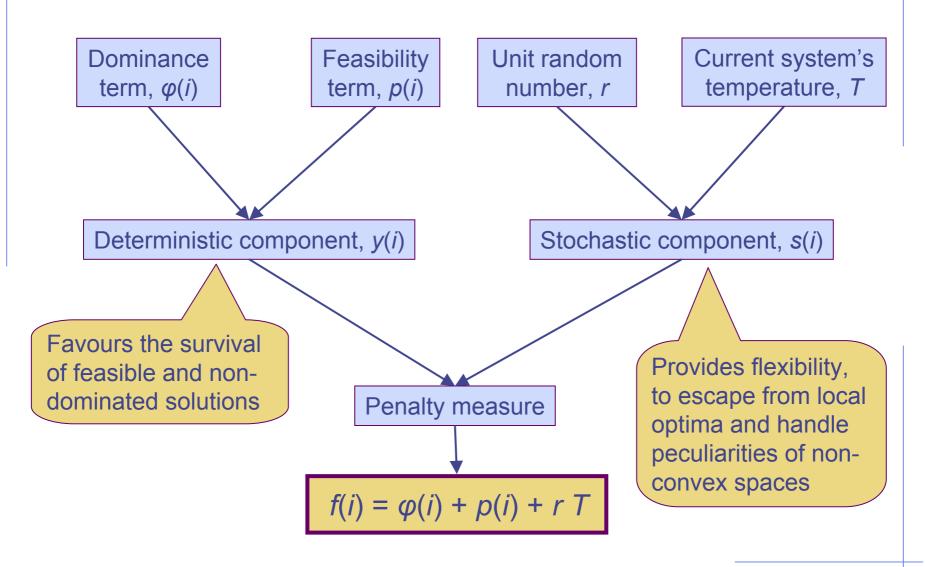
- Based on a concept inspired from the goal-programming method.
- Requires the specification of a constraint vector $\mathbf{\varepsilon} = (\varepsilon_1, ..., \varepsilon_m)$ denoting the boundaries of a desirable ("feasible") region of the objective space.
- Ensures a better insight on the most promising parts of the Pareto front, where the best-compromise parameter set is suspected to be sited.



Computational steps

- 1. The maximum fitness value is computed, i.e. $\phi = \max \varphi(i)$.
- 2. Each individual *i* is checked whether it lies within the feasible space; if $x_{ij} > \varepsilon_j$ for the *j*th criterion, a square distance penalty $\Delta \varepsilon_{ii} = (x_i \varepsilon_i)^2$ is added to $\varphi(i)$.
- 3. All infeasible individuals are further penalised by adding Φ ; hence, they become worse than any other feasible individual, either dominated or not.

