
 

 

 

Are hydrologic processes chaotic? 

Demetris Koutsoyiannis  
Department of Water Resources, Faculty of Civil Engineering, 

National Technical University, Athens  

Heroon Polytechneiou 5, GR-157 80 Zographou, Greece 

(dk@hydro.ntua.gr; http://www.hydro.civil.ntua.gr/faculty/dk/) 

Paper submitted to Water Resources Research 

August 2001



2 

 

Abstract.  

Several recent studies have claimed for discovering low-dimensional determinism in 

hydrologic processes, such as rainfall and runoff, using methods of chaotic analysis. Such 

results, however, are questionable. It is shown that in some cases merely the careful 

application of concepts of dynamical systems, without doing any calculation, provides strong 

indications that hydrologic processes cannot be (low-dimensional) deterministic chaotic. 

Furthermore, it is shown that specific peculiarities of hydrologic processes on fine scales, 

such as asymmetric, J-shaped distribution functions, intermittency, and high autocorrelations, 

are synergistic factors that can lead to misleading conclusions regarding presence of (low-

dimensional) deterministic chaos. In addition it is shown that to accurately estimate chaotic 

descriptors of hydrologic processes huge data sets are demanded; the required size is 

quantified by statistical reasoning and is not met in hydrologic records. All these arguments 

are demonstrated using appropriately synthesized theoretical examples. Finally, in light of the 

theoretical analyses and arguments, typical real-world hydrometeorological time series, such 

as relative humidity, rainfall, and runoff, are explored and none of them is found to indicate 

the presence of chaos but, rather, all must be regarded as the outcomes of stochastic systems.  

GAP index terms: 1869 Stochastic processes, 3240 Chaos, 3220 Nonlinear dynamics 
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1. Introduction 

 The impressive results of chaos analysis of simple physical and mathematical systems in 

the last two decades offered an alternative way to view natural systems. Specifically, it 

became clear that a simple deterministic system, even with one degree of freedom, can have a 

complex, random-appearing evolution. Obviously, however, the inverse is not true: Complex 

or erratic-appearing phenomena can be chaotic and thus deterministic, but they can also well 

be random.  

 Classifying a physical system either as a random one or as a chaotic deterministic one is 

not an easy task. For example, the throw of dice, still (many years after Albert Einstein’s 

famous apothegm) is regarded as the most typical example of a random system, even though 

its outcome depends on a few collisions of a cube onto a plane, whose deterministic dynamics 

can be understood rather easily. On the other hand, more recently, much more complex 

natural processes, like meteorological and hydrological, have been regarded by many 

researchers as chaotic systems.  

 Loosely speaking, the complexity of a deterministic system depends on the number of 

degrees of freedom, or dimension of the system attractor, and on how many of them are 

associated with sensitive dependence on initial conditions. The latter are quantified by the 

positive Lyapunov exponents associated to the system dynamics. Chaotic systems are in fact 

the simplest possible deterministic systems with sensitivity to initial conditions: those that 

they have one positive Lyapunov exponent [Kantz and Schreiber, 1997, pp. 183, 241], and 

typically have attractor dimension less than two [Kantz and Schreiber, 1997, p. 183]. For 

systems with more than one positive Lyapunof exponent the term hyperchaos has been coined 

[Rössler, 1979; Kantz and Schreiber, 1997, pp. 183, 241]. Alternatively, chaotic and 

hyperchaotic systems are also known as low-dimensional chaotic and high-dimensional 



4 

 

chaotic, respectively. Following Kantz and Schreiber[ 1997, pp. 183, 241], in this paper the 

term low-dimensional chaos is used as synonymous to chaos. 

 While numerous chaotic systems have been studied thoroughly, only few experimental 

observations of hyperchaos have been recorded. To explain this lack of higher dimensional 

experimental attractors, Kantz and Schreiber [1997, p. 241] offer two possible explanations: 

maybe typical systems in nature possess either exactly one or very many positive Lyapunof 

exponents, or the reason is that systems with a higher than three dimensional attractor are very 

difficult to analyze. The systems with very many positive Lyapunof exponents are better 

modeled based on stochastic models. Theoretically, stochastic models imply infinitely many 

degrees of freedom (infinite dimensional systems).  

 Traditionally, stochastic models have been the preferred mathematical tools in hydrology 

and water resources modeling. Hydrologic processes have been most frequently modeled as 

stochastic processes, which can easily incorporate any existing deterministic component of 

the natural processes (e.g., periodicity) in addition to random components. However, in the 

last decade, the charming possibility that a complex hydrologic system with irregular time 

evolution may au fond be a simple chaotic system has motivated several researchers to 

analyze hydrologic processes using mathematical tools of the chaos literature. Their intention 

and hope was to discover simplicity and universal determinism in place of what was earlier 

considered as weak deterministic components superimposed on random components. Thus, an 

increasing number of studies have tried to show that hydrologic processes are chaotic. 

Sivakumar [2000] reviews most of the studies related to chaotic analysis of hydrologic 

processes. Table 1 summarizes a number of such studies with their most important 

characteristics and findings. The processes considered are mainly rainfall and runoff, and in 

one case (#9) lake storage. The time scales used vary from 15 seconds to one month. In two 

cases (#3 and #5) the data series used are not regular time series but inverse time series 

(raingauge tip time corresponding to increase of rainfall depth by 0.01 mm). The data sizes 



5 

 

vary from 1572 to 70 000. Only in three cases (#1, #4, and #8) the analyses indicate absence 

of determinism, whereas in 12 cases the authors claimed that they discovered deterministic 

attractors with dimensions varying from 0.45 to 9.  

 The attempts to discover chaos in natural phenomena are not exhausted to hydrology. As 

pointed out by Provenzale et al [1992],  

“… the desire for finding a chaotic attractor has led to a naïve application of the analysis 

methods; as a result, the number of claims on the presence of strange attractors in vastly 

different physical, chemical, biological and astronomical systems has grown 

(exponentially?)”. 

Here they quote a statement by Grassbrerger et al. [1991]:  

“… most (if not all) of these claims have to be taken with much caution”.  

They also note that convincing evidence for chaos most commonly arises when spatial 

complexity of the system is limited, a condition that could be true for experimental systems, 

but is by far untrue for hydrologic and other geophysical processes.  

 These quotes have not been the only ones expressing skepticism about the discovery of 

chaos in natural phenomena. Ghilardi and Rosso [1990] in their discussion of the work by 

Rodriguez-Iturbe et al. [1989] (item #2 in Table 1) provide several arguments to show that the 

latter work gives insufficient support to the presence of chaotic dynamics with a strange 

attractor. Wilcox et al. [1991] (item #4 in Table 1) point out that runoff is complex not 

because of underlying low-dimensional chaotic dynamics, but rather, because of complicated 

interactions of the many factors that affect runoff. Koutsoyiannis and Pachakis [1996] (item 

#8 in Table 1) show that an observed rainfall time series and a synthetic one generated by a 

well structured stochastic model are indistinguishable from each other even if tools of chaotic 

dynamics are used to characterize and compare the series; thus, given that the stochastic series 

is infinite dimensional, the observed series must be infinite dimensional, too.  
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 The present paper attempts to proceed a step further than simply express skepticism about 

the discovery of chaos in hydrologic processes. Specifically, it shows that the hypothesis that 

hydrologic time series manifest stochastic, rather than chaotic, systems cannot be rejected 

using the standard procedures of chaotic analysis. In addition, it locates critical points that 

may lead to an erroneous conclusion that a stochastic hydrologic system is chaotic; such 

issues may have influenced earlier studies that identified chaos in hydrology. Furthermore, it 

suggests ways to bypass these critical points and avoid erroneous conclusions.  

 To this aim, the paper first briefly reviews some basic concepts chaotic behavior, such as 

concepts of dynamical systems and attractors, delay embedding and reconstruction of 

dynamics, and the typical procedure for identifying chaos based on the estimation of attractor 

dimensions (section 2). Subsequently, it shows that in some cases merely the careful 

application of the concepts of dynamical systems, without doing any calculation, provides 

strong indications that hydrologic processes cannot be chaotic. Furthermore, it shows that 

specific peculiarities of hydrologic processes on fine scales, such as asymmetric, J-shaped 

distribution functions, intermittency, and high autocorrelations, are synergistic factors that can 

lead to misleading conclusions regarding presence of chaos, and in addition demand huge data 

sets, whose size is quantified by statistical reasoning, to accurately estimate chaotic 

descriptors. All these arguments are demonstrated using appropriately synthesized theoretical 

examples (section 3). Finally, in light of the theoretical analyses and arguments, typical real-

world hydrometeorological time series, such as relative humidity, rainfall, and runoff, are 

explored and none of them is found to indicate the presence of chaos (section 4). Some 

mathematical derivations that support the theoretical analysis have been separated from the 

text and are given in Appendices.  
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2. Descriptors of chaotic behavior 

2.1 Dynamical systems and attractors 

 The nonlinear time series methods which are applied in hydrology are based on the theory 

of dynamical systems; these are characterized by (a) a phase or state space on which the 

motion of the system takes place, (b) a rule stating where to go next from the system current 

position (also known as system dynamics), and (c) a time set that describes the moments at 

which movements from one position to another take place.  

 Typically, the phase space M is a finite-dimensional vector space R m and the state of the 

system is specified by a vector x with size m. The time set is typically either the set of integers 

I (discrete time) or the set of real numbers R (continuous time). The system dynamics is a 

family of transformations St: M → M (where t denotes time) satisfying [Lasota and Mackey, 

1994, p. 191] 

 S0(x) = x,     St(St΄(x)) = St + t΄(x),   x ∈ M (1) 

In discrete time, the system dynamics is completely determined by the m-dimensional map S1, 

i.e., 

 xn + 1 = S1(xn),        n ∈ I (2) 

In continuous time the dynamics is described as a system of m ordinary differential equations 

 
dx(t)

dt  = s(x(t)),      t ∈ R (3) 

whose solution defines the family of transformations St. 

 For a given initial point x0 or x(0) the sequence of points xn = Sn(x0) or the function x(t) = 

St(x(0)) considered as a function of n or t is called a trajectory of the dynamical system. In the 

so called dissipative dynamical systems, characterized by |det J| < 1 (where J := dS1 / dx is 
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the Jacobian matrix of S1) or div s < 0, the trajectory of the system, after some transient time, 

is attracted to some subset A of the phase space. This set itself is invariant under the 

dynamical evolution (St(A) = A) and is called the attractor of the system [Kantz and Schreiber, 

1997, p. 32]. Only three types of attractors can occur [e.g., Lasota and Mackey, 1994, p. 192; 

Kantz and Schreiber, 1997, p. 32]: (a) fixed points indicating that the system settles to a 

stagnant state, i.e., 

 xn = x0   or   St(x(0)) = x(0),     for all n or t (4) 

(b) limit cycles, indicating periodic motion with period ω, i.e.,  

 xn + ω = x0   or   St + ω(x(0)) = x(0),      for all n or t (5) 

and (c) nonintersecting trajectories, in which case 

 xn1 ≠ xn2
   or   St1(x(0)) ≠ St2(x(0)),     for all n1 ≠ n2 or t1 ≠ t2 (6) 

For a system in continuous time with a 2-dimensional state space the fixed point and cycle are 

the only possibilities, whereas for 3 dimensions and beyond the more interesting 

nonintersecting attractors can occur, which typically exhibit fractal structure and are called 

strange attractors. For systems in discrete time the nonintersecting attractors can occur even in 

a 2-dimensional state space.  

