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Ὕσον, ὕσον Ζεῦ κατὰ τῆς ἀρούρης τῶν Ἀθηναίων
Do rain, do rain Zeus against the earth of Athenians (Ancient Greek prayer)

0 20 40
km

0 20 40
km

Mean annual 
rainfall (mm) 

301- 400
401- 600
601- 800
801-1000

1001-1200
1201-1400
1401-1600
1601-1800
1801-1908

Altitude (m) 
0- 50

51- 200
201- 400
401- 600
601- 800
801-1200
1201-1600
1601-2600

D. Koutsoyiannis, The management of the Athens water resource system  4

Parts of the presentation

1. The Athens water resource system
History – Components – Technical characteristics

2. Hydrologic issues
Diagnosis – Explanation – Operational synthesis   

3. Hydrosystem operation issues 
Parameterization – Simulation – Optimization

4. Decision support tool integration
Data acquisition – Software systems – Management plans



D. Koutsoyiannis, The management of the Athens water resource system  5

Evolution of water consumption – Milestones
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The hydrosystem: Main components and evolution  
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Classification of water resources
 SURFACE WATER GROUNDWATER 
 

Basin 
Primary 

(Reservoirs) 
Secondary 

(Reservoirs) 
Backup  

(Boreholes) 
Evinos 
350 km2 

Evinos 
322 hm3/y 

  

Mornos 
557 km2 

Mornos 
319 hm3/y 

  

Boeoticos Kifisos 
– Yliki  
2400 km2 

 Yliki  
353 hm3/y 

B. Kifisos, middle course 
136 hm3/y 
Yliki region 85 hm3/y 

Haradros  
120 km2 

 Marathon 
10 hm3/y 

 

North Parnetha   Viliza 26 hm3/y 
Mavrosouvala 36 hm3/y 

 
Area Inflow Pumping capacity     High spill     High leakage      Pumping 
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Hydrosystem: Current structure

+ Boreholes (with connecting pipes)  + Pumping stations  + Small hydroelectric power plants
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Back in 1990s – Initial empirical observations

A similar «trend» in the 
rainfall time series
Explains the «trend» in 
runoff
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Return period of the persistent drought
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aggregate scales

{1}
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The complete Nilometer
series (622-1284 AD, 663 
years)
Upward and downward 
fluctuations on all 
scales
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* J. Beran (1994), Statistics for Long-Memory 
Processes, Chapman & Hall, New York, USA

The complete historic time 
series of Boeoticos
Kephisos runoff
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The fluctuations on many scales and the “Hurst phenomenon”

The “weird” (as compared to purely random processes) behavior of hydrologic 
and other geophysical processes was discovered by the English engineer 
E. H. Hurst* (1950) in the framework of the design of the High Aswan Dam in Nile
⇒ Hurst phenomenon
The Polish-French mathematician and engineer B. Mandelbrot (1965-1971)
related it to the biblical story of the seven fat and the seven thin cows ⇒ Joseph 
effect
The behavior has been characterized with several other names ⇒ long-term 
persistence, long-term memory, long-range dependence
Most of these names, even though correct, may be misleading for the 
conceptualization and understanding of the natural behavior and the causing 
mechanisms. Probably a better name ⇒ multi-scale fluctuation
The behavior was verified to be omnipresent, not only in geophysical processes 
(hydrologic, climatic), but also in biological (e.g. tree rings), technological (e.g. 
computer networks), social and economical (e.g. stock market)
In water resources design and management, it has unfavorable effects (increase 
of uncertainty)

* H. E. Hurst (1950), Long‐Term Storage Capacity of Reservoirs, Proc. American Society of Civil Engineers, 76(11)
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Easy detection and main effect of Hurst phenomenon 

Fundamental law of classic statistics

Modified law traced natural processes

Example 
To have  

n = 30 in classic statistics

n = 5 000 for the modified law with H = 0.8

StD[X
 –

n] = 
σ
n

 

X
 –

n = average of n variables 
σ = standard deviation of 

each variable 
n = aggregation scale 

(or sample size)  

StD[X
 –

n] = 
σ

n 1 – H , H > 0.5 

StD[X
 –

n]
 / σ = 10% Bomb in the

foundation of 
climatology

{1,3,14}
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Incongruity of natural processes with typical random processes :
(a) The Nilometer series
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H-1 = -0.21

Slope:
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Incongruity of natural processes with typical random processes :
(b) The Boeoticos Kephisos time series

Statistical characteristics of all processes

Sample
statistic

Runoff (mm) Rainfall (mm) Temperature (oC)

n 96 96 96

Cs 0.36 0.44 0.34

r1 0.34 0.10 0.31

m (mm) 197.6 658.4 17.0

s (mm) 87.6 158.9 0.72

H 0.79 0.64 0.72

The time series of the 
Boeoticos Kephisos runoff
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Mathematical description of the Hurst phenomenon
The mathematical description of the Hurst phenomenon is done on grounds of 
probability theory and particularly theory of stochastic process
The simple relationship

entails a definition (good for our purposes) of a model (stochastic process) reproducing 
the Hurst phenomenon; n is meant as a scale of aggregation (rather than sample size)  
(Hurst used a different formalism, in terms of the so called rescaled range, which is 
complicated and probably misleading)
Today the stochastic process with the above property is called a Self-Similar process 
with Stationary intervals or a Simple Scaling Stochastic process (abbreviated as an 
SSS process)
The SSS process was introduced by the Russian mathematician A. Kolmogorov* (1940) 
who called it Wiener Spiral
A significant contribution on the SSS process is due to the American mathematician 
J. Lamperti (1962) who called it a Semi-Stable Process
The link of the SSS process with the Hurst phenomenon is due to B. Mandelbrot (1965), 
who called it Fractional Brownian Noise