The MEAS method: A selection procedure based on a simulated annealing strategy

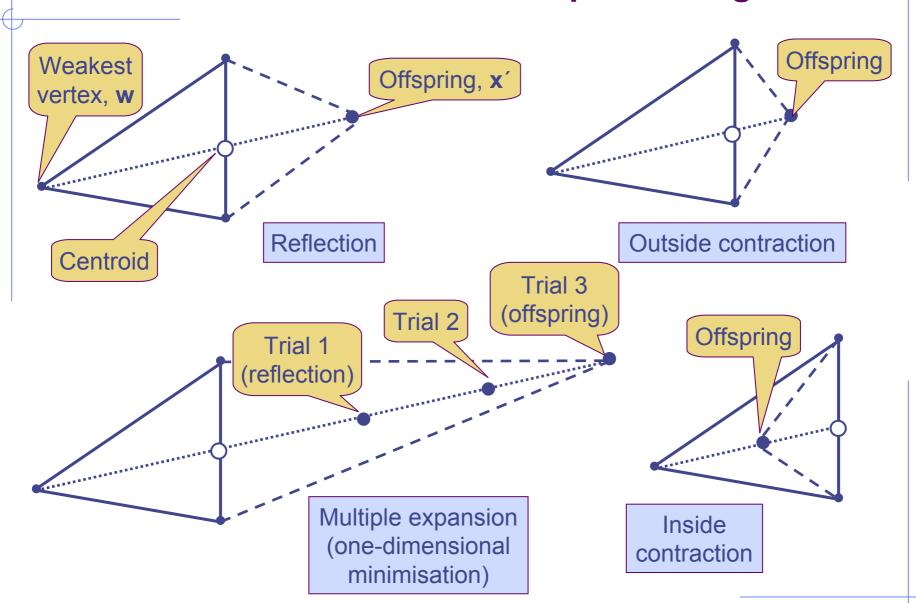


The MEAS method: Evolving population

- 1. According to an **elitism** concept, the population is divided to non-dominated $(\varphi < 1)$ and dominated $(\varphi > 1)$ individuals.
- 2. The system **temperature** is regulated in order to not exceed $T_{\text{max}} = \xi \Delta y$, where $\xi \ge 1$ parameter of the annealing cooling schedule and Δy the difference between the best and worst fitness of current population.
- 3. From the entire population n + 1 points are picked up, thus forming a **simplex** in the n-dimensional search space; at least one simplex vertex is selected from the dominated set, given that the latter is not empty.
- 4. The "weakest" individual **w** is detected by means of maximisation of *f*.
- 5. A **crossover** scheme is employed on the basis of a downhill simplex pattern; if a better point \mathbf{x}' ("offspring") is located, it replaces \mathbf{w} and the temperature is reduced by λ , where $\lambda < 1$ parameter of the annealing cooling schedule.
- 6. If recombination fails (i.e., any better solution cannot be found), the offspring is generated via a random perturbation (**mutation**) of \mathbf{w} , i.e. $\mathbf{x}' = \mathbf{w} + \Delta \mathbf{x}$.

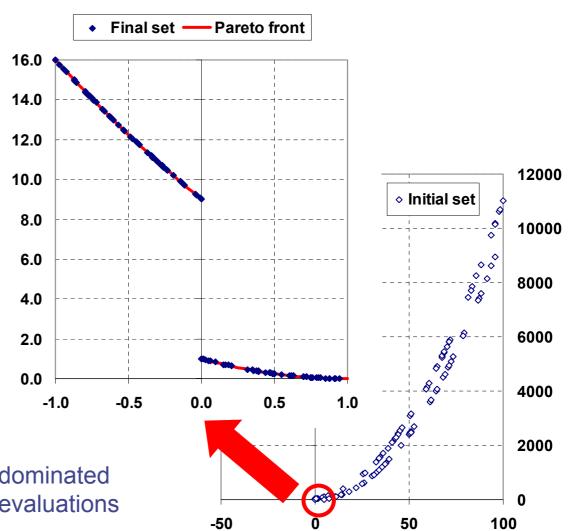
For an earlier, single-objective implementation of the evolutionary annealing-simplex method see: *Efstratiadis and Koutsoyiannis* (2002), *Rozos et al.* (2004)

The MEAS method: Simplex configurations



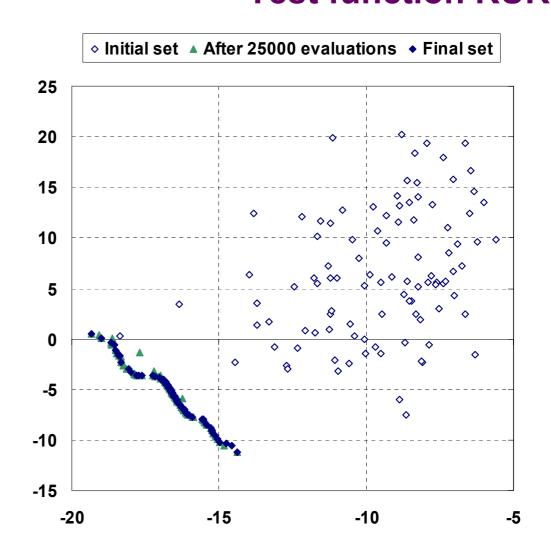
Performance assessment of MEAS method: Test function SCH-2

- > Taken from Schaffer (1984)
- Single control variable, in the range [-100, 100]
- Extended feasible objective space
- Disconnected Pareto set $(1 \le x \le 2 \text{ and } 4 \le x \le 5)$
- Disconnected and convex Pareto front
- Population size = 100
- Convergence to a non-dominated set after 9366 function evaluations



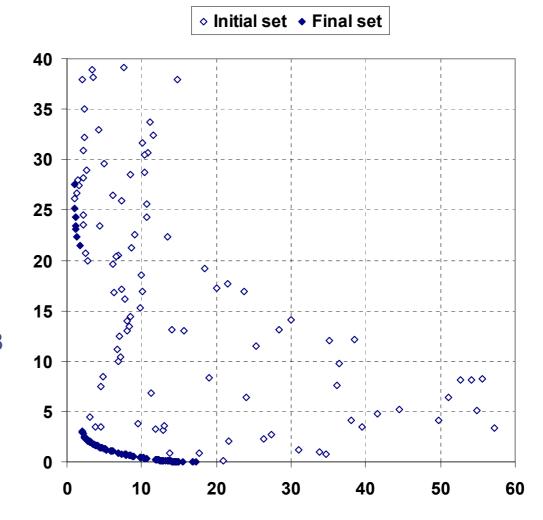
Performance assessment of MEAS method: Test function KUR

