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Evolution of water consumption – Milestones
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The hydrosystem: Main components and evolution  
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Parts of the presentation

1. Diagnosis   

2. Explanation

3. Operational synthesis



1. Diagnosis
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Ὕσον, ὕσον Ζεῦ κατὰ τῆς ἀρούρης τῶν Ἀθηναίων
Do rain, do rain Zeus against the earth of Athenians (Ancient Greek prayer)
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Back in 1990s – Initial empirical observations

A similar «trend» in the 
rainfall time series
Explains the «trend» in 
runoff
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Return period of the persistent drought

1

10

100

1000

10000

100000

0 2 4 6 8 10
Scale, k

R
et

ur
n 

pe
rio

d 
(y

ea
rs

) 

Minimum
Maximum
Emprirically expected

Assessment was done 
using classical 
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The complete Nilometer
series (622-1284 AD, 663 
years)
Upward and downward 
fluctuations on all 
scales
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Comparisons with even longer series

The complete historical 
time series of Boeoticos
Kephisos runoff
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The fluctuations on many scales and the “Hurst phenomenon”

The “weird” (as compared to purely random processes) behaviour of hydrological 
and other geophysical processes was discovered by the English engineer 
E. H. Hurst (1950) in the framework of the design of the High Aswan Dam in Nile
⇒ Hurst phenomenon
The Polish-French mathematician and engineer B. Mandelbrot (1965-1971)
related it to the biblical story of the seven fat and the seven thin cows ⇒ Joseph 
effect
The behaviour has been characterized with several other names ⇒ long-term 
persistence, long-term memory, long-range dependence, scaling behaviour
Most of these names, even though correct, may be misleading for the 
conceptualization and understanding of the natural behaviour and the causing 
mechanisms. Probably a better name ⇒ multi-scale fluctuation
The behaviour was verified to be omnipresent, not only in geophysical processes 
(hydrological, climatic), but also in biological (e.g. tree rings), technological (e.g. 
computer networks), social and economical (e.g. stock market)
In water resources design and management, it has unfavorable effects (increase 
of uncertainty)
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Easy detection and main effect of Hurst phenomenon 

Fundamental law of classical statistics

Modified law in natural processes
Example 
To have  

n = 30 in classical statistics
n = 5 000 for the modified law with H = 0.8

StD[X
 –

n] = σn 

X
 –

n = average of n variables 
σ = standard deviation of 

each variable 
n = aggregation scale 

(or sample size)  

StD[X
 –

n] = σ
n 1 – H , H > 0.5 

StD[X
 –

n]
 / σ = 10% Bomb in the

foundation of 
climatology

{2,4,14}
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Incongruity of natural processes with typical random processes :
(a) The Nilometer series
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H-1 = -0.21
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Incongruity of natural processes with typical random processes :
(b) The Boeoticos Kephisos time series

Statistical characteristics of all processes
Sample
statistic Runoff (mm) Rainfall (mm) Temperature (oC)

n 96 96 96

Cs 0.36 0.44 0.34
r1 0.34 0.10 0.31

m (mm) 197.6 658.4 17.0
s (mm) 87.6 158.9 0.72

H 0.79 0.64 0.72

The time series of the 
Boeoticos Kephisos runoff
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Mathematical description of the Hurst phenomenon
The mathematical description of the Hurst phenomenon is done on grounds of the 
probability theory and particularly the theory of stochastic process
The simple relationship

entails a definition (good for our purposes) of a model (stochastic process) reproducing 
the Hurst phenomenon; n is meant as a scale of aggregation (rather than sample size)  
(Hurst used a different formalism, in terms of the so called rescaled range, which is 
complicated and probably misleading)
Today the stochastic process with the above property is called Stationary intervals of a
Self-Similar process or a Simple Scaling Stochastic process (abbreviated as an SSS
process)
The SSS process was introduced by the Russian mathematician A. Kolmogorov (1940) 
who called it Wiener Spiral
A significant contribution on the SSS process is due to the American mathematician 
J. Lamperti (1962) who called it a Semi-Stable Process
The link of the SSS process with the Hurst phenomenon is due to B. Mandelbrot (1965), 
who called it Fractional Gaussian Noise
Other given names: Brown noise, Red noise

StD[X
 –

n] = σ
n 1 – H 
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Back to Boeoticos Kephisos – Adoption of the SSS process
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The trend is a natural 
and usual behaviour
The persistent 
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extraordinary; it is a 
natural and expected 
behaviour
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Implications on uncertainty: Boeoticos Kephisos runoff

Classical model
Climate is what you expect
Weather is what you get

SSS model
Weather is what you get … immediately
Climate is what you get 

… if you keep expecting a long time

Total uncertainty in runoff (due 
to variability and parameter 

estimation)
% of average

Statistical model

Annual scale 30-year scale

SSS 270 200
Classical 200 50
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2. Explanation