* A. N. Kolmogorov (1940), Wienersche Spiralen und einige andere interessante Kurven in Hilbertschen Raum, Comptes Rendus (Doklady) Acad. 
Sci. USSR (N.S.) 26, 115–118

StD[X
 –

n] = 
σ

n 1 – H 
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Back to Boeoticos Kephisos – Adoption of the SSS process
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Implications on uncertainty: Boeoticos Kephisos runoff

Classic model
Climate is what you expect
Weather is what you get

SSS model
Weather is what you get … immediately
Climate is what you get 

… if you keep expecting a long time

Total uncertainty in runoff (due 
to variability and parameter 

estimation)
% of average

Statistical model

Annual scale 30-year scale
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2. Hydrologic issues
2B. Explanation
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A climatic toy model: A simple system with nonlinear dynamics 
may produce the Hurst phenomenon

A simplified climatic system is 
represented as a circuit with two 
feedback mechanisms, a positive 
(amplifying the departure from a 
stationary state x*) and a negative
(reducing this departure)

The combined action of the two 
mechanisms could be represented 
by a generalized tent transform:

(2 – α) min (xt – 1, 1 – xt – 1)xt =――――――――――
1 – α min (xt – 1, 1 – xt – 1)

where 0 ≤ xt ≤ 1,  α < 2

The parameter α could be assumed 
to vary in time, following the same 
tent transform with a constant 
parameter β

Negative feedback
|1 – f2(xt – 1)| ≥ 1

Positive feedback
|1 – f1(xt – 1)| ≤ 1

I = xt– 1– x*

f2(xt ‐ 1) f1(xt ‐ 1)

+
+

O = xt – x*

1

{5}
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Demonstration continued: Toy model fitted to two long time series
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20 000-year moving average

The Vostok (Antarctica) 
ice core deuterium data 
set going back to 422 766 
years before present* 
Reconstructed 
temperature difference 
with reference to the mean 
recent time value 

* Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile I., Bender M., Chappellaz J., Davis J., Delaygue G., Delmotte M., Kotlyakov V.M., et 
al., Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429-436, 1999.

{5}
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Towards a more general explanation:
Nature loves extremes …

Why light follows the red 
paths from A to B (AB, ACB, 
ADB) and not other (the 
black) ones (e.g. AEB, AFB)?

The red paths are those that (a) 
reach the mirror and (b) form an 
angle of incidence equal to the 
angle of reflection

(True for most cases; not true for 
AB; not general or informative)

The red paths have minimum 
travel time (or length) 

(Not true for ADB)

The red paths have extreme 
(minimum or maximum) travel 
time (or length)

(True)
A semi-cylindrical mirror

θ
1 > θ

2

AB

C

E

D

F
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The light example – no mirror

 
Assume that light can travel from A to B 
along a broken line with a break point F 
with coordinates (x, y).   
(This is not restrictive: later we can add a 
second, third, … break points) 
The travel distance is s(x, y) = AF + FB 
where  

AF = (x – a)2 + y 2 

FB = (x + a)2 + y 2 
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B
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The light example with mirror

The mirror introduces an inequality 
constraint in the optimization: the 
point F should not be behind the 
mirror

Two points of local optima emerge on 
the mirror surface (the curve where 
the constraint is binding)  

2

2.05

2.1

2.15

2.2

2.25

-0.25 0 0.25 0.5 0.75 1

φ/(2π)

s

Local maximum: s = 2.24

Local minimum: s = 2

Close up along the mirror

s=1

1.25
1.5

1.75
2.0

2.25
2.5

2.75
3.0

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -0.5 0.5 1.5
x

y

The mirror assuming radius r = 1 

Local maximum: s = 2.24

Local minimum: s = 2

Global minimum: s = 1

D. Koutsoyiannis, The management of the Athens water resource system  26

How nature works?   (a hypothesis …)
Property

She preserves a few 
quantities
(mass, momentum 
energy, ….)