- Taken from *Kursawe* (1991)
- ➤ 3 control variables, in the range [-5, 5]
- Non-convex Pareto front
- Population size = 100
- Convergence to a nondominated set after
 37563 function
 evaluations



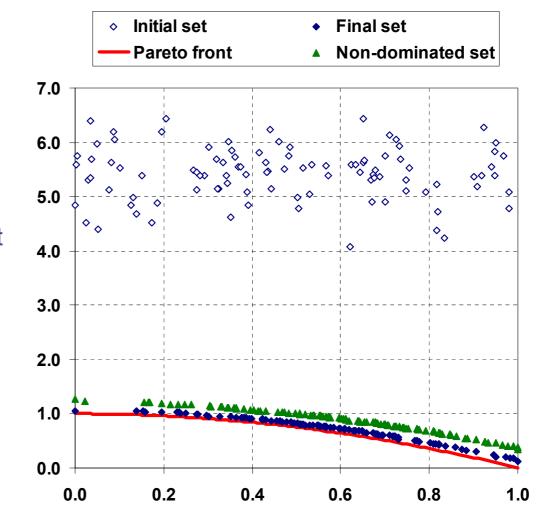
Performance assessment of MEAS method: Test function POL

- ➤ Taken from *Poloni* (1997)
- Two control variables, in the range $[-\pi, \pi]$
- Non-convex and disconnected Pareto front
- Population size = 100
- Convergence to a nondominated set after 2218 function evaluations



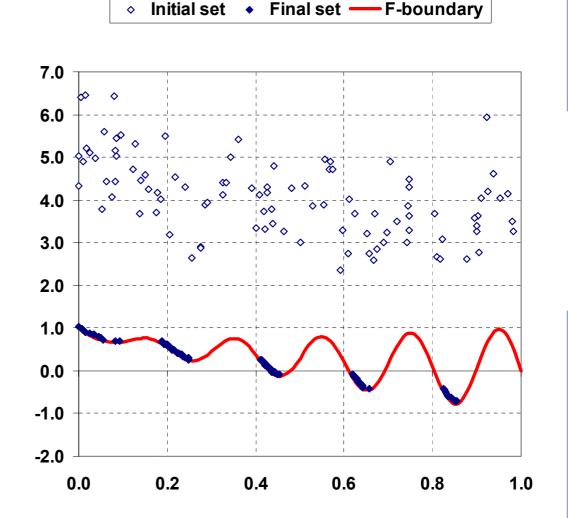
Performance assessment of MEAS method: Test function ZDT-2

- Taken from *Zitzler et al.* (2000)
- ➤ 30 control variables, in the range [0, 1]
- Pareto set: $0 \le x_1 \le 1$ and $x_i = 0$, for i = 2,..., 30
- Non-convex Pareto front
- Population size = 100
- Convergence to a locally non-dominated set after 16080 function evaluations
- Final set obtained after 25000 function evaluations



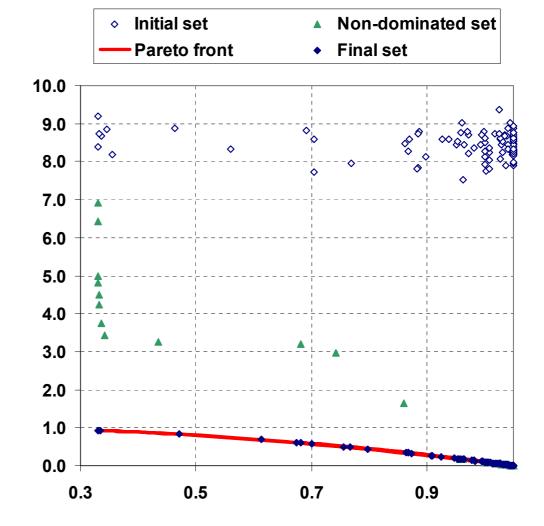
Performance assessment of MEAS method: Test function ZDT-3

- Taken from *Zitzler et al.* (2000)
- ➤ 10 control variables, in the range [0, 1]
- Disconnected Pareto set: $0 \le x_1 \le 1$ and $x_i = 0$, for i = 2,..., 10
- Convex and disconnected Pareto front
- Population size = 100
- Convergence to a nondominated set after
 12944 function
 evaluations