2.2 Delay embedding and reconstruction of dynamics 

 In this paper, as in other similar hydrologic applications of chaotic dynamics, we consider 

only systems expressed in terms of a single scalar real quantity y (e.g., rainfall, runoff, etc.). 

Such a system evolves in continuous time, and its m-dimensional state x is theoretically 

expressed in terms of the quantity y and a number m – 1 of its derivatives with respect to time, 
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i.e., x(t) = [y(t), y΄(t), … y(m – 1) (t)]T (where (y(k) = dky / dyk and the superscript T denotes the 

transpose of a vector or matrix). 

 However, in practice we can only have observations of the quantity y on discrete time 

intervals ∆t and no observations of its derivatives at all. Therefore, we study the system as if it 

were a discrete time system using the so-called delay vectors 

 xn := [yn, yn – τ, …, yn – (m – 1)τ]T (7)  

where we denote yn = y(n ∆t) and τ is a positive integer.  By studying the simplified discrete 

time system we can infer the properties of the original system since, according to Takens’ 

embedding theorem [Takens, 1981], for properly chosen embedding dimension m and time 

delay τ, the discrete time system will trace out a trajectory that represents a smooth coordinate 

transformation of the original trajectory of the system.  

 Thus, the Takens theorem allows for the reconstruction of the dynamics of the system 

using a time series of a single scalar observable. If the only given information is the time 

series, in the beginning we do not know what is the proper embedding dimension m. This 

dimension depends on the dimension D of the attractor. The latter dimension has important 

content as it represents the number of local directions available to the system and so it 

provides an estimate of the number of degrees of freedom needed to describe the state of the 

system [Gershenfeld and Weigend, 1993, p. 48].  

 According to Whitney’s [1936] embedding theorem, which was generalized for fractal 

objects by Sauer et al. [1991], any D-dimensional object (precisely, any D-dimensional 

smooth manifold) can be embedded in an m-dimensional Euclidean space if m > 2D. For 

example, a one-dimensional curve of any shape can always be embedded in a 3-dimensional 

Euclidean space (and all higher-dimensional spaces), but it cannot be embedded in a 2-

dimesional space because, except for special cases, it will overlap itself (this will be further 

clarified in section 3.1; see also Kantz and Schreiber [1997, p. 128]). Thus, an attractor of the 
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nonintersecting type with dimension 1 will intersect itself in a 2-dimesional space but not in a 

3-dimesional space.  

 Therefore, if we knew the dimension D of the attractor, we would choose the state vector 

size m as the smallest integer that is greater than 2D. But since we do not know D when we 

work with merely the time series, we follow an iterative procedure. For trial m = 1, 2, …, we 

estimate the dimension D(m) of the trajectory of the system at the m-dimensional space, until 

D(m) becomes constant with the further increase of m. This constant value is the dimension of 

the attractor.  

2.3 Estimation of dimensions 

 The problem arises then how we can estimate the dimension D of a trajectory or attractor A 

in an m-dimensional vector space. The estimate of a dimension is typically done in terms of 

either entropies or correlation sums. Here the description of entropies and correlation sums is 

generalized for any set A that is a subset of an m-dimensional metric space with a normalized 

measure µ( ) defined on its Borel field. In our case, for m = 1, the set A may represent all 

possible values of a hydrological variable such as rainfall or runoff at a specified time scale, 

which is the set of positive real numbers R+. It may also represent all values in a certain 

observed time series of the same variable, in which case A is a finite subset of R+. 

Accordingly, for m > 1, the set may represent the delay vectors. 

 Let us consider a partition of the set A into ν(ε) boxes (hypercubes) A1, A2, …, Aν(ε) with 

length scale (i.e., edge length of each hypercube) ε. The generalized entropy of order q of A, 

denoted as Iq(ε) is [Rényi, 1970] 

 Iq(ε) := 
1

1 – q ln ∑
i = 1

ν(ε)

 pi
q (8) 

where pi is the measure of the part of the set A contained in the ith hypercube, that is, pi = 

µ(Ai), such that 
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 ∑
i = 1

 ν(ε)
 pi = 1 (9) 

If the set A consists of N observed values (points in the m-dimensional space) and Ni of them 

are contained in the ith hypercube Ai, then pi = Ni / N. Accordingly, if this set is the sample 

space of a vector of random variables X then each hypercube Ai represents an event and pi = 

Pr(X ∈ Ai) where Pr( ) denotes probability. 

 Definition (8) applies for q ≠ 1. Taking the limit for q → 1 and using de l’Hospital’s rule 

we get  

 I1(ε) := – ∑
i = 1

ν(ε)

 pi ln pi (10) 

which is the typical definition of entropy in probability theory.  

 The generalized dimension of order q of the set under examination is defined by the 

following equation [Grassberger, 1983]: 

 Dq = 
 

lim
ε → 0

 
–Iq(ε)
ln ε  (11) 

Applying de l’Hospital’s rule in (11) we get  

 Dq = 
 

lim
ε → 0

 
d(–Iq(ε))
d(ln ε)  (12) 

The latter expression is more advantageous than (11) for numerical applications since the 

convergence of the derivative is faster. 

 For low values of q we have the most frequently used dimensions. Thus, for q = 0 we have 

the so-called box counting or capacity dimension D0, for q = 1 the information dimension D1, 

and for q = 2 we have the correlation dimension D2. For simple geometrical objects such as 

lines or surfaces, all Dq are equal to the integer topological dimension (1 for a line, 2 for a 

surface, etc.). For more complex mathematical objects including (but not exclusively) fractal 

objects, they are not necessarily integers, nor all Dq are necessarily equal to each other. The 
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most important among generalized dimensions is the capacity dimension D0, because this is in 

fact the one used in the extension by Sauer et al. [1991] of the Whitney’s [1936] embedding 

theorem mentioned above. However the most frequently used is the correlation dimension D2, 

because it is more accurately estimated via the so-called correlation sums or integrals. 

 For a finite sample A of observations x, the generalized correlation sum of order q, for 

integer q ≥ 2, is defined by 

 Cq(ε) = N−q {number of q-tuples (xj1, …, xjq) with all ||xjs − xjr|| < ε} (13) 

This was introduced by Grassberger [1983] and has the important property 

 Cq(ε) ≈ exp[(1 – q) Iq(ε)] (14) 

Thus, for integer q ≥ 2, we can replace –Iq(ε) with ln Cq(ε) / (q – 1) in the calculation of 

dimensions using the above equations, since the estimation of Cq(ε) is more accurate than that 

of Iq(ε) [Grassberger and Procaccia, 1983; Grassberger, 1983]. In practice however, only the 

correlation sum C2(ε) for q = 2 is used, because the calculation of higher-order sums is 

extremely time consuming. (In fact, even for q = 2 the calculation is time consuming. The 

correlation sum of order 2, or simply correlation sum, is given by the following equation that 

is a consequence of (13): 

 C2(ε) = 
2

(N – k) (N – k – 1) ∑i = 1

N

  ∑
j = i + w

N

   H(ε – ||Xi – Xj||) (15) 

where H is the Heaviside’s step function, with H(u) = 1 for u > 0 and H(u) = 0 for u ≤ 0 and w 

an integer constant, which for uncorrelated time series is assumed zero but for correlated ones 

takes a nonzero value to exclude from the estimation those pairs of points that are close in 

time [Kantz and Schreiber, 1997, p. 74]. For the calculation of the distance ||Xi - Xj||, the 

maximum norm is usually used as it reduces the computational time [Hübner et al., 1993]. 
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The correlation sum C2(ε) expresses the average proportion of pairs of points having distance 

smaller than ε between them.  

2.4 Typical procedure for identifying chaos 

 Typically, the estimation of the correlation dimension D2 of a set A of delay vectors x in an 

m-dimensional space, constructed from a series of N observations, is based on the correlation 

sum. The estimation procedure, known as Grassberger-Procaccia algorithm (after 

Grassberger and Procacia [1983]) consists of the following typical steps: 

 1. Calculate the correlation sum C2(ε, m) for several values of the length scale ε. 

 2. Make a log-log plot of C2(ε, m) versus ε and a plot of the local slope d2(ε, m)versus log ε, 

where 

 d2(ε, m) := 
∆[ln C2(ε, m)]

∆[ln ε]  (16) 

and locate a region with constant slope, known as a scaling region [e.g., Hübner et al., 1993]. 

 3. Calculate the slope of the scaling region, which is the estimate of the correlation 

dimension D2(m) of the set for the embedding dimension m. 

 As explained above this is done iteratively for m = 1, 2, … and iterations stop when D2(m) 

saturates to a constant value D2, independent of m. The convergence of D2(m) to the value D2 

verifies that a D2-dimentional attractor (a) exists, which means that the system under study is 

deterministic; (b) has been identified; and (c) can been embedded in an m-dimensional space 

where m is the minimum integer for which D2(m) = D2. Conversely, if D2(m) does not become 

constant for increasing m the system is characterized as stochastic, rather than deterministic. 

Thus, the above procedure has been used to identify whether a system is chaotic deterministic 

or stochastic, using only a time series of an observable of the system. This procedure has been 

applied in most of the hydrologic applications mentioned in the introduction. 
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 Several authors have warned that the procedure has several critical points that must receive 

a lot of attention [see discussions in Tsonis, 1992; Tsonis et al., 1993; Kantz and Schreiber, 

1997; Graf von Hardenberg, 1997a; Sivakumar, 2000; among others], otherwise the results 

may be flawed. In the next section 3 we will show that such critical points may have not given 

the required attention in some hydrologic applications that claim for chaos in hydrologic 

processes. We also introduce some additional critical points whose ignorance could result in 

erroneous interpretations. 

3. Important issues in identifying chaos in hydrological processes 

3.1 A conceptual approach to the dimensionality of a hydrologic attractor 

 Before applying any algorithm to quantify the dimensionality of an attractor in a 

hydrological process, it would be a good idea to try a more conceptual approach and to 

determine, if possible, what would be a reasonable expectation of this dimensionality. 