She optimizes a single 
quantity
(Dependent on the 
specific system -
Difficult to find what 
this quantity is)

She disallows some 
states
(Dependent on the 
specific system –
Maybe difficult to find)

Mathematical formulation

One equation per preserved quantity:

gi(s) = ci, i =  1, …, k

where ci constants; s the size n vector of state variables (n ≥ k,
sometimes n = ∞) 

A single “optimation”:

optimize f(s) 

[i.e. maximize/minimize f(s)] This is equivalent to many 
equations (as many as required to determine s)
Conversely, many equations can be combined into an “optimation”

Inequality constraints:

hj(s) ≥ 0,      j =  1, …, m

In conclusion, we  may find how nature works solving the problem:

optimize f(s)
s.t. gi(s) = ci, i =  1, …, k

hj(s) ≥ 0,      j =  1, …, m



D. Koutsoyiannis, The management of the Athens water resource system  27

The typical “optimizable” quantity in complex systems …

… is entropy – entropie – Entropie – entropia – entropía – entropi – entrópia –
entroopia – entropija – энтропия – ентропія – 熵 – エントロピー – س مقياس
– –אנטרופיה εντροπία
The word is ancient Greek (εντροπία, a feminine noun meaning: turning into; 
turning towards someone’s position; turning round and round)
The scientific term is due to Clausius (1850)

The entropy concept was fundamental to formulate the second law of 
thermodynamics
Boltzmann (1877), then complemented by Gibbs (1948), gave it a statistical 
mechanical content, showing that entropy of a macroscopical stationary state 
is proportional to the logarithm of the number w of possible microscopical
states that correspond to this macroscopical state
Shannon (1948) generalized the mathematical form of entropy and also 
explored it further. At the same time, Kolmogorov (1957) founded the concept 
on more mathematical grounds on the basis of the measure theory 
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What is entropy?
Entropy is defined on grounds of probability theory
For a discrete random variable X taking values xj with probability mass function 
pj ≡ p(xj), j = 1,…,w, the Boltzmann-Gibbs-Shannon (or extensive) entropy is defined as

For a continuous random variable X with probability density function f(x), the entropy is 
defined as

In both cases the entropy φ is a measure of uncertainty about X and equals the 
information gained when X is observed.
In other disciplines (statistical mechanics, thermodynamics, dynamical systems, fluid 
mechanics), entropy is regarded as a measure of order or disorder and complexity.
Generalizations of the entropy definition have been introduced more recently (Renyi, 
Tsallis)

 

φ := Ε[–ln f(Χ)] = –⌡⌠
–∞

∞

 f(x) ln f(x) dx,     where ⌡⌠
–∞

∞

 f(x) dx = 1 

 

 

φ := Ε[–ln p(Χ)] = – ∑
j = 1

w

 pj ln pj ,        where ∑
j = 1

w

 pj = 1 

 



D. Koutsoyiannis, The management of the Athens water resource system  29

Entropy maximization: The die example

What is the probability that the outcome of a 
toss of a die will be i? (i = 1, …, 6)
The entropy is: 

φ := Ε[–ln p(Χ)] = –p1 ln p1 – p2 ln p2 – … –p6 ln p6

The equality constraint (mass preservation) is
p1 + p2 + … + p6 = 1

The inequality constraint is pi ≥ 0
Solution of the optimization problem (e.g. by the Lagrange 
method) yields a single maximum: p1 = p2 = … = p6 = 1/6
This method, the application of the Maximum Entropy Principle 
(mathematically, an “optimation” form) is equivalent to the 
Principle of Insufficient Reason (Bernoulli-Laplace; 
mathematically, an “equation” form)

D. Koutsoyiannis, The management of the Athens water resource system  30

Entropy maximization: The loaded die example

What is the probability that the outcome of a 
toss of a die will be i (i = 1, …, 6) if we know that 
it is loaded, so that p6 – p1 = 0.2?

The IS principle does not work in this case

The ME principle works. We simply pose an additional constraint:

p6 – p1 = 0.2

The solution of the optimization 
problem (e.g. by the Lagrange 
method) is a single maximum:

0
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0.2

0.3

0.4
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i

p i Fair
Loaded
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Entropy maximization: The temperature example

What will be the temperature in my house (TH), compared to that of the 
environment (TE)? (Assume an open window and no heating equipment) 

Take a space of environment (E) in contact to 
the house (H) with volume equal to that of the house

Partition the continuous range of kinetic energy of 
molecules into several classes i = 1 (coldest), 2, …, k (hottest)

Denote pi the probability that a molecule belongs to class i, and partition it to 
pHi and pEi, if the molecule is in the house or the environment, respectively

Form the entropy in terms of pHi and pEi

Maximize entropy conditional on pHi + pEi = pi

The result is pHi = pEi

Equal number of molecules of each class are in the house and the
environment, so TH =TE

This could be obtained also from the IR principle 
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Formalization of the principle of maximum entropy

In a probabilistic context, the principle of ME was introduced by Janes
(1957)
In a probabilistic context, the principle of ME is used to infer unknown 
probabilities from known information
In a physical context, it determines thermodynamical states
The principle postulates that the entropy of a random variable should 
be at maximum, under some conditions, formulated as constraints,
which incorporate the information that is given about this variable
Typical constraints used in a probabilistic or physical context are:

