

Simulation of rainfall events for design purposes with inadequate data

D. Koutsoyiannis and <u>D. Zarris</u> Department of Water Resources, National Technical University of Athens, Greece

Design Storm Approach

- Arbitrary temporal distribution based on empirical observations or simple (e.g. geometrical) shapes
- One-to-one correspondence between the return periods of storm and peak discharge
- Hyetographs synthesised by the IDF curves:
 - Inherent arbitrary assumption about equality of probability of rainfall for various durations
 - Correlation structure between short term rainfall intensities is not considered

Continuous Simulation

- Capable of adequate representation of the rainfall process through a range of temporal scales of aggregation
- ✓ Reliable estimation of peak discharges and flood volumes for a given exceedance probability (?)
- Antecedent conditions are taken into full account (?)
- Problems on parameter estimation when large levels of aggregation are involved (e.g. 12 and 24 hours)
- Inadequate representation of rainfall extremes for small durations
- Long lasting, short time step, reliable and continuous data sets are not generally available

Event - based simulation

- Considerable simplification of continuous simulation since only intense rainfall events are analysed
- Ability of performing simulation with the input variables from their probability distributions
- Conditions prior to storms are arbitrarily considered (sensitivity analyses, etc.)
- An objective risk measure is difficult to be assigned

General outline of the proposed method

- Total rainfall depth is estimated based on the IDF curves of the particular region and a preselection of event duration
- Parameter estimation (β , φ , and γ_{x}) of the covariance structure of the surrogate rainfall process
 - → The stochastic disaggregation model is set up.
 - → A number of rainstorms are produced and the IDF curves for each set of parameters are computed.
 - → The resulting IDF curves are compared with the given ones.

General outline of the proposed method (cont.)

- A series of random and probable time profiles (hyetographs) for the final set of parameters are introduced into a a rainfall-runoff and flood routing model.
- An equal number of output hydrographs are produced.
- The empirical distribution function of the flood peaks is determined.
- A probability level is selected and the corresponding outflow peak is determined.

Rainfall process

The covariance structure of a simple scaling model of storm hyetograph is adopted.

 $Cov[\Xi(t, D), \Xi(t + \tau, D)] = \psi(\tau/D) - \{E[\Xi(t, D)]\}^2,$ where $\psi(\tau/D) = \alpha [(\tau/D)^{-\beta} - \zeta]$

and α, β, ζ parameters ($c_1 > 0, \alpha > 0, 0 < \beta < 1, \zeta < 1$)

Rainfall process (cont.)

Incremental depth, X_i , for a time interval $\Delta = D / k$

$$X_{i} = \int_{(i-1)\Delta}^{i\Delta} \Xi_{i} dt , i = 1, 2, ..., k$$

$$Var[X_{i}] = \left(\frac{\mu_{H}}{k}\right)^{2} \frac{1}{1-\phi} \left[\left(1+a_{H}^{2}\right) \left(k^{\beta}-\phi\right) + \phi - 1 \right]$$

$$Cov[X_{i}, X_{i}+m] = \left(\frac{\mu_{H}}{k}\right)^{2} \frac{1}{1-\phi} \left\{ \left(1+a_{H}^{2}\right) \left(k^{\beta}f(m,\beta)-\phi\right] + \phi - 1 \right\}$$

where $\varphi = \zeta (1 - \beta) (1 - \beta / 2)$, $\alpha_{\rm H}$:coefficient of variation of *H*

$$f(m,\beta) = \begin{cases} \frac{1}{2} \left[(m-1)^{2-\beta} + (m+1)^{2-\beta} \right] - m^{2-\beta}, m > 0\\ 0, m = 0 \end{cases}$$

Main differences from the design storm approach

- A stochastic disaggregation model is used to derive the temporal distribution of the design storm(s)
- An ensemble of random, probable and realistic hyetographs are produced instead of an arbitrary one
- A conditional probability distribution function of the outflow peak is obtained instead of a single "design hydrograph"

Conditional probability distribution functions of the maximum 10-min rainfall depths and flood peaks

Table of results

Method	Case	Rainfall Peak	Rainfall Peak	Outflow
		(5-minute	(10-minute	Peak
		increment)	increment)	(m ³ /s)
		(mm)	(mm)	
Proposed method	Mean	8.86	12.30	2.11
D = 2 h, $H = 39.06$ mm, $T = 5$	50% probability level	8.36	11.61	2.04
years,	80% probability level	10.81	15.34	2.67
Imperviousness 72.3%	90% probability level	12.67	17.34	2.80
	95% probability level	14.07	19.43	2.81
Huff curve, 50% first quartile				
storm, $D = 2 h$, $H = 39.06 mm$,	-	6.64	12.89	2.03
Imperviousness 72.3%				
Alternating block method				
D = 2 h, $H = 39.06$ mm,	-	8.55	13.83	2.40
Imperviousness 72.3%				
Rational method				
$D = 10 \min, H = 13.83 \min,$	-	6.915	13.83	2.21
Imperviousness 72.3%				

Probability distribution functions of the peaks of hyetographs and inflow and outflow hydrograph at Steno dam, Aracthos river

Summary and Conclusions

- ✓ Utilises only the IDF curves as input data
- Represents the extreme values of rainfall for small durations and different levels of aggregation
- ✓ Generates an ensemble of design hyetographs all having the same storm duration and total depth instead of a single and arbitrary one
- Preserves the stochastic nature of real storm events (random shapes with more than one peaks)
- Introduces the stochastically generated hyetographs in rainfall - runoff and flood routing models

Summary and Conclusions (cont.)

- Computes the conditional probability distribution of outflow peaks (allowance for probabilistic design)
- Difficulty to combine the probability of nonexceedance of the total rainfall depth with the selected conditional probability level
- Antecedent conditions are not taken into full account (sensitivity analyses, mean values or random sampling of catchment characteristics)