 Let us start with the rainfall process in discrete time on daily scale (the same reasoning 

applies in finer timescales as well). For this process and scale we observe in Table 1 that two 

studies (items #6 and #12) have claimed for chaos with dimensionality D2 as low as 1 to 2.5, 

whereas other two studies have argued that no saturation appears (items #4 and #8), which 

may mean that the rainfall process is better modeled as a stochastic process (with infinite 

dimensionality).  

 In a daily rainfall time series there exist periods with zero rainfall. Let k be the maximum 

observed dry period in days. For example, in Athens, Greece, from a 132-year record of 

rainfall record we know that k = 120 days (4 months). We set n = 1 the day when this dry 

period starts, so that the rainfall depths yn for n = 1 to k are all zero. Let us assume that the 

rainfall at the examined location is the outcome of a deterministic system whose attractor can 

be embedded in R m for some integer m. This attractor is reconstructing using delay 

embedding with delay τ. Furthermore, let us assume that m < (k – 1) / τ + 1. Then, there exist 
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at least two delay vectors with all their components equal to zero. Namely, xk = [yk, yk – τ, yk –

 2τ, …, yk – (m – 1) τ ]T = 0 and xk – 1 = xk = [yk – 1, y k – 1 – τ, y k – 1 – 2τ, …, y k – 1 – (m – 1) τ]T = 0 where 0 

is the zero vector. Therefore xk = S1(xk – 1) = S1(0) = 0, and since the system is deterministic, it 

will result in xn = 0 for any n > 0 (since xk + 1 = S1(xk) = S1(0) = 0, etc.). That is, given that 

rainfall is zero for a period k, it will be zero forever, which means that the attractor is a single 

point. This of course is absurd and thus the embedding dimension should be m ≥ (k – 1) / τ + 

1. Now, Whitney’s [1936] embedding theorem [Kantz and Schreiber, 1997, p. 126] tells us 

that the attractor should have dimension D ≥ (m – 1)/2 and, hence, D ≥ (k – 1) / 2τ. For 

example, if the maximum dry period is four months as in the Athens example (k = 120) and 

we assume a ‘safe’ delay τ = 10 (we will discuss it further in section 3.5), the above analysis 

results in an embedding dimension at least 12 and an attractor dimension at least 6.  

 This value of the attractor dimension is much higher that the ones shown in Table 1 for the 

daily rainfall applications. In fact, however, it is still too low. In this reasoning, we have 

considered rainfall as a discrete time process. If we consider it as a continuous time process, 

as in fact is, then instead of assuming x as a vector of delay coordinates, we must regard it as 

x(t) = [y(t), y΄(t), … y(m – 1) (t)]T, as explained in section 2.2. Now, at any time within a dry 

period we have x(t) = 0 regardless of the dimension m used (the rainfall depth and all its 

derivatives of any order are zero). Clearly, then the attractor cannot be of the nonintersecting 

type (since x(t) = 0 for several, in fact infinite, values of t) but it will be of the fixed-point 

type, the fixed point being the zero vector. Of course, this is not true, because at some time 

the system will depart from the ‘attracting’ zero point. Thus, the system that is described by 

the rainfall depth is not deterministic but rather stochastic and thus it does not have a finite 

dimensional attractor.  

 This reasoning applies also to finer time scales, as well. On coarser time scales, such as 

monthly, it may be the case (for wet areas) that the zero rainfall values do not occur. 

However, if the rainfall process is high- or infinite-dimensional on fine timescales, naturally it 
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will be high- or infinite-dimensional on coarser time scales as well. In addition, since rainfall 

is the input that mobilizes all other hydrologic processes in a catchment, the number of 

degrees of freedom of any other hydrologic process (e.g. streamflow) will be at least equal to 

that of rainfall. Moreover, if rainfall is indeed stochastic, stochastic will be all other processes 

in the catchment. 

 Until now our conceptual approach does not use any algorithm at all. After the application 

of the algorithm, it could be a good idea to examine whether its results are conceptually 

consistent and meaningful. For example, if the attractor dimension was found to be as low as 

one or even smaller, as indeed happens in some of the applications contained in Table 1 

(items #7, #12, and some cases of #6), then it would have a direct geometrical interpretation. 

To demonstrate what an attractor with dimension 1 looks like we constructed an example 

from a system with known chaotic dynamics. We started with the well-known logistic 

equation zn = a zn – 1 (1 – zn – 1) with a = 3.97977, which has one degree of freedom and thus a 

one-dimensional attractor. Then, to make the attractor more interesting, we routed zn through 

a linear filter to obtain the series yn := b0 zn + b1 zn – 1 + b2 zn – 2 + b3 zn – 3 + b4 zn – 4 with b0 = 1, 

b1 =2, b2 =1.5, b3 = 1, and b0 = 0.5. Here we did not introduce any additional degree of 

freedom and thus yn still has a one-dimensional attractor; this was verified using the 

Grassberger-Procaccia algorithm. The attractor, constructed graphically using 10 000 points, 

is shown in Figure 1 in a 2-dimensional (upper panel) and a 3-dimensional (lower panel) 

space. That the dimension of the attractor is one is obvious in both panels, although the 2-

dimensional graph is not appropriate to show the nonintersecting type of the attractor (it 

intersects itself).  

 Now if we do the same work with a hydrological series, what we obtain is totally different. 

In Figure 2 we have plotted in a 2-dimensional (upper panel) and a 3-dimensional (lower 

panel) space an “attractor” using 10 000 points of a daily rainfall series, which will be 

discussed further in section 4.1. These graphs are typical for any daily rainfall series. One 
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cannot locate any one-dimensional structure in such graphs. On the contrary, the cloud of 

points fills all space both in two and three dimensions. Therefore its topological dimension, 

which is expressed by the capacity dimension D0, equals the embedding dimension, that is, 2 

in the upper panel and 3 in the lower panel. As we show in section 3.2, the correlation 

dimension of this 2- or 3-dimensional space filling cloud could be 1 or even less, but this is 

totally irrelevant. What matters is the fact that the cloud of points fills up space and, thus, the 

capacity dimension equals the embedding dimension. 

 One may argue that the plots of Figure 2 are in two and three dimensions whereas items 

#7, #12 and #6 of Table 1 show that the embedding dimension should be at least 10 or more, 

up to 40. Here is another inconsistency of these results. If the attractor dimension was 1 or 

less, then, according to Whitney’s embedding theorem, a three dimensional embedding space 

would suffice to embed it. The fact that the estimated embedding dimension in these works is 

10-40 simply indicates that the results are flawed. 

 Another type of suspect results, which we meet in couples of items #6 and #7, and #13 and 

#14 of Table 1, is the fact that runoff appears to have an attractor with dimension lower than 

that of rainfall at the same area and timescale. As explained above, it is difficult to imagine 

how runoff (hydrologic system output) could have dimension smaller than rainfall 

(hydrologic system input).  

3.2 Capacity versus correlation dimension and the effect of an asymmetric 

distribution function 

 Wang and Gan [1998] have pointed out that the underlying distribution function plays a 

role in the estimation of correlation dimension. This they demonstrated using random data 

series generated from Gamma and Poisson distributions. They argued that the correlation 

dimension for these data series is underestimated due to a clustering feature, or an “edging 

effect”. In this section we analyze this issue theoretically and we show that small estimated 
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values of correlation dimension should not necessarily be interpreted as underestimated, as in 

fact can be correct estimates. 

  It can be easily shown that in random time series the capacity dimension D0(m) equals the 

embedding dimension, m, or, in other words, the time-delayed vectors fill up the embedding 

space. This has been given a key role in identifying chaos in hydrological processes and 

particularly in the characterization of a process of chaotic rather than stochastic. However, as 

discussed in sections 2.2 and 2.3, in identifying chaos the correlation dimension D2(m) rather 

than the capacity dimension D0(m) has been typically used. It is the rule that the correlation 

dimension of a random series D2(m) equals D0(m) and therefore the embedding dimension m. 

However, we show in Appendix 1 that this rule is valid only for square-integrable probability 

density functions f(y), i.e., those whose square integral over their domain A is finite, i.e.,  

 ⌡⌠
A

 
  f 2(y) dy < ∞ (17) 

In addition, we show that in purely random processes following non-symmetric J-shaped 

distributions, the rule is not valid and D2(m) is smaller than m. More specifically, we show 

that in such processes and for embedding dimension m = 1,  

 D2(1) = 2 + 2 
 

lim
ε → 0

 
ε f ΄(ε)

f(ε)  < 1 = D0(1) (18) 

where f ΄( ) is the derivative of f( ). By analogy, D2(m) = m D2(1) < m.  

 In addition, in Appendix 1 we show that in distribution functions typically used in 

hydrology such as Pareto, Gamma and Weibull, with shape parameter κ smaller than 1/2 or, 

equivalently, coefficients of skewness greater than 0.639, 2.83 and 6.62, respectively, the 

correlation dimension for embedding dimension 1 is D2(1) = 2 κ < 1. To demonstrate this we 

used a series of 10 000 random points generated from the Pareto distribution F(y) = yκ, 0 ≤ y ≤ 

1 with shape parameter κ = 1/8. Here we expect that D2(m) = 0.25 m. In Figure 3 we have 

plotted the estimated correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) 
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(lower panel) versus length scale ε for embedding dimensions m = 1 to 8. It should be noted 

that the length scales ε in this figure, as well as in all subsequent figures, are normalized (by 

rescaling data values in the interval [0, 1]). The empirical results in Figure 3, agree perfectly 

with the theoretical expectations (D2(1) = 0.25, D2(2) = 0.5, etc.). 

 Non-symmetric J-shaped distribution functions with large positive coefficients of skewness 

are the most common in hydrologic processes on fine time scales (e.g., hourly or daily), 

which are the most important scales when investigating the presence of determinism. 

Therefore, the correlation dimensions estimated from hydrologic data series do not 

correspond to the actual topological dimensions of the ‘attractors’. 

3.3 Effect of intermittency 

 Things are even worse when examining rainfall series, which on fine and intermediate time 

scales (e.g., finer than monthly) are characterized by the presence of zeros. As shown in 

Appendix 1, when the probability of having zero values is finite, the correlation dimension 

D2(m) for any m is exactly zero. This is demonstrated in Figure 4 where we have plotted the 

correlation sums from a series of 10 000 independent random values 80% of which are 

generated from the uniform distribution and the remaining 20% are zeros, located at random. 

Clearly the slopes of the correlation sums are zero for small length scale ε for all embedding 

dimensions, except for the very large ones (7 and 8) where the zero slope is not emerging due 

to insufficient number of points in the data set.  

 Therefore, looking for correlation dimensions in a fine scale rainfall series is totally 

useless: the correlation dimension is simply zero for any embedding dimension. Positive 

estimated dimensions, such as those in the range 0.95-2.5 (items #6 and #12 in Table 1) 

simply indicate that a wrong range of the scale length ε was used. For example, had we 

estimated the correlation dimension in Figure 4 around ε = 10–2, the resulting D2 would be in 

the range 0.2 to 1.5 for embedding dimensions 1 to 5. Note that, by definition (equations (11) 



20 

 

and (12)) the correlation dimension is theoretically determined for ε → 0, which means that in 

practice the lowest possible region of the length scale must be used in estimations. 