⌡⌠
–∞

∞

 f(x) dx = 1,    Ε[Χ] = ⌡⌠
–∞

∞

 x f(x) dx = μ   

Ε[Χ 2] = ⌡⌠
–∞

∞

 x2 f(x) dx = σ2 + μ2,  Ε[Χi Xi + 1] = ⌡⌠
–∞

∞

  xi xi + 1 f(xi, xi + 1) dxi dxi + 1 = ρ σ2 + μ2

Mass Mean/Momentum

Dependence/StressVariance/Energy

x ≥ 0 

Non‐negativity
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Some results of ME interesting to hydrology
Assume that a hydrometeorological variable X (e.g. temperature, rainfall, 
runoff) is continuous and positive, has known mean µ and known variation
σ/µ. Estimate the distribution function with only this information, applying the 
ME principle 
The results are:

Maximum entropy + Low variation → (Truncated) normal distribution
Maximum entropy + High variation → Power-type (Pareto) distribution
Maximum entropy + High variation + High return periods → State scaling 

The celebrated state scaling (xT ~ T κ,where T is the return period and xT the 
corresponding quantile) is only: 

a consequence of the ME principle,
an approximation, good for high return periods and for variables with high 
variation

Real world time series (especially long ones) validate the applicability of the 
ME principle in hydrometeorological processes

{7}
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ME application to extreme daily rainfall worldwide

Data set: Daily rainfall from 168 stations worldwide each having at least 100 
years of measurements; series above threshold, standardized by mean and 
unified; period 1822-2002; 17922 station-years of data

0.1

1

10

0.1 1 10 100 1000 10000 100000

T  (years)

x

Empirical Pareto
Exponential Truncated Normal
Normal

Conclusion:
Scaling 
for T > ~50 yr

µ = 0.28 
(mean minus 
threshold)
σ/µ = 1.19 > 1
ME distribution: 

Pareto 
κ = 0.15
φq = 1.16

{7,9,10}
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Entropic quantities of a stochastic process
The order 1 entropy (or simply entropy or unconditional entropy) refers to the marginal 
distribution of the process Xi :

The order n entropy refers to the joint distribution of the vector of variables Xn = (X1, …, 
Xn) taking values xn = (x1, …, xn):

The order m conditional entropy refers to the distribution of a future variable (for one time 
step ahead) conditional on known m past and present variables (Papoulis, 1991):

φc,m := Ε[–ln f(Χ1|X0, …, X–m + 1)] = φm –φm - 1

The conditional entropy refers to the case where the entire past is observed:

φc := limm → ∞ φc,m

The information gain when present and past are observed is:

ψ := φ – φc

Note: notation assumes stationarity

 

φ := Ε[–ln f(Χi)] = –⌡⌠
–∞

∞

 f(x) ln f(x) dx,     where ⌡⌠
–∞

∞

 f(x) dx = 1

 

 

φn := Ε[–ln f(Χn)] = –⌡⌠
Dn

 

 f(xn) ln f(xn) dxn 
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Entropy maximization for a stochastic process  
The purpose is to determine not only marginal probabilities but the dependence 
structure as well

All five constrains are used (mass/mean/variance/dependence/non-negativity)

The lag one autocorrelation (used in the dependence constraint) is determined for the 
basic (annual) scale but the entropy maximization is done on other scales as well

The variation is low (σ/µ << 1) and thus the process is virtually Gaussian (intermediate 
result). This is valid for annual and over-annual time scales

For a Gaussian process the nth order entropy is given as

where δn is the determinant of the autocovariance matrix cn := Cov[Xn, Xn].

The autocovariance function is assumed unknown to be determined by application of 
the ME principle. Additional constraints for this are:

Mathematical feasibility, i.e. positive definiteness of cn (positive δn)

Physical feasibility, i.e. autocorrelation function (a) positive and (b) non increasing 
with lag and time scale
(Note: periodicity that may result in negative autocorrelations is not considered 
here due to annual and over-annual time scales) 

φn = ln (2 πe)n δn

{8}
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Demonstration: 
Maximization of 
unconditional 
entropy 
averaged over 
ranges of scales
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Conclusion: 
As the range of 
time scales widens, 
the dependence 
tends to SSS

{8}
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Results of the ME principle in stochastic processes

Maximum entropy + Low variation + Dominance of a single time 
scale → Normal distribution + Time independence 

Maximum entropy + Low variation + Time dependence + 
Dominance of a single time scale → Normal distribution + 
Markovian (short-range) time dependence 

Maximum entropy + Low variation + Time dependence + Equal 
importance of time scales → Normal distribution + Time scaling 
(long-range dependence / Hurst phenomenon)

The time scaling behavior is a result of the principle of maximum 
entropy 

The omnipresence of time scaling in numerous long hydrologic 
time series, validates the applicability of the ME principle

{8}
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Another peculiar dependence explained by ME

Rainfall at small scales is 
intermittent
The dependence of the rainfall 
occurrence process is not 
Markovian neither scaling but 
in between; it has been known 
as clustering or overdispersion
The models used for the 
rainfall occurrence process 
(point processes) are 
essentially those describing 
clustering of stars and galaxies
The ME principle applied with 
the binary state rainfall process 
in more or less the same way 
as in the continuous state 
process explains this 
dependence 
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k

p (k )

Data points used for model construction

Model

Data points used for model verification

Probability p(k) that an interval of k hours is dry, 
as estimated from the Athens rainfall data set 
and predicted by the model of maximum entropy 
for the entire year (full triangles and full line) and 
the dry season (empty triangles and dashed line)