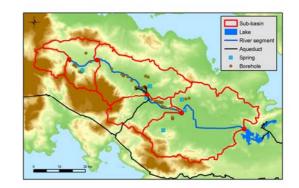
Performance assessment of MEAS method: Test function ZDT-6

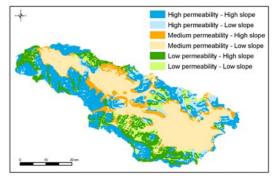
- Taken from *Zitzler et al.* (2000)
- ➤ 10 control variables, in the range [0, 1]
- Pareto set: $0 \le x_1 \le 1$ and $x_i = 0$, for i = 2,..., 10
- Non-convex and nonuniformly distributed Pareto front
- Population size = 100
- Final set, with satisfactory spread of non-dominated points, found after 150000 function evaluations

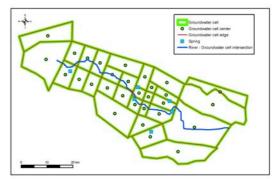


Multiobjective calibration of a complex hydrological model: Study area

- ➤ Watershed area ~2000 km², with highly non-linear interactions between surface and groundwater processes and man-made interventions.
- Main modelling issues:
 - a semi-distributed schematisation of the hydrographic network;
 - a conceptualisation of surface processes, based on spatial elements with homogenous characteristics (hydrological response units, HRU) and fitting to each one a soil moisture accounting model of six parameters;
 - a multi-cell groundwater scheme, with two parameters assigned to each cell;
 - a water management model, estimating the optimal system fluxes (flows, abstractions).
- Model components: 5 sub-basins, 6 HRU, 35 groundwater cells



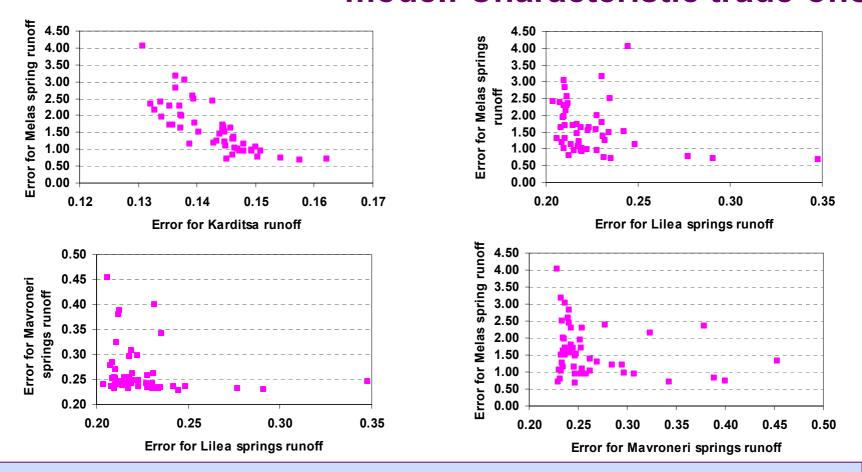




Multiobjective calibration of a complex hydrological model: Main assumptions

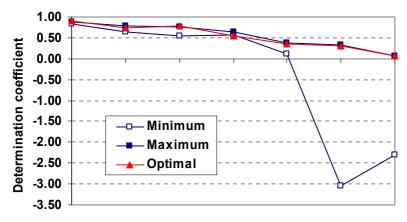
- ➤ **Observed series**: daily discharge measurements at the basin outlet (Karditsa tunnel), sparse (1-2 per month) discharge measurements at six main karstic springs, contributing more than 50% of total runoff
- Control period: October 1984-September 1990 (calibration period), October 1990-September 1994 (validation period)
- Calibration criteria: determination coefficients of monthly discharge series at the basin outlet and the main spring sites (number of objectives = 7)
- Control variables: soil moisture capacity (K) and recession rate for percolation (μ), assigned to each HRU, conductivity (C) of each virtual cell that represents spring dynamics (search space dimension = 18)
- Feasible search space: $0 < K_i < 1000$ (in mm), $0 < \mu_i < 1$ (dimensionless), $0.000001 < C_i < 0.5$ (in m/s)
- > Algorithmic inputs: sample size = 50, maximum function evaluations = 5000
- ➤ Other model parameters: obtained through an earlier single-objective optimisation scenario, based on a weighted objective function and handled by combining automatic and manual calibration methods (*Rozos et al.*, 2004)

Multiobjective calibration of a complex hydrological model: Characteristic trade-offs