 The problems of intermittency are not exhausted to rainfall series that contain zeros. 

Streamflow series display a kind of intermittency, too, as the flow shifts among different 

regimes, low and regular flows, and floods. For such kinds of data series, that exhibit 

intermittency without including zeros, Graf von Hardenberg et al. [1997b] have shown that 

the standard algorithms fail to estimate correctly the dimensions of processes characterized by 

intermittency, while giving no warning of their failure. In addition, they demonstrated that the 

Grassberger-Procaccia algorithm, applied on a time series from a composite chaotic system 

with randomly driven intermittency, estimates a very small dimension (e.g. D2 = 1 or smaller) 

although the actual dimension of the system is infinite due to the random character of 

intermittency. Finally, they proposed ways to refine the algorithm so as to obtain correct 

results. The simplest of them is to filter the data by excluding all the delay vectors x having at 

least one component xi < c, where c an appropriate cutoff value (typically a small percentage, 

e.g. 5%, of the average of the data series) that leaves out all “off” data points of the 

intermittent time series. This simple algorithm was proven very effective. It must be noted, 

however, that it reduces dramatically the number of data points, especially for large 

embedding dimensions, and it is well-known that the number of data points is a crucial issue 

in estimating dimensions, as it will be further discussed just below, in section 3.4. 

 The results of Graf von Hardenberg et al. [1997a, b] have not been given attention in 

hydrologic applications, although hydrologic processes of central interest such as rainfall and 

runoff are intermittent. This may be a source of significant errors in hydrologic applications 

such as those summarized in Table 1, which as we demonstrate in next sections acts 

synergistically with other sources of errors, thus resulting in totally flawed results. 

 The effect of intermittency is closely related to the effect of an asymmetric distribution 

function. A J-shaped distribution that is defined for positive values of the variable and has a 
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high coefficient of skewness produces random points whose largest percentage are close zero 

whereas a small number of points can take extremely large values. This can be interpreted as 

virtually equivalent to intermittence. Therefore, the methods proposed by Graf von 

Hardenberg et al. [1997b] to recover from flawed values of dimensions are appropriate to 

recover from the effect of an asymmetric distribution function, as well. This will be 

demonstrated in section 3.5. 

3.4 Effect of data size 

 Kantz and Schreiber [1997, p. 242] show that we need extremely many data points to 

recover chaos from time series and also describe the high difficulties to identify the dynamics 

of high dimensional (e.g. with dimension higher than 1-2) systems. However, they avoid 

suggesting a specific formula to estimate the sufficient number of data points required. In 

hydrological applications two such formulae have been used, that by Smith [1988], 

 Nmin = 42m (19) 

and an approximation of the formula due to Nerenberg and Essex [1990], 

 Nmin = 102 + 0.4 m (20) 

The first suggests that more than 108 and 1016 data points are needed to estimate the 

correlation dimension for embedding dimensions m = 5 and 10, respectively. The second 

decreases these figures significantly to the level of 104 and 106 data points, respectively. Even 

in the second case, however, the required data points are too many even to allow us to think of 

applying the time delay embedding method for dimensions higher than 5. However, most 

authors, as shown in Table 1, have applied the method for embedding dimensions much 

higher than 5 (even up to 40) and interpreted the resulting correlation dimensions as accurate 

enough to assure chaotic dynamics. Generally, it is hoped that both formulae overestimate the 
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required number of data points [e.g. Sivakumar, 2000]. However, no proof was ever given that 

the formulae overestimate the required data size.  

 The problem of determining the data size is not in fact too difficult, as it can be reduced to 

a typical statistical problem. When we attempt to show that a time series originates from a 

low-dimensional deterministic system rather than a stochastic system, it is natural to make the 

null hypothesis that it originates from a stochastic system and then to reject this hypothesis. 

Under this null hypothesis, we can assume that the correlation sum for any length scale ε and 

any embedding dimension m is  

 C2(ε, m) = [C2(ε, 1)]m.  (21) 

In a stochastic system, C2(ε, m) expresses a probability: the probability that the distance of 

two points is less than ε. Using classic statistical techniques we show in Appendix 2 that the 

required data size to estimate C2(ε, m) is 

 Nmin = 2 (z(1 + γ) / 2 / c) [C2(ε–, 1)]–m / 2  (22) 

where za is the a-quantile of the standard normal distribution, γ is a confidence coefficient, c is 

the acceptable relative error in the estimation of C2(ε, m) and ε– is the highest possible length 

scale that suffices to accurately estimate the correlation dimension for embedding dimension 

1 (meaning that for ε > ε– becomes inaccurate). We can observe that the proposed formula (22) 

becomes identical to (20) if we assume (as typically in statistics) a confidence coefficient γ = 

0.95 for which z(1 + γ) / 2 = 1.96, an acceptable error c = 3% and a sufficient C2(ε–, 1) = 0.15 

(indeed, 20.5 (1.96 / 0.03) 0.15–m / 2 = 101.97 + 0.41m ≈ 102 + 0.4 m). However, (22) is a more general 

equation and the appropriate values of c and C2(ε–, 1) need to be more carefully selected.  

 We will demonstrate this result and its application using an example with a totally random 

system. Specifically, we use a sequence of 10 000 random numbers from the Weibull 

distribution with shape parameter κ = 1/8 (and scale parameter 1). We know from the 
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discussion of section 3.2 that, although the system is random, the correlation dimension D2(m) 

does not equal the embedding dimension m, but rather is 2 κ m = m / 4. In addition, since we 

know the probability distribution function, it is easy to calculate numerically (using equations 

(14) and (10)) the correlation sum C2(ε, 1) and the local slope d2(ε, 1) for any length scale ε. 

Then from (21) we can calculate C2(ε, m) and d2(ε, m) for any embedding dimension m. These 

theoretical C2(ε, m) and d2(ε, m) have been plotted in Figure 5 as continues curves. We 

observe from the lower panel of Figure 5 that, indeed, D2(1) = 0.25, but the curve d2(ε, 1) 

raises very slowly from d2(1, 1) = 0 to its limit value d2(0, 1) = D2(1) = 0.25, so that even for ε 

as low as 10–10 the theoretical value d2(10–10, 1) = 0.18 i.e., 28% smaller than the correlation 

dimension. Only at ε = 10–20 becomes 0.245 (only 2% smaller than the correlation dimension). 

Thus, we may assume that the highest acceptable ε is ε– = 10–20 and from the upper panel of 

Figure 5 we conclude that C2(ε–, 1) = 0.0011.  

 Until now we did not use the generated time series at all, nor any statistical approach. 

Now, let us make the statistical calculations. We assume an acceptable statistical error c in the 

estimation of C2(ε, m) equal to 1%. This is safe enough and is not too small as may seem at 

first glance: as demonstrated in Appendix 2, it corresponds to a much larger statistical error in 

d2(ε, m), which may be as high as 20%; this must be considered in addition to the 

“theoretical” error 2% discussed in the previous paragraph. Thus, the required number of 

points is Nmin = 20.5 × (1.96 / 0.01) × 0.0011–m / 2 = 102.44 + 1.48m = 301.65 + m. This results in 

values of Nmin much higher than those obtained from (20) and closer to those obtained by 

(19). (In fact the results of the current analysis are higher than those of (19) unless m > 17.) 

For instance, for m = 1, 2, 5 and 10 we get Nmin = 8 350, 252 000, 6.9×109, and 1.7×1017, 

respectively. This obviously means that is totally impractical to estimate correlation 

dimensions even for small dimensions, not only because of the difficulty to get such a large 

sample size (in our example this is not so important because data is synthesized) but also 
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because of the huge amount of calculations required (note that the number of comparisons is 

in fact proportional to Nmin
2m). 

 Because the actual data size in our example N = 10 000 is greater than Nmin = 8 350 for m = 

1, we can get a reliable estimate of C2(ε, 1) and d2(ε, 1) for ε even smaller than ε– = 10–20 down 

to a critical value ε–1. This can be estimated from (20) by replacing Nmin with N and ε– with ε–1. 

Solving then for C2(ε–, 1) we find for m = 1, C2(ε–1, 1) = 2 [z(1 + γ) / 2 / (c N)]2. In our example, 

C2(ε–1, 1) = 0.000768, which, according to the graph of the upper panel of Figure 5 (after a 

small extrapolation) corresponds to ε–1 = 2.1×10–21.  

 If the same data size N was used for all embedding dimensions, as is the case in most 

applications including this example, then the same critical value of C2 applies to all 

embedding dimensions, i.e.,  

 C2(ε–m, m) = C2(ε–1, 1) = 2 [z(1 + γ) / 2 / (c N)]2   (23) 

This has been plotted as a dashed straight line in the upper panel of Figure 5. This line is 

critical for our estimations as all points of C2(ε, m) lying below this line do not have the 

required accuracy. The intersections of this line with the different curves C2(ε, m) determine 

the critical ε–m for each embedding dimension m. Given ε–m we can find the corresponding 

d2(ε–m, m)  so we can plot a critical curve in the lower panel of Figure 5 (dashed line), above 

which all points do not have the required accuracy. We must note that this example was 

structured based on the known probability distribution function of the variable. However the 

method developed can be applied even when the distribution function is not known, as we 

will see in next examples. 

 In conclusion, the proposed approach to determine the required data size or, equivalently, 

the adequacy of estimations for a given data size, involves two characteristic length scales: the 

upper limit ε–, which is common for all embedding dimensions, and the lower limit ε–m which 

is an increasing function of dimension. The required data size Nmin for embedding dimension 
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m is determined setting ε–m = ε–, whereas for a given N an estimation is accurate when ε–m ≤ ε–. 

 Furthermore, the limits ε–m and ε– can be determined in a geometrical manner even without 

using the data size N. The steps are the following. 

1. Make plots of C2(ε, m) and d2(ε, m) for several embedding dimensions m. 

2. In the plot of d2(ε, 1) (i.e., for embedding dimension 1) locate a region where d2(ε, 1) 

becomes constant and relatively smooth. Set ε– and ε–1 the upper and lower limit of this 

area, respectively. (Above ε–, d2(ε, 1) is not constant and below ε–1 it becomes too 

rough). 

3. From the plot of C2(ε, 1) determine C2(ε–1, 1). 

4. Set C2(ε–m, m) = C2(ε–1, 1) and determine ε–m for each m. 

5. For those m where ε–m ≤ ε– and d2(ε, m) is relatively constant in the interval (ε–m, ε–), 

determine D2(m) as the average d2(ε, m) on this interval. For those m where ε–m > ε–, 

D2(m) cannot be determined.  