{2}

D. Koutsoyiannis, The management of the Athens water resource system  40

Interpretation of results

The successful application of the ME principle in nature offers an explanation 
for of a plethora of phenomena (e.g. thermodynamic) and statistical behaviors 
including 

the emergence of normal distribution, in many (but not all) cases

the scaling behavior in state, in other cases

the scaling behavior in time

the clustering behavior in rainfall occurrence

This can be interpreted as dominance of uncertainty or ignorance in nature

It harmonizes with the Socratic view: «Ἕν οἶδα, ὃτι οὐδέν οἶδα» (One I know, 
that I know nothing) 

This view was not a confession of modesty – Socrates regarded the 
knowledge of ignorance as a matter of supremacy

In this respect, the knowledge of the dominance of uncertainty can assist to 
safer design and management of hydrosystems

{2,7,8}



2. Hydrologic issues
2C. Operational synthesis
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Stochastic simulation/forecasting of hydrologic processes

Question: Why simulated series?
Answer:

Analytical solutions for a hydrosystem as complex as that of Athens 
are not feasible or would assume oversimplification of the system
Of numerical methods, Monte Carlo simulation (stochastic 
simulation) is the most convenient
Detailed inflow and other (rainfall, evaporation) hydrologic series are 
needed at many sites simultaneously and at several time scales for 
Monte Carlo simulation the hydrosystem
The acceptable failure probability level for Athens is of the order of 
10–2: one failure in 100 years on the average
For a reasonable estimation error in the failure probability we need 
1000-10 000 years of data
Historic hydrologic records are too short
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Requirements for stochastic simulation

1. Multivariate model

2. Multiple time scales of operation: annual to monthly or sub-monthly

3. Multiple time scales of preservation: multi-year (reproduction of the Hurst 
phenomenon) to sub-monthly (reproduction of sub-annual periodicity)

4. Preservation of essential marginal statistics up to third order (skewness)

5. Preservation of joint second order statistics 

autocorrelations of any type and any lag 

concurrent cross-correlations

6. Parsimony of parameters

7. Performance in simulation mode (steady state simulations) and in forecast 
mode, given the current and historic values (terminating simulations)

Models with such features did not exist (particularly, the ARMA type models 
were not useful)
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Stochastic simulation strategy

Stage 1: Generate annual time series 

Use a parsimonious model yet capable of describing over-annual 
scaling

No need to describe sub-annual periodicity

Stage 2: Disaggregate the annual into sub-annual time series 

Use a parsimonious model structure such as PAR(1)

Couple it to the annual model

So, no need to describe over-annual scaling explicitly

A one stage procedure to handle over-annual and sub-annual 
properties simultaneously has also been studied but not implemented 
operationally so far

{6,18,19}
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Annual model: The generalized autocovariance function (GAS)
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General GAS expression

γj = γ0 (1 + κ β |j|α)–1/β

where γj : lag j autocovariance; 
γ0: variance; κ, α, β: parameters

Fittings options

Optimize parameters to best 
fit historic autocorrelograms

Preserve explicitly γ1, γ2 and 
Hurst exponent

Explicit preservation of more 
γi is also possible

GAS behavior

For β = 0 ⇒ ARMA: 
γj = γ0 exp (–κ |j|α)

For κ = (1/β) (1 – 1/β)–β

(1 – 1 / 2β)–β and α = 1 ⇒
FGN

{19}
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Annual model: Generalized generating scheme for any covariance 
structure
Typical (backward) moving average (BMA) scheme: Xi = … + a1 Vi – 1 + a0 Vi 
where Vi independent random variables and ai numerical coefficients

Symmetric moving average (SMA) scheme Xi = … + a1 Vi – 1 + a0 Vi + a1 Vi + 1 + …

SMA has several 
advantages over BMA. 
Among them, it allows 
a closed solution for ai:

sa(ω) = [2 sγ(ω)]1/2

where sa(ω) and sγ(ω) the 
Discrete Fourier Transforms
of the series aj and γj, 
respectively.

Both schemes are applicable 
for multivariate problems
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Annual model: Stochastic simulation in forecast mode

In forecast mode, the observed present and past values must 
condition the hydrologic time series of the future
This is attainable using a two-step algorithm
1. Generate future time series without reference to the known 

present and past values
2. Adjust future time series using the known present and past 

values and a linear adjusting algorithm
The linear adjusting algorithm:
1. is expressed in terms of covariances among variables
2. preserves exactly means, variances and covariances
3. is easily implemented

{19}
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Coupling stochastic models of different time scales

The linear 

transformation 

Xs = X
~

s + h (Zp – Z
~

p)  

where  

h = Cov[Xs, Zp] ⋅ 
  {Cov[Zp, Zp]}

–1  

preserves the vectors 

of means, the 

variance-covariance 

matrix and any linear 

relationship that holds 

among Xs and Zp.  