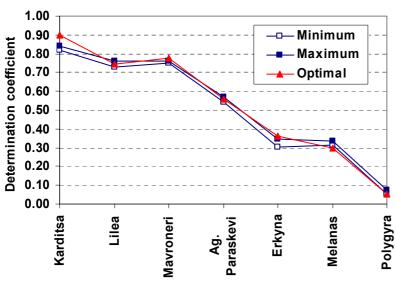


Trade-offs represent: (a) **modelling errors** due to the complexity of processes (negative correlation of some spring hydrographs with precipitation); and (b) **data errors**, due to the construction of control series based on few observations

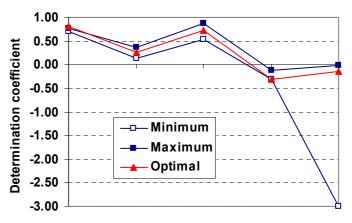
Multiobjective calibration of a complex hydrological model: Restricting the objective space



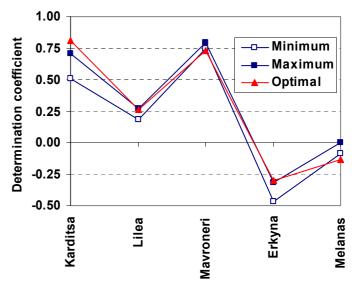
Unbounded objective space, calibration



Bounded objective space, calibration



Unbounded objective space, validation



Bounded objective space, validation

Concluding remarks

- Despite the impressive progress of last years regarding the development of evolutionary multiobjective optimisation techniques, **limited experience** exist on operational applications of hydrological interest, and most of them restricted to two-dimensional objective spaces.
- When fitting hydrological models on numerous observed responses, irregular Pareto fronts are formed due to structural and data errors.
- In case of complex, ill-posed hydrological models with many parameters, a multiobjective calibration approach is necessary to:
 - reduce uncertainties regarding the parameter estimation procedure;
 - investigate acceptable trade-offs between optimisation criteria;
 - guide the search towards promising areas of both the objective and the parameter space.
- The **MEAS** algorithm is an innovative scheme, suitable for challenging hydrological calibration problems, which combines: (a) a fitness evaluation procedure based on a strength-Pareto approach and a feasibility concept, (b) an evolving pattern based on the downhill simplex method, and (c) a simulated annealing strategy, to control randomness during evolution.

References

- ➤ Efstratiadis, A., and D. Koutsoyiannis, An evolutionary annealing-simplex algorithm for global optimisation of water resource systems, in *Proceedings of the Fifth International Conference on Hydroinformatics*, Cardiff, UK, 1423-1428, IWA, 2002.
- ➤ Kursawe, F., A variant of evolution strategies for vector optimization, in *Parallel Problem Solving from Nature*, H. P. Schwefel and R. Manner (editors), 193-197, Springer-Verlag, Berlin, 1991.
- Poloni, C., Hybrid GA for multiobjective aerodynamic shape optimization, in *Genetic Algorithms in Engineering and Computer Science*, G. Winter, J. Periaux, M. Galan, and P. Cuesta (editors), New York, Wiley, 397-414, 1997.
- Rozos, E., A. Efstratiadis, I. Nalbantis, and D. Koutsoyiannis, Calibration of a semi-distributed model for conjunctive simulation of surface and groundwater flows, *Hydrological Sciences Journal*, 49(5), 819-842, 2004.
- ➤ Shaffer, J. D., Multiple objective optimization with vector evaluated genetic algorithms, in *Proceedings* of an International Conference on Genetic Algorithms and their Applications, J. J. Grefenstette (editor), 93-100, Pittsburgh, 1985.
- ➤ Zitzler, E., K. and L. Thiele, Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach, *IEEE Transactions on Evolutionary Computation*, 3(4), 257-271, 1999.
- ➤ Zitzler, E., K. K. Deb, and L. Thiele, Comparison of multiobjective evolutionary algorithms: Empirical results, *Evolutionary Computation*, 8(2), 173-195, 2000.
- ➤ Zitzler, E., M. Laumanns, and L. Thiele, SPEA 2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization, in *Evolutionary Methods for Design, Optimization and Control*, K. Giannakoglou, D. Tsahalis, J. Periaux, K. Papailiou, and T. Fogarty (editors), 19-26, Barcelona, 2002.

This presentation is available on-line at: http://itia.ntua.gr/e/docinfo/644

Poster presentation of the hydrological model: Friday, 29 April 2005, 17:30 - 19:00, area Z028

Contact info: andreas@itia.ntua.gr dk@itia.ntua.gr