If for any reason the data size is different for different embedding dimensions (e.g. Nm), the 

equation in step 4 should be replaced by  

 C2(ε–m, m) = C2(ε–1, 1) (N1 / Nm)2. (24) 

 A geometrical view of the procedure is possible by plotting the curves ε = ε– and ε = ε–m in 

both diagrams of C2(ε, m) and d2(ε, m). This will become clearer in next examples. In the 

example of Figure 5 it is clear that only D2(1) can be estimated with N = 10 000 points, 

provided that ε– = 10–20. Had we, for instance, accepted a larger ε– = 10–10 we would able to 

estimate D2(2), D2(3) and D2(4) as well, as becomes apparent by observing the dashed curve 

in the lower panel of Figure 5. However, the cost we would have to pay in this case would be 

the underestimation of dimensions by 28%, as discussed above, which notably is due to 

theoretical rather than statistical reasons.  
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3.5 Effect of autocorrelation 

 Hydrologic time series, especially on fine time scales, are characterized by high 

autocorrelation coefficients. Autocorrelation in stochastic processes may be misleadingly 

interpreted as low dimensional determinism when applying the standard algorithms for 

estimating dimensions. Examples of a highly autocorrelated stochastic processes (including 

fractional Gaussian noise and other simpler linear and nonlinear processes) in which the naïve 

application of the standard methods leads erroneously to low dimensional attractors (down to 

1), have been offered by Osborne and Provenzale [1989]; Theiler [1991] and Provenzale et al. 

[1992] (see also Tsonis [1992, p. 174]).  

 The choice of a larger number of data points may not suffice to avoid such misleading 

results. Another important issue is the appropriate selection of the time delay τ in constructing 

delay vectors. Several authors have discussed this [see among others Tsonis, 1992, pp, 151-

156; Abarbenel et al., 1993; Kantz and Schreiber, 1997, pp. 130-134; Sivakumar, 2000]. The 

most common approach is to choose as τ the time where the autocorrelation function decays 

to 1 / e, whereas e in the base of the natural logarithms. Other options are to choose the time 

where the first minimum of the time delayed mutual information is located, or to optimize it 

inside the interval defined by the times of the 1 / e decay of autocorrelation and the minimum 

of mutual information. As an additional means of alleviating the effect of temporal correlation 

is to exclude delay vectors that are close in time. This is attained by adopting a relatively high 

value of w in equation (15) that is used for the estimation of correlation sums. 

 The effect of autocorrelation may act synergistically with the effect of an asymmetric 

distribution function and the effect of data size. To demonstrate this we considered a data 

series of 10 000 autocorrelated values with J-shaped distribution function. This was generated 

in the following manner: For the data point yn, 8 random numbers were generated at a first 

step from the Pareto distribution with shape parameter 1/8 and at a second step the random 

number whose logarithm was nearest to ln yn – 1 was chosen as yn. This technique resulted in a 
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series with a Markovian autocorrelation structure with lag one autocorrelation 0.72 and 

approximately Pareto distribution with shape parameter κ = 0.44. Therefore we expect that the 

correlation dimension in m dimensions of this series will be D2(m) = 2 κ m = 0.88 m. The 

empirical estimates of the correlation sums and their local slopes are shown in Figure 6. These 

estimates were based on delay time τ = 4, which corresponds to the 1 / e (= 0.37) decay of the 

autocorrelation function. We observe that the empirical correlation dimension for m = 1 

agrees perfectly with the theoretical expectation be D2(1) = 0.88. However the empirical 

D2(2) is around 1, significantly less than the expectation 1.76. The technique proposed in 

section 3.4 for assessing the accuracy of empirical estimation suggests that we cannot have 

accurate estimations of correlation dimensions for m > 2, as demonstrated graphically in 

Figure 6. If we ignored this and considered all estimated dimensions as accurate, we would 

conclude that correlation dimensions, estimated for ε in the interval (10–4, 10–3), saturate at 

about 1. Thus, we would claim that a purely stochastic system is a low-dimensional 

deterministic system.  

 The recover from this inaccurate result we can try a higher τ. However, to show the 

synergistic action of the several effects we chose another recovery technique. Specifically, we 

focused on the effect of the high skewness which can be remedied using the method due to 

Graf von Hardenberg et al. [1997b] (discussed in section 3.3) of cutting off the very small 

values. Applying a cutoff threshold 0.01, we determined the correlation sums and local slopes 

shown in Figure 7 (upper and lower panel, respectively). Clearly here, we observe that for m 

= 1 and 2, D2(m) = m, whereas for higher dimensions, although accurate estimations are not 

possible, the figures indicate a tendency for high dimensions. Thus, the cutoff technique helps 

to avoid erroneous results in this example. 
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4. Real world examples 

In light of the analyses of sections 3, in this section 4 we examine some real world 

hydrometeorological series, which include rainfall on daily, fine sub-daily, and monthly scale 

(sections 4.1, 4.2, and 4.3, respectively) relative humidity (section 4.4) and streamflow 

(section 4.5).  

4.1 Daily rainfall series 

 As explained in section 3.1, the role of rainfall is crucial in investigating chaos in 

hydrological processes, since rainfall is the input that mobilizes all other hydrologic processes 

in a catchment. In section 3.1 we also presented some arguments that the rainfall process 

cannot be low-dimensional deterministic without applying any algorithm to determine 

dimensions. However, it may have some interest to apply the standard algorithm to some 

historical rainfall data series. Several such series were examined and the results are in all 

cases similar. Here we present the results for one series, the daily data at the Vakari raingage, 

western Greece. This raingage is located in one of the wetter parts of Greece with 40% rainy 

days and a mean annual rain depth approaching 1700 mm. (According to the arguments of 

section 3.1 the wetter the climate regime the greater is the hope of lower dimensionality of the 

attractor). More than 31 years or 11 476 daily data values were available. Among these years, 

the maximum dry spell length is 47 days, that is, 2.5 times smaller that that of the Athens 

raingauge discussed in section 3.1. The mean, standard deviation and coefficient of skewness 

of the data record are 4.59 mm, 11.90 mm and 4.59, respectively. Had the zero values 

excluded from the record, these statistics would be 11.38, 16.55, and 2.96, respectively. In 

any case, the skewness is very high and the distribution is J-shaped. The lag-one 

autocorrelation of the series is 0.35, which means that a delay τ = 1 would suffice. Plots of the 

delay representation of the series in two and three dimensions are shown in Figure 2. 

However, for the application of the Grassberger-Procaccia algorithm we chose a much higher 
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(and thus safer) value, τ = 12, which we located as the position where the autocorrelation 

function has its first minimum.  

 In Figure 8 we have plotted the correlation sums C2(ε, m) (upper panel) and their local 

slopes d2(ε, m) (lower panel) versus length scale ε for embedding dimensions m = 1 to 8 

calculated from the this daily rainfall series. As expected (and already discussed in section 

3.1) due to the presence of zeroes in the data series the local slopes for all embedding 

dimensions become zero for small length scales (ε ≤ 0.0004). Thus, this figure says nothing 

about the capacity dimension of the ‘attractor’ of the rainfall process. If we incorrectly 

ignored the small length scales and instead, chose length scales in the region 0.01-0.1, we 

would come up with small positive dimensions, not exceeding 1.5 even for embedding 

dimensions 8. If we also continued the plots for embedding dimensions 10, 20, 30 and so on, 

totally ignoring the astronomical number of data points required to do estimations in these 

dimensions (as is the case in some of the articles of Table 1) it is very probable that we would 

conclude that there is a low dimensional chaotic attractor here with dimension 1.5. This, 

however, would be a totally erroneous result. 

 It is interesting to see what happens with this data series if we exclude zero data values and 

apply the algorithm due to Graf von Hardenberg et al. [1997b]. This is shown in Figure 9, 

where again we observe that the local slopes d2(ε, m) become zero for small scale lengths. In 

this case, this is the result of round-off errors in the data values, rather than a theoretically 

consistent result. Specifically, 5% of the values have been rounded as 0.1 mm (which is the 

limit of the measuring device), 4% as 0.2 mm, 3% as 0.3 mm and so on. This is equivalent to 

having finite probabilities of occurrence of these values, which in turn, as discussed in section 

3.1, results in zero slope of the correlation sum. The main difference of Figure 9 from Figure 

8 is that the even for large scale lengths the local slopes tend to more reasonable values, i.e., 

to about 0.7 for m = 1, 1.4 for m = 2, etc. To minimize the effect of round-off errors we also 

performed another application of the algorithm by Graf von Hardenberg et al. [1997b] 
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excluding data values that are less than 2 mm. In this case the data size becomes too low to 

allow for any accurate estimation but clearly shows that the correlation dimension D2(m) 

tends to the embedding dimension m, which means that the time series has a stochastic 

character. 

4.2 Storm data 

 If the presence of zeros in a rainfall time series is an strong obstacle to analyze the 

presence chaos, one may think that going to a much finer scale and limiting the analysis 

strictly on a rainy period (a single storm) he or she could identify the deterministic chaos in 

there. The idea of a deterministic evolution of a storm has been favored long before 

hydrologists be involved with chaos. For example, Eagleson [1970, p. 184] states “The 

spacing and sizing of individual events in the sequence is probabilistic, while the internal 

structure of a given storm may be largely deterministic”.  

 To explore this idea we used a storm time series measured with high temporal resolution. 

This data set corresponds to one of several storms that were measured by the 

Hydrometeorology Laboratory at the University of Iowa using devices that are capable of 

high sampling rates [Georgakakos et al., 1994]. The data is available on the Internet from 

ftp.iihr.uiowa.edu. Specifically, the data set used is that of the event labeled Rain 1, which 

occurred during 2-3 December 1990. This data set was the subject of several advanced and 

extensive analyses including multifractal analysis and multiplicative cascades [Carsteanu and 

Foufoula-Georgiou, 1996] and wavelet analysis [Kumar and Foufoula-Georgiou, 1997].  

 The duration of this storm was almost 27 h and the rain depth was measured every 10 s, so 

that the data set contains 9679 data points. The total depth is 104.9 mm, and the mean, 

maximum and minimum 10 s intensity are 3.89, 118.74, and 0.07 mm/h, respectively. The 

standard deviation of the 10-second intensities is 6.16 mm/h (1.58 times the mean) and their 

coefficient of skewness is 4.83. The distribution function is J-shaped and the gamma 
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distribution function with a shape parameter 0.40 gives an acceptable fit to the data series. 

The autocorrelation is very high. For lags 1, 100 and 500 is 0.88, 0.48 and 0.15, respectively, 

and only at lag 850 becomes zero. For high frequencies (> 4×10–3 cycles per second) the 

power spectrum is approximately a power function of frequency with an exponent 1.63 

(estimated by Georgakakos et al. [1994]).  