Coupling 
transformation

f(X
~

s, Z
~

p, Zp)

X
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sXs

Zp Z
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p
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Step 3: 
Constructed by 
aggregating X

~
s

Step 1 (Input):

annual model

Step 4 (Output) 

Step 2: 
Generated by a
monthly model

Auxiliary 
processes

“Actual”
processes

Monthly level

Annual level

Generated by the

The parsimonious 
PAR(1) model 

could be used here

{18,22}
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Handling of skewness in multivariate problems: 
Optimized decomposition of covariance matrices

Consider any linear multivariate stochastic model of the form 
Y = a Z + b V

where Y: vector of variables to be generated, Z: vector of variables with known values, 
V: vector of innovations, and a and b: matrices of parameters 
The parameter matrix b is related to a covariance matrix c by

b bT = c
This equation may have infinite solutions or no solution (if c is not positive definite)
The skewness coefficients ξ of innovations V depend on b
The smaller the values of ξ, the more attainable the preservation of the skewness 
coefficients of the actual variables Y
Therefore, the problem of determination of b can be seen as an optimization problem 
that combines

minimization of skewness ξ, and
minimization of the error ||b bT – c||

A fast optimisation algorithm has been developed for this problem
The algorithm works even for c that are not positive definite

{20}
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Models developed are not only stochastic …
In the Boeoticos Kephisos River basin a hydrologic model of the entire hydrologic 
cycle had to be developed, which was demanding due to the extended karstic 
activity and the intensive withdrawals for irrigation

permeability terrain slope

hydrologic
response units

groundwater 
cells

{4,11}



3. Hydrosystem operation issues 
Parameterization – Simulation – Optimization
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Typical problems to be answered

Find the maximum possible annual release from the system: 
for a certain (acceptable) reliability level (steady state conditions)
for a certain combination of the system components (e.g. primary resources)

and determine the corresponding:
optimal operation policy (storage allocation; conveyance allocation; pumping 
operation)
cost (in terms of energy; economy; other impacts)

Find the minimum total cost
for a given water demand (less than the maximum possible annual release)
for a certain (acceptable) reliability level

and determine the corresponding:
combination of the system components to be enabled
optimal operation policy (storage allocation; conveyance allocation; pumping 
operation)
alternative operation policies (that can satisfy the demand but with higher cost) 

{12,13,17}
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Categories of problems

Steady state problems for the current hydrosystem
(e.g., previous slide)

Problems involving time 
Availability of water resources in the months to come
Impact of a management practice to the future availability of water resources
Evolution of the operation policy for a temporally varying demand

Investigation of scenarios  
Hydrosystem structure: Impacts of new components (aqueducts, pumping stations 
etc.)
Demand: Feasibility of expansion of domain
Hydroclimatic inputs: Climate change

Adequacy/safety under exceptional events – Required measures
Damages
Special demand occasions (e.g. 2004 Olympic Games)
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The methodology: General aspects

Question 1: Simulation or optimization?
Simulation versus optimization (water resources literature and practice)

Simulation methods for optimization (more mathematical literature)

Answer: Optimization coupled with simulation

Question 2: Which are the control (decision) variables?
Typically: Releases from system components in each time step

Main advantages
Detailed and faithful system representation 
Better understanding of the system operation
Incorporation of stochastic models

Main advantages
Determination of optimal policies
Incorporation of mathematical 
optimization techniques 

Answer: Introduction of parametric control rules with few 
parameters as control variables

{15,21}
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{12,13,15,17}
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Introduction to the parametric reservoir operation rule –
Some analytical solutions

Case a: no conveyance restrictions; 
no leakages

Solution: Probability of spill equal at all 
reservoirs (New York Rule; Clark, 1950)
Under certain (rather common) conditions 
about the distribution of inflows:

Notation: i = Reservoir index, Κ = Storage capacity, S = Storage, V = ΣS, CQ = Cumulative inflow, Ε[ ] = expectation, C = Conveyance capacity

Case c: restricted conveyance capacity; 
insignificant spills; no leakages

Solution:

Maximize release from a simple reservoir system with single water use

Case b: no conveyance restrictions; 
significant leakages; insignificant spills 

Solution:

Space rule
(Bower et al., 1962)
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∑ −

=
−

][][ CQE

VK

CQE
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i

ii

Leakage rule (Nalbantis & 
Koutsoyiannis, 1997)
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Conveyance rule (Nalbantis
& Koutsoyiannis, 1997)
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{21}



D. Koutsoyiannis, The management of the Athens water resource system  57

Formulation of the parametric reservoir operation rule

Total system storage (V = ΣS)

Ta
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 re
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rv

oi
r s

to
ra

ge
 (S

i)

K1

K2
K3

ΣK

Initial linear parametric form
Si

* = ai + bi`V (parameters ai, bi)
subject to    Σai = 0, Σbi = 1, 
since           ΣSi

* = V

Adjusted, nonlinear form

Si΄΄* = Si΄* + (V – ΣSi΄
*) 

Si΄*(1 – Si΄*/ Ki) 

ΣSi΄*(1 – Si΄*/ Ki) 

Two parameters per reservoir (ai, bi) = Control variables
Parameter values determined by optimization – depending on the objective function
Parameters may depend also on season (e.g., refilling-emptying period, or months)
2 × (reservoirs – 1) × seasons total parameters for the reservoir system 

Corrected for physical constraints
0 ai + bi`V < 0
ai + bi`V 0 ≤ ai + bi`V ≤ Ki
Ki ai + bi`V > Ki

Si΄* =

{15,21}
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A comparison with non-parametric optimization
Problem: Find the maximum release that can be ensured by a system of 3 reservoirs with 
reliability 99% (probability of failure 1%). Use 1000 years of simulated data with monthly 
time step. Assume steady state conditions.