 The correlation sums C2(ε, m) of this time series for τ = 500 and their local slopes d2(ε, m) 

are plotted in Figure 10 versus length scale ε for embedding dimensions m = 1 to 8. Again 

here we observe zero slopes for low scale lengths. These again are due to round-off errors that 

artificially result in equal values: for example 217 values are 0.09 mm/h and 169 are 0.08 

mm/h. If we ignore the regions with zero slopes, and apply the statistical reasoning exhibited 

in section 3.4, we find that for the plot of m = 1 the upper limit for adequate estimations is ε– = 

0.008 and the lower limit for accurate estimations is ε–1 = 0.0014. For m = 2, we find from (24) 

that ε–2 = 0.0072 < ε–, whereas for all greater m, ε–m > ε–. Thus, D2(m) can be estimated only for 

m = 1 and 2, and the estimated values are D2(1) = 0.69 and D2(2) = 1.00. Given that the shape 

parameter of the gamma distribution is 0.40, the expected values for an entirely random series 

are 0.80 and 1.60 for m = 1 and 2 respectively. In any case, these results do not support nor 

prohibit the existence of low-dimensional deterministic dynamics.  

 As an additional analysis, we applied the Graf von Hardenberg et al. [1997b] algorithm 

excluding data values smaller than 1% of the maximum value and plotted the resulting 

correlation sums and local slopes in Figure 11. Now it can be observed that D2(1) = 1 and for 

higher dimensions, although no accurate estimations can be obtained, it is apparent the 

tendency that D2(m) = m, which indicates a stochastic behavior. 

4.3 Monthly rainfall series 

 It has been found that in some cases with many degrees of freedom, only a few of them 

remain active due to some collective behavior [Kantz and Schreiber, 1997, p. 34]. 
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Specifically, many systems are composed of a huge number of internal microscopic degrees 

of freedom, but nevertheless produce signals which are found to be low dimensional. The 

coupling between the different degrees of freedom and an external field of some kind, lead to 

collective behavior which is low dimensional. The reason is that most degrees of freedom are 

either not excited at all or “slaved”. [Kantz and Schreiber, 1997, p. 239].  

 By analogy, it may have meaning to study a hydrologic process on a coarse time scale and 

try to identify chaos. Even if the system on a fine scale appears as random, one may think of 

some collective behavior on the coarser scale, which could result in a low-dimensional 

attractor.  

 Here we present the results for one series on a coarse timescale, the monthly rainfall in at 

the station of the National Observatory in Athens, which is the longest rainfall record in 

Greece [see Koutsoyiannis and Baloutsos, 2000]. This corresponds to a dry climate with 

about 400 mm annual rainfall; in 9% of the months the rainfall is zero. More than 132 years or 

1586 monthly data values were available (August 1859 to September 1991). The mean, 

standard deviation and coefficient of skewness of the data record are 32.9 mm, 36.0 mm and 

1.75, respectively. Had the zero values excluded from the record, these statistics would be 

36.4, 36.2, and 1.70, respectively. Despite of the large skewness, the distribution is bell-

shaped. The autocorrelation coefficient of the series is 0.32 for lag one and decays quickly, so 

that it becomes negative for lag three. 

 The correlation sums and their local slopes of this series, excluding zero points and using 

delay τ = 1, are plotted in Figure 12 versus length scale ε for embedding dimensions m = 1 to 

8. Due to the small record size only the estimate of D2(1) is accurate (as verified from the 

graphical application of the procedure described in section 3.4 shown in Figure 12) and is 

about 1. For higher dimensions no accurate estimations can be obtained, but again the 

tendency is that D2(m) = m, which indicates a stochastic behavior. 



33 

 

4.4 Relative humidity series  

 Since we found difficulties in identifying chaos in rainfall on all timescales, it could be a 

good idea to move to another related process towards the direction of meteorology. The 

meteorological variable most closely related to rainfall is the relative humidity since when it 

rains, it approaches saturation (i.e., the value 100%). The data series we used is the relative 

humidity of the period 1 December 1998 to 4 February 2001 on hourly scale (18 888 data 

values) and comes from the meteorological station of the National Technical University in 

Athens (made available on the Internet at www.hydro.ntua.gr/meteo/); a few missing values 

were filled in by linear interpolation in time. Obviously, the relative humidity series is totally 

free from zeros and intermittency, which makes its study easier. The mean, standard deviation 

and coefficient of skewness of the data record are 60.2%, 17.2% and –0.26, respectively, 

whereas the minimum and maximum values are 12.3% and 99.0%. The distribution is bell-

shaped. The autocorrelation coefficient of the series is as high as 0.97 for lag one and decays 

slowly, so that it becomes smaller than 1/e only for lag 108.  

 The correlation sums C2(ε, m) of this time series for τ = 108 and their local slopes d2(ε, m) 

are plotted in Figure 13 versus length scale ε for embedding dimensions m = 1 to 8. We 

observe on the plots of m = 1 that a long scaling area appears between ε– = 0.08 and ε–1 = 

0.00092. Thus, ε–m < ε–, for m ≤ 4, as shown graphically in Figure 13, which means that D2(m) 

can be estimated accurately for m = 1 to 4. The estimated values are D2(m) = m, a result that 

again does not allow any hope for low-dimensional determinism.  

4.5 Daily streamflow series  

 Finally, we will study the most representative hydrological process using a daily 

streamflow series of the Pinios River, central-eastern Greece, at the Ali Efenti gage. The data 

series extends through the period 3 January 1972 to 18 March 1998 (8 246 data values of 

which 1435 were missing data that were left unfilled). As explained in section 3.3, a 
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streamflow series must be regarded as intermittent even if it is free from zeros. The mean, 

standard deviation and coefficient of skewness of the data record are 39.6 m3/s, 56.5 m3/s and 

3.46, respectively, whereas the minimum and maximum values are 1.0 m3/s and 553.5 m3/s. 

The distribution is very asymmetric yet bell-shaped. The autocorrelation coefficient of the 

series is as high as 0.86 for lag one and decays slowly, so that it becomes zero only for lag 94.  

 The correlation sums C2(ε, m) of this time series for τ = 94 and their local slopes d2(ε, m) 

are plotted in Figure 14 versus length scale ε for embedding dimensions m = 1 to 8. We 

observe on the plots of m = 1 that a scaling area appears between ε– = 0.06 and ε–1 = 0.001, 

whereas for all other m, ε–m > ε–, which means that an accurate estimation of D2(m) is possible 

only for m = 1; this is D2(1) ≈ 1. For higher embedding dimensions m, a tendency appears for 

D2(m) increasing with m, which again indicates a stochastic behavior.  

5. Summary and conclusions 

 Several recent studies using methods of chaotic analysis have claimed for discovering low-

dimensional determinism in hydrologic processes such as rainfall and runoff. Other studies 

have expressed skepticism about the results of the former ones, indicating that such results are 

suspect or erroneous due to naïve application of the theory and related algorithms. This paper 

has attempted to offer some additional insights on this debating discussion by studying 

several aspects of dynamical systems and their application to the characterization of the 

hydrologic processes. Specifically, it shows that in some cases merely the careful application 

of the concepts of dynamical systems, without doing any calculation, provides strong 

indications that hydrologic processes cannot be (low-dimensional) chaotic. Furthermore, it 

shows that specific peculiarities of hydrologic processes are synergistic factors that can lead 

to misleading conclusions regarding presence of chaos. 

 The arguments that are presented and studied in the paper are the following: 
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1. A time series that contains periods with zero values cannot be the outcome of a low-

dimensional deterministic dynamical system. In this respect rainfall cannot be a (low-

dimensional) chaotic process. 

2. In addition, since rainfall is the input that mobilizes all other hydrologic processes in a 

catchment, such as streamflow, these processes cannot be chaotic, too.  

3. An attractor dimension as low as 1 or even smaller, which some studies have claimed 

for in hydrological processes, should be directly visualized via delay representation 

graphs. This however, has never come into light, simply because in fact such graphs 

manifest space filling clouds rather than one-dimensional structures. 

4. The attractor dimension must be consistent with the dimension used to embed it 

according to Whitney’s embedding theorem. For example, if an attractor dimension 

was 1 or less, then a three dimensional embedding space would suffice to embed it. 

The fact that the required embedding dimension in some studies is as high as 10-40 

simply indicates that the results are flawed. 

5. The embedding theorems are in fact based on the concept of the capacity dimension 

whereas the standard algorithms to determine attractor dimensions use the concept of 

the correlation dimension. The two different dimensions are generally identical but not 

in hydrologic processes on fine time-scales. Specifically, it has been showed that if the 

distribution function is J-shaped with high skewness, as is the case with hydrologic 

processes on fine time-scales, the correlation dimension is smaller than the capacity 

dimension. This may lead to misleadingly small estimated dimensions. 

6. Intermittency (which is apparent in hydrologic processes – not only in rainfall but in 

streamflow as well) is another factor that can result in a misleading low attractor 

dimension even in stochastic, i.e. infinite dimensional, systems. This result has been 

known from earlier works but has not been given the required attention in 

hydrological studies investigating chaos. 
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7. Another known issue that has not been given the required attention in similar studies is 

the fact that we need extremely many data points to recover chaos from time series, 

which are hardly available for hydrologic processes. Using statistical reasoning we 

have shown that the required data size in hydrologic time series may be even more 

exceptionally high due to the asymmetric distribution functions. We also propose a 

methodology for estimating the required number of data points for a certain 

embedding dimension or, conversely, the maximum allowed embedding dimension to 

accurately recover chaotic dynamics for a given number of data points. It turns out that 

for typical applications, accurate estimations can be obtained only for embedding 

dimensions 1-2, which are hardly sufficient to recover dynamics.  

8. The high autocorrelation that characterizes many hydrologic processes, mostly on fine 

time-scales, is another factor that, acting synergistically with other factors such as 

asymmetric distribution and insufficient data size, may be misleadingly interpreted as 

low dimensional determinism when applying the standard algorithms for estimating 

dimensions. 

 All these arguments have been demonstrated using appropriately synthesized theoretical 

examples. Finally, in light of the theoretical analyses and arguments, typical real-world 

hydrometeorological time series, which include rainfall on daily, fine sub-daily, and monthly 

scale, relative humidity, and streamflow, have been explored and none of them is found to 

indicate the presence of chaos but, rather, all must be regarded as the outcomes of stochastic 

systems.  
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Appendix 1: Theoretical investigation of correlation dimension of 

asymmetric processes 

 Let Yn be a random process on discrete time n with all Yn (n = 1, 2, …) independent 

identically distributed positive variables with distribution function F(y) and density f(y). We 

assume that y > 0 (as happens with all hydrologic variables) and also y < ξ where the upper 

bound ξ could be finite or infinite. We will study the correlation dimension for embedding 

dimension m = 1. We consider a partition of the y domain with length scale ε. Applying (8) 

and (11) and observing that pi = F(i ε) – F((i – 1)ε) we find  

 D2 = 
 

lim
ε → 0

 
⎩
⎨
⎧ 
 

1
ln ε ln ∑

i = 1

ν(ε, ξ)

 [F(i ε) – F((i – 1)ε)]2
⎭
⎬
⎫ 
  (25) 

where ν(ε, ξ) is the smallest integer that is greater than or equal to ξ / ε. For small values of ε 

F(i ε) – F((i – 1)ε) = f(i ε) ε and therefore when ε → 0,  

 D2 = 1 + 
 

lim
ε → 0

 ⎣⎢
⎡ 
 

1
ln ε ln ∑

i = 1

ν(ε, ξ)

 f 2(i ε) ε⎦⎥
⎤ 
  (26) 

Also, when ε → 0,  

 ∑
i = 1

ν(ε, ξ)

 f 2(i ε) ε → ⌡⌠
0

ξ

  f 2(y) dy =: B (27) 

Obviously, if B converges then D2 = 1. This case is the most commonly met, since in most 

cases f(y) has a finite value for the entire domain of y. If f(y) is finite, B converges even if ξ is 

infinite. This is understood if we observe that in this case, there exists a y0 > 0 so that f (y) < 1 

for any y > y0 and therefore f 2(y) < f (y). Thus, the integral f 2(y) in [x0, ∞) is finite, and since 

f(y) is finite everywhere, the integral in [0, ∞) will be finite, too. Consequently the limit in 

(26) becomes zero and D2 = 1. 

 Now we consider the case that B does not converge. There are two possible necessary 

conditions that may lead to this case: f(y) tends to ∞ either when y tends to 0 or y tends to ξ 
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where ξ is finite. We concentrate on the first condition, which is the most interesting as far as 

hydrological processes are concerned. In this case only the first term (i = 1) of the sum in (25) 

is significant so that  

 D2 = 2 
 

lim
ε → 0

 
ln [F(ε)]

ln ε   (28) 

Applying de l’Hospital’s rule twice we get 

 D2 = 2 
 

lim
ε → 0

 
ε f(ε)
F(ε)  = 2 + 2 

 
lim
ε → 0

 
ε f ΄(ε)

f(ε)  (29) 

where f ΄( ) is the derivative of f( ). 

 Now let us view a few examples. First we consider the Pareto distribution, in which 

 F(y) = (y / a)κ,  f(y) = (κ / a) (y / a)κ – 1,  f ΄(y) = (κ – 1)(κ / a2) (y / a)κ – 2,  0 ≤ y ≤ a  (30) 

Here ξ = a. The integral B converges to (κ2 / a) / (2 κ – 1) when κ > 1 / 2 and diverges when κ 

< 1 / 2. Therefore, for κ > 1 / 2, D2 = 1, whereas for κ < 1 / 2,  

 D2 = 2 + 2 
 

lim
ε → 0

 
(κ – 1)(κ / aκ) εκ – 1

(κ / aκ) εκ – 1  = 2 κ (31) 

We note that the coefficient of skewness of this distribution is  

 Cs(κ) = 
2 (1 – κ) 2 + κ

 (3 + κ) κ
 (32) 

which means that the correlation dimension is smaller than 1 when the coefficient of 

skewness is greater than Cs(1 / 2) = 0.639. 

 In our second example we consider the gamma distribution, in which 

f(y) = [1 / a Γ(κ)] (y / a)κ – 1 e–y / a,  f ΄(y) = [1 / a2 Γ(κ)] (κ – 1 – y / a) (y / a)κ – 2 e–y / a,  y > 0 (33) 
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The integral B converges to Γ(κ – 1/2) / [2 π a) Γ(κ)] when κ > 1 / 2 and diverges when κ < 

1 / 2. Therefore, for κ > 1 / 2, D2 = 1, whereas for κ < 1 / 2,  

 D2 = 2 + 2 
 

lim
ε → 0

 
[1 / a2 Γ(κ)] ε (κ – 1 – ε / a) (ε / a)κ – 2 e–ε / a

[1 / a Γ(κ)] (ε / a)κ – 1 e–ε / a  = 2 κ (34) 

We note that the coefficient of skewness of this distribution is Cs(κ) = 2 / κ, which means 

that the correlation dimension is smaller than 1 when the coefficient of skewness is greater 

than Cs(1 / 2) = 2.83. 

 In our third example we consider the Weibull distribution, i.e., 

 F(y) = 1 – exp[–(y / a)κ],  f(y) = (κ / a) (y / a)κ – 1 exp[–(y / a)κ]  

  f ΄(y) = (κ / a2) [κ – 1 – (y / a)κ] (y / a)κ – 2 exp[–(y / a)κ],  y > 0  (35) 

The integral B converges to (κ / a) Γ(2 – 1/ κ) / 22 – 1 / κ when κ > 1 / 2 and diverges when κ < 

1 / 2. Therefore, for κ > 1 / 2, D2 = 1, whereas for κ < 1 / 2,  

 D2 = 2 + 2 
 

lim
ε → 0

 
(κ / a2) ε [κ – 1 – (ε / a)κ] (ε / a)κ – 2 exp[–(ε / a)κ]

(κ / a) (ε / a)κ – 1 exp[–(ε / a)κ]  = 2 κ (36) 

We note that the coefficient of skewness of this distribution is  

 Cs(κ) = 
2 Γ3(1 + 1 / κ) – 3 Γ (1 + 1 / κ) Γ (1 + 2 / κ) + Γ (1 + 3 / κ)

[Γ(1 + 2 / κ) – Γ2(1 + 1 / κ)]3 / 2  (37) 

which means that the correlation dimension is smaller than 1 when the coefficient of 

skewness is grater than Cs(1 / 2) = 6.62. 

Appendix 2: Required data size to estimate attractor dimensions 

 It is well known that the length of the confidence interval of the estimate of a probability p 

from a sample with relatively high size N for a confidence coefficient γ is 
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2 z(1 + γ) / 2 [p (1– p) / N]0.5  where za is the a-quantile of the standard normal distribution. If c is 

the acceptable relative error in the estimation of p then 

 2 z(1 + γ) / 2 [p (1– p) / N]0.5 = 2 c p (38) 

Solving for N, we find that the minimum sample size Nmin that is required for estimating the 

probability p with confidence γ and acceptable relative error c is    

 Nmin = (z2
(1 + γ) / 2 / c2) (1 / p – 1)  (39) 

Now, if we replace p with the correlation sum (by its definition (15), C2(ε, m) is a probability) 

and Nmin with N2
min / 2 (since our sample in this case is composed of pairs of values), and also 

ignore 1 in the last term of (39) (assuming that p is small so that 1 / p is much larger than 1) 

we find that the minimum sample size required to estimate C2(ε, m) with confidence γ and 

acceptable relative error c is   

 Nmin = (z(1 + γ) / 2 / c) [2 / C2(ε, m)]0.5  (40) 

For a stochastic system, combining (40) with (21) we find  

 Nmin = 2 (z(1 + γ) / 2 / c) [C2(ε, 1)]–m / 2  (41) 

If we replace ε in (41) with ε–, the highest possible length scale that suffices to accurately 

estimate the correlation dimension, we get (22).  

 For the choice of an acceptable relative error c we must investigate the relation of the 

relative error in estimating C2(ε, m) with that in estimating d2(ε, m), which is our final target. 

We assume that the local slope is calculated from two successive values of C2(ε, m), at length 

scales ε1 and ε2 = α ε1, whose theoretical values are C2(ε2, m) = β C2(ε1, m). We also assume 



41 

 

that the empirical values depart from the theoretical ones by c each on opposite direction, i.e., 

C΄2(ε2, m) = (1 + c) C2(ε2, m) and C΄2(ε1, m) = (1 – c) C2(ε1, m). The theoretical local slope is  

 d2(ε, m) = 
ln[C2(ε2, m)] – ln[C2(ε1, m)]

ln ε2 – ln ε1
 = ln β / ln α (42) 

whereas the estimated slope will be 

 d΄2(ε, m) = 
ln[C΄2(ε2, m)] – ln[C΄2(ε1, m)]

ln ε2 – ln ε1
 ≈ 2 c / ln α + ln β / ln α (43) 

where we have considered ln (1 ± c) ≈ ± c due to the small value of c. Therefore, the relative 

error in d2(ε, m) is 2 c / ln β. For β = 0.9, the relative error becomes ≈ 20 c which means that a 

1% error in C2(ε2, m) can result in an error in d2(ε, m) as high as 20%.  



42 

 

References 

Abarbanel, H. D. I., R. Brown, J. J. Sidorowich, and L. S. Tsimring, The analysis of observed 

chaotic data in physical systems, Rev. Mod. Phys., 65(4), 1331-1391, 1993. 

Carsteanu, A., and E. Foufoula-Georgiou, Assessing dependence among weights in a 

multiplicative cascade model of temporal rainfall, Journal of Geophysical Research-

Atmospheres, 101(D21), 26363-26370, 1996. 

Eagleson, P. S., Dynamic Hydrology, McGraw-Hill, 1970. 

Georgakakos, K. P., A. A. Carsteanu, P. L. Sturdevant, and J. A. Cramer, Observation and 

analysis of Midwestern rain rates, J. Appl. Meteorol., 33, 1433-1444, 1994. 

Gershenfeld, N. A., and A. S. Weigend, The future of time series: Learning and 

understanding, in Time Series Prediction: Forecasting the Future and Understanding 

the Past, edited by A. S. Weigend and N. A. Gershenfeld, pp. 1-70, SFI Stud. in the Sci. 

of Complex., Proc. Vol. XV, Addison-Wesley, Reading, Mass. 1993. 

Ghilardi, P., and Rosso, R., Comment on “Chaos in rainfall”, Water Resour. Res., 26(8), 

1837-1839, 1990. 

Graf von Hardenberg, J., F. Paparella, N. Platt, A. Provenzale, and E. A. Spiegel, Through a 

glass darkly, in Nonlinear Signal and Image Analysis, edited by J. R. Buchler and H. 

Kandrup, Annals of the New York Academy of Sciences, 808, 79-98, 1997a. 

Graf von Hardenberg, J., F. Paparella, N. Platt, A. Provenzale, E. A. Spiegel, and C. Tesser, 

Missing motor of on-off intermittency, Physical Review E, 55(1), 58-64, 1997b. 

Grassberger, P., Generalized dimensions of strange attractors, Phys. Lett., 97A(6), 227-230, 

1983. 

Grassberger, P., and I. Procaccia, Characterization of strange attractors, Phys. Rev. Lett., 

50(5), 346-349, 1983. 



43 

 

Grassberger, P., T. Schreiber, and C. Schaffrath, Nonlinear time sequence analysis, Int. J. 

Bifurcation and Chaos, 1, 521, 1991. 