Number of control variables:
1000 × 12 monthly releases
× (3 – 1) reservoirs + 1 (problem target)
= 24001

Number of control variables:
2 parameters/reservoir/ season 
× (3 – 1) reservoirs × 2 seasons 
+ 1 (problem target) 
= 9 (as an order of magnitude)

Parametric rule based optimizationNon-parametric optimization

Cannot be combined with simulation
All physical constraints of the system must 
be entered as problem constraints

Can be combined with simulation
Physical constraints of the system are 
handled by the simulation model

Control variables depend on inflow series
Implicit assumption of known inflows 
(perfect foresight)

Control variables do not depend on inflow 
series but on their statistical properties
No assumption of known inflows

The optimization model needs continuous 
runs with updated data

Once parameters are optimized, the system 
can be operated without running the model

{15,21}
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Application of the parametric rule – Optimal results 
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Considering the complete hydrosystem – Simulation

Assuming that parameters ai and bi are known, the target 
releases from each reservoir will be also known in the beginning 
of each simulation time step 

The actual releases depend on several attributes of the 
hydrosystem (physical constraints)

Their estimation is done using simulation

Within simulation, an internal optimization procedure may be 
necessary (typically linear, nonparametric)

Because parameters ai and bi are not known, but rather are to be 
optimized, simulation is driven by an external optimization
procedure (nonlinear)

{17}
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Hydrosystem components and attributes

Reservoir
Storage, S
Target release, R

Junction

Consumption point 
Demand, D

One direction aqueduct
Conveyance capacity, C
Unit conveyance cost, u

Two direction aqueduct
Conveyance capacities, Cfor, Crev
Unit conveyance costs, ufor, urev

1

2

3

654

7 8

{12,17}

D. Koutsoyiannis, The management of the Athens water resource system  62

Conveyance problem formulation

1

2

3

654

7 8

Given: 
• Demands (D) 
• Reservoir storages (S), 
• Reservoir target releases (R ≤ S; ΣR

= ΣD; from parametric rule) 

Required: 
• Actual (feasible) consumptions 

(at consumption points)
• Actual (feasible) releases 

(from reservoirs)
• Aqueduct discharges
• Conveyance cost

Conditions:
• If possible, no deficits at consumption 

points
• If possible, releases from reservoirs 

equal to target releases
• Minimum conveyance cost

{12,17}
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Transformations of hydrosystem components to 
graph components

One direction 
aqueduct EdgeC, u C, u

Two direction 
aqueduct 

Two conjugate 
edges

Cfor , ufor , 
Crev , urev

Cfor , ufor

Crev , urev

Junction
Node

Consumption 
point

D

One node
+ two edges
(one with known 
discharge, D)

D, uHD, 0 Very high unit cost uH
for deficit

a

c

b

∞, uh

Reservoir S, R

S, 0

R, 0

∞, 0
∞, 0

Three nodes
+ Five edges
(one with known 
discharge, S)

High unit cost uh for 
release exceeding target

{12,17}
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Hydrosystem and its transformation to digraph
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{12,17}
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Digraph solution by linear programming

1a

1c

1b

4 5 6
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3c
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2a
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2b

Determine all unknown 
discharges Qij at edges ij, by 
minimizing total cost

TC = Σij uij Qij

subject to equality constraints
for each node i

Σj Qij – Σj Qji = 0

and to inequality constraints
for each edge ij

0 ≤ Qij ≤ Cij

{12,17}
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General evaluation and extensions of the 
parameterization-simulation-optimization method

Is parametric rule underparametrized?
Nonlinear expressions with three parameters per reservoir did not outperform
Homogeneous linear expressions (one parameter per reservoir, ai = 0) result in 
almost same optimal solutions
Considering seasonality (2 seasons) may improve results (slightly) 

How results of parametric rule based optimization compare to those of nonparametric 
optimization methods?

Generally, they are not inferior
In the non realistic case of perfect foresight, high dimensional methods may 
outperform parametric method with no foresight (slightly, by about 2%)
In practice, in complex nonlinear problems the parametric method yields better 
solutions due to more effective locating of global optimum

Is the parameterization appropriate for all water uses and hydrosystems?
Yes, but different parameterizations may be needed for different components (e.g. 
aquifers) 
Successful application to hydropower systems

{15,21}



Decision support tool integration
Data acquisition – Software systems – Management plans
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Decision support tool structure

Water resources prediction module

Hydrosystem control module

Geographical Information System

Measuring system

Data

Database 

management 

system

{13}



D. Koutsoyiannis, The management of the Athens water resource system  69

Measuring system Central data base
(archiving and 

processing of data)

Meteorological 
station (10 min step) 