Hübner, U., C. O. Weiss, N. Abraham, and D. Tang, Lorenz-like chaos in NH3-FIR lasers, in 

Time Series Prediction: Forecasting the Future and Understanding the Past, edited by 

A. S. Weigend and N. A. Gershenfeld, SFI Studies in the Sciences of Complexity, Proc. 

Vol. XV, pp. 73-105, Addison-Wesley, 1993. 

Jayawardena, A. W., and F. Lai, Analysis and prediction of chaos in rainfall and stream flow 

time series, J. Hydrol., 153, 23-52, 1994. 

Kantz, H., and T. Schreiber, Nonlinear Time Series Analysis, Cambridge University Press, 

Cambridge, 1997. 

Koutsoyiannis, D., and G. Baloutsos, Analysis of a long record of annual maximum rainfall in 

Athens, Greece, and design rainfall inferences, Natural Hazards, 22(1), 31-51, 2000. 

Koutsoyiannis, D., and D. Pachakis, Deterministic chaos versus stochasticity in analysis and 

modeling of point rainfall series, Journal of Geophysical Research-Atmospheres, 

101(D21), 26444-26451, 1996. 

Kumar, P., and E. Foufoula-Georgiou, Wavelet analysis for geophysical applications, Reviews 

of Geophysics, 35(4), 385-412, 1997. 

Lasota, A., and M. C. Mackey, Chaos, Fractals, and Noise, Springer-Verlag, New York, 

1994. 

Nerenberg, M. A. H., and C. Essex, Correlation dimension and systematic geometric effects, 

Phys. Rev. A, 42, 7065-7074, 1990. 

Osborne, A. R., and A. Provenzale, Finite correlation dimension for stochastic systems with 

power-law spectra, Physica D. 35, 357-381, 1989. 

Porporato, A., and L. Ridolfi, Nonlinear analysis of river flow time sequences, Water Resour. 

Res., 33(6), 1353-1367, 1997. 



44 

 

Provenzale, A., L. A. Smith, R. Vio and G. Murante, Distinguishing between low-

dimensional dynamics and randomness in measured time series, Physica D, 58, 31-49, 

1992. 

Rényi, A., Probability Theory, North-Holland, Amsterdam,1970. 

Rodriguez-Iturbe, I., Exploring complexity in the structure of rainfall, Adv. Water Resour., 

14(4), 162-167, 1991. 

Rodriguez-Iturbe, I., B. F. de Power, M. B. Sharifi, and K. P. Georgakakos, Chaos in Rainfall, 

Water Resour. Res., 25(7), 1667-1675, 1989. 

Rössler, O. E., An equation for hyperchaos, Phys. Lett. A, 71, 155, 1979. 

Sangoyomi, T. B., U. Lall, and H. D. I. Abarbanel, Nonlinear dynamics of the Great Salt 

Lake: dimension estimation, Water Resour. Res., 32(1), 149-159, 1996. 

Sauer, T., J. Yorke, and M. Casdagli, Embedology, J. Stat. Phys., 65(3/4), 579-616, 1991. 

Sharifi, M. B., K. P. Georgakakos, and I. Rodriguez-Iturbe, Evidence of deterministic chaos 

in the pulse of storm rainfall, J. Atmos. Sci., 45(7), 888-893, 1990. 

Sivakumar, B., Chaos theory in hydrology: important issues and interpretations, J. Hydrol., 

227, 1-20, 2000. 

Sivakumar, B., S.-Y. Liong, and C.-Y. Liaw, Evidence of chaotic behavior in Singapore 

rainfall, J. Am. Water Resour. Assoc., 34(2) 301-310, 1998. 

Sivakumar, B., S.-Y. Liong, C.-Y. Liaw, and K.-K. Phoon, Singapore rainfall behavior: 

chaotic? J. Hydrol. Eng., ASCE, 4(1), 38-48, 1999. 

Sivakumar, B., R. Berndtsson, J. Olsson, K Jinno, and A. Kawamura, Dynamics of monthly 

rainfall-runoff process at the Göta basin: A search for chaos, Hydrology and Earth 

System Sciences, 4(3), 407-417, 2000. 

Sivakumar, B., R. Berndtsson, J. Olsson, and K Jinno, Evidence of chaos in the rainfall-runoff 

process, Hydrological Sciences Journal, 46(1), 131-145, 2001. 

Smith, L. A., Intrinsic limits on dimension calculations, Phys. Lett. A, 133, 283-288, 1988. 



45 

 

Takens, F., Detecting strange attractors in turbulence, in Dynamical Systems and Turbulence, 

edited by D. A. Rand and L.-S. Young, lecture notes in Mathematics, 898, pp. 336-381, 

Spinger-Verlag, New York, 1981. 

Theiler, J., Some comments on the correlation dimension of 1/fa noise, Phys. Lett. A, 155, 

480-492, 1991. 

Tsonis, A. A., Chaos: From Theory to Applications, 274 pp., Plenum, New York, 1992. 

Tsonis, A. A., J. B. Elsner, and K. Georgakakos, Estimating the dimension of weather and 

climate attractors: Important issues on the procedure and interpretation, J. Atmos. Sci., 

50(15) 2249-2555, 1993. 

Wang, Q., and T. Y. Gan, Biases of correlation dimension estimates of streamflow data in the 

Canadian prairies, Water Resour. Res., 34(9), 2329–2339, 1998. 

Whitney, H., Differentiable manifolds, Ann. Math., 37, 645, 1936. 

Wilcox, B. P., M. S. Seyfried, and T. H. Matison, Searching for Chaotic Dynamics in 

Snowmelt Runoff, Water Resour. Res., 27(6), 1005-1010, 1991. 



46 

 

List of Figures 

Figure 1 Delay representation of a series of 10 000 points generated from the linearly routed 

logistic equation (see text) in two (upper panel) and three (lower panel) dimensions. 

Figure 2 Delay representation of a series of 10 000 daily rainfall depths in two (upper panel) 

and three (lower panel) dimensions. 

Figure 3 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) 

versus length scale ε for embedding dimensions m = 1 to 8 calculated from a series of 10 000 

independent random values with Pareto distribution with exponent 1/8. 

Figure 4 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) 

versus length scale ε for embedding dimensions m = 1 to 8 calculated from a series of 10 000 

independent random values, 80% of which are generated from the uniform distribution and 

the remaining are zeros (located at random). 

Figure 5 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) 

versus length scale ε for embedding dimensions m = 1 to 8 calculated from a series of 10 000 

independent random points from the Weibull distribution with shape parameter 1/8. 

Figure 6 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) 

versus length scale ε for embedding dimensions m = 1 to 8 calculated from a series of 10 000 

autocorrelated random values having approximately Pareto distribution with shape parameter 

0.44. 

Figure 7 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) 

versus length scale ε for embedding dimensions m = 1 to 8 calculated from the same series as 

in Figure 6 but excluding points having at least one coordinate smaller than 0.01. 
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Figure 8 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) 

versus length scale ε for embedding dimensions m = 1 to 8 calculated from the daily rainfall 

series at the Vakari raingage. 

Figure 9 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) 

versus length scale ε for embedding dimensions m = 1 to 8 calculated from the same daily 

rainfall series as in Figure 8 but excluding points with zero values. 

Figure 10 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower 

panel) versus length scale ε for embedding dimensions m = 1 to 8 calculated from the fine 

scale rainfall series at Iowa. 

Figure 11 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower 

panel) versus length scale ε for embedding dimensions m = 1 to 8 calculated from the fine 

scale rainfall same series as in Figure 10 but excluding points having at least one coordinate 

smaller than 0.01. 

Figure 12 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower 

panel) versus length scale ε for embedding dimensions m = 1 to 8 calculated from the monthly 

rainfall series at Athens excluding zero points. 

Figure 13 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower 

panel) versus length scale ε for embedding dimensions m = 1 to 8 calculated from the relative 

humidity series at Athens. 

Figure 14 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower 

panel) versus length scale ε for embedding dimensions m = 1 to 8 calculated from the 

discharge series at Ali Efenti gage at Pinios River.  
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Figure 1 Delay representation of a series of 10 000 points generated from the linearly routed 

logistic equation (see text) in two (upper panel) and three (lower panel) dimensions.  
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Figure 2 Delay representation of a series of 10 000 daily rainfall depths in two (upper panel) 

and three (lower panel) dimensions.  
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Figure 3 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) 

versus length scale ε for embedding dimensions m = 1 to 8 calculated from a series of 10 000 

independent random values with Pareto distribution with exponent 1/8.  
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Figure 4 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) 

versus length scale ε for embedding dimensions m = 1 to 8 calculated from a series of 10 000 

independent random values, 80% of which are generated from the uniform distribution and 

the remaining are zeros (located at random).  
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Figure 5 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) 

versus length scale ε for embedding dimensions m = 1 to 8 calculated from a series of 10 000 

independent random points from the Weibull distribution with shape parameter 1/8.  
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Figure 6 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) 

versus length scale ε for embedding dimensions m = 1 to 8 calculated from a series of 10 000 

autocorrelated random values having approximately Pareto distribution with shape parameter 

0.44.  



56 

 

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00
ε

C
2(
ε,

 m
)

1 2 3 4
5 6 7 8

Inaccurate 
area

Inadequate area

0

1

2

3

4

5

6

7

8

1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00
ε

d
2(
ε,

 m
)

1 2 3 4
5 6 7 8

Inaccurate
area

Inadequate area

ε
_ε 1

 

Figure 7 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) 

versus length scale ε for embedding dimensions m = 1 to 8 calculated from the same series as 

in Figure 6 but excluding points having at least one coordinate smaller than 0.01.  
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Figure 8 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) 

versus length scale ε for embedding dimensions m = 1 to 8 calculated from the daily rainfall 

series at the Vakari raingage.  
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Figure 9 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) 

versus length scale ε for embedding dimensions m = 1 to 8 calculated from the same daily 

rainfall series as in Figure 8 but excluding points with zero values.  
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Figure 10 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower 

panel) versus length scale ε for embedding dimensions m = 1 to 8 calculated from the fine 

scale rainfall series at Iowa.  
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Figure 11 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower 

panel) versus length scale ε for embedding dimensions m = 1 to 8 calculated from the fine 

scale rainfall same series as in Figure 10 but excluding points having at least one coordinate 

smaller than 0.01.  
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Figure 12 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower 

panel) versus length scale ε for embedding dimensions m = 1 to 8 calculated from the monthly 

rainfall series at Athens excluding zero points.  
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Figure 13 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower 

panel) versus length scale ε for embedding dimensions m = 1 to 8 calculated from the relative 

humidity series at Athens.  
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Figure 14 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower 

panel) versus length scale ε for embedding dimensions m = 1 to 8 calculated from the 

discharge series at Ali Efenti gage at Pinios River.  