Rainfall, Temperature, 
Humidity, Wind, Radiation, 

Sunshine duration

Reservoir elevation 
gage

(1 h time step)

River level gage
(10 min time step)

River flow 
measuring station
(~once a month)

Central data 
collection unit

(daily transmission 
by phone) 

Evinos Peripheral 
Data Center

Mornos Peripheral 
Data Center

Hylike Peripheral 
Data Center

Marathon Peripheral 
Data Center
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Data management and processing: Time series manipulation

FROM 
ASCII TO DB

RANGE CHECK
TIME CONSISTENCY

AGGREGATION

INFILLING 
OF MISSING 

VALUES 
FROM OTHER 

STATIONS

FIXING OF 
TIME STEP

AGGREGATION

COALITION OF 
SEVERAL SENSORS

AGGREGATION

AGGREGATION

INFILLING OF 
MISSING VALUES 

FROM 
OTHER STATIONS

telemetric
raw 
data

raw data
irregular 
time step

10 minute 
processed 

data

hourly 
aggregated 

data

daily 
aggregated 

data

daily 
filled 
data

monthly 
aggregated 

data

monthly 
filled 
data

annual 
aggregated 

data

daily 
coalesced 

data

METEOROLOGICAL STATIONS
More than 100 time series per station

About one million records per station per year
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Software system characteristics

All models written from scratch

Basic development tool: Delphi (Object Pascal)

Database: Oracle (more recently:  PostgreSQL)

Geographic system: ArcView

Basic software units

Hydrognomon: Database management, processing of 
hydrologic data

Castalia: Stochastic hydrologic simulator

Hydrogeios: Simulation of surface and ground water 
processes

Hydronomeas: Hydrosystem control
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Hydrognomon: Processing of hydrologic time series
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Hydrognomon: Automatic lumped hydrologic modeling
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Hydrogeios: Detailed geo-hydrologic modeling
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Castalia:
Parameter 
estimation-
Parameters of 
autocorrelation 
and persistence
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Castalia:
Stochastic 
simulation
without long 
term 
persistence
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Castalia:
Stochastic 
simulation
with long term 
persistence
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Castalia:
Stochastic 
forecasting
with long term 
persistence
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Castalia:
Preservation
of marginal 
statistics –
Skewness

Oct        Nov        Dec      Jan         Feb       Mar       Apr        May       Jun        Jul         Aug        Sep       Annual
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Hydronomeas: Hydrosystem data management
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Hydronomeas: Visualization of hydrosystem simulation
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Hydronomeas: Stochastic forecast of hydrosystem storage

Evolution of 
quantiles of 
system storage 
(for several 
levels of 
probability of 
exceedance) for 
the next 10 
years as a result 
of 200 
terminating  
simulations with 
long-term 
persistence
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Hydronomeas: Optimal hydrosystem control rules

Target allocation 
of total reservoir 
storage per each 
reservoir
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Hydronomeas: Reservoir balance
Inflows Outflows



D. Koutsoyiannis, The management of the Athens water resource system  85

Hydronomeas: Time profile of failure probabilities

Number of 
failures in a 
total of 200
stochastic 
scenarios
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Hydronomeas: Reporting
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Management plans and every day operation of the hydrosystem
Every five years a master plan of the water supply of Athens is elaborated (the first 
was issued in 2000)
Every year the master plan is revised based on current data and model runs 
Every three months the annual plan is reassessed and, if necessary, updated by new 
model runs
Meanwhile, the every day management is based on optimal parametric operation rules 
Models are run for a 10-year lead time to account for long-term effects of today’s 
decisions
The general management targets are: 

Adequacy of water resources
Adequacy of conveyance system
Cost effectiveness

All management is based on a probabilistic approach of forecasts/risk/reliability 
assuming:

Acceptable reliability 99% on an annual basis
Potential for further increase of reliability taking into account elasticity of demand 
and emergency measures in case of impending failure 

So far, the decision support tool and its modules (thoroughly tested for the Olympics 
2004) exhibited good performance
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Early stage

The Hadrianean aqueduct

Supplementary water collection and distribution in 
Athens (early 20th century until 1930s)
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Marathon dam

Today

Construction of 
spillway, 1928

Construction of dam, 1928

D. Koutsoyiannis, The management of the Athens water resource system  92

Marathon dam (2)

Devastating 
flood, 1926

Inauguration of 
Boyati tunnel, 1928

Marathon spillway 
in action, 1941



D. Koutsoyiannis, The management of the Athens water resource system  93

Hylike lake and 
pumping stations

Hylike lake

Hylike, main pumping station Kiourka pumping station

Hylike, floating pumping stations
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Mornos reservoir 
and aqueduct

Mornos reservoir

Mornos canal at Delphi

Siphon at 
Distomo

Mornos canal at 
Thebes plain
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Control of Mornos 
aqueduct

Canal flow control construction

Aqueduct 
supervizing & 
control centre
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Evinos dam and 
tunnel

Construction of the Evinos-Mornos
connection tunnel

Evinos dam during construction
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Treatment plants

Perissos water treatment plant

Aspropyrgos water treatment plant
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