D. Koutsoyiannis, A stochastic hydrological framework  18

α  =
 ‐20

0

‐20

‐3

α
 = 
0

1
1.
8

α
 =
 2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
State at time t  ‐ 1

St
at
e 
at
 ti
m
e t

State at time t – 1

St
at
e 
at
 ti
m
e
t

A climatic toy model: A simple system with nonlinear dynamics 
may produce the Hurst phenomenon

A simplified climatic system is 
represented as a circuit with two 
feedback mechanisms, a positive 
(amplifying the departure from a 
stationary state x*) and a negative
(reducing this departure)
The combined action of the two 
mechanisms could be represented 
by a generalized tent transform:

(2 – α) min (xt – 1, 1 – xt – 1)xt =――――――――――
1 – α min (xt – 1, 1 – xt – 1)

where 0 ≤ xt ≤ 1,  α < 2
The parameter α could be assumed 
to vary in time, following the same 
tent transform with a constant 
parameter β

Negative feedback
|1 – f2(xt – 1)| ≥ 1

Positive feedback
|1 – f1(xt – 1)| ≤ 1

I = xt– 1– x*

f2(xt ‐ 1) f1(xt ‐ 1)

+
+

O = xt – x*
1

{6}
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Demonstration: Toy model fitted to two long time series
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Why light follows the red paths 
from A to B (AB, ACB, ADB) 
and not other (the black) ones 
(e.g. AEB, AFB)?

The red paths are those that (a) 
reach the mirror and (b) form an 
angle of incidence equal to the 
angle of reflection

(True for most cases; not true for AB; 
not general or informative)

The red paths have minimum travel 
time (or length) 

(Fermat’s principle – Not true for ADB)
The red paths have extreme 
(stationary, i.e. minimum or 
maximum) travel time (or length)

(True)

Towards a more general explanation:
Nature loves extremes …

D

θ1 > θ2

AB

E

C

F

A semi-cylindrical mirror



D. Koutsoyiannis, A stochastic hydrological framework  21

The light example – no mirror

 
Assume that light can travel from A to B 
along a broken line with a break point F 
with coordinates (x, y).   
(This is not restrictive: later we can add a 
second, third, … break points) 
The travel distance is s(x, y) = AF + FB 
where  
AF = (x – a)2 + y 2 
FB = (x + a)2 + y 2 

A: (-a,0)
B
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F: (x, y)

B: (+a,0)
s=1
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Contours of the distance s(x, y)
assuming a = 0.5

Line of minimum distance s(x, y) = 1
Infinite points F essentially describing 
the same path
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The light example with mirror

The mirror introduces an inequality 
constraint in the optimization: the 
point F should not be behind the 
mirror
Two points of local optima emerge on 
the mirror surface (the curve where 
the constraint is binding)  
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A second example: a falling weight
Initial position 
(t = 0, x = 0, u = 0)

Position x at time t

Floor

Quantities involved
Potential energy: V = –m g x
Kinetic energy: T = (1/2) m u2 = (1/2) m (dx/dt)2

Total energy: E = T + V
Lagrangian: L = T – V
Action: S = ∫ L dt

Alternative methodologies to find equations for the movement
1. Directly by integrating d2x/dt2 = g
2. From conservation of total energy
3. From minimization of action (more difficult)

All methodologies result in same solution 
(x = g t2/2, u = dx/dt = g t)

Principle of least action (Hamilton’s principle – applicable both in 
classical and in quantum physics)
From all possible motions between two points, the true motion has 
least action
More correct to substitute “extreme” (or “stationary”) for “least”

x
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How nature works?   (a hypothesis …)
Property

She preserves a few 
quantities
(mass, momentum 
energy, ….)

She optimizes a single 
quantity
(Dependent on the 
specific system -
Difficult to find what 
this quantity is)
She disallows some 
states
(Dependent on the 
specific system –
Maybe difficult to find)

Mathematical formulation
One equation per preserved quantity:

gi(s) = ci, i =  1, …, k
where ci constants; s the size n vector of state variables (n ≥ k,
sometimes n = ∞) 
A single “optimation”:

optimize f(s) 
[i.e. maximize/minimize f(s)] This is equivalent to many 
equations (as many as required to determine s)
Conversely, many equations can be combined into an “optimation”
Inequality constraints:

hj(s) ≥ 0,      j =  1, …, m
In conclusion, we  may find how nature works solving the problem:

optimize f(s)
s.t. gi(s) = ci, i =  1, …, k

hj(s) ≥ 0,      j =  1, …, m
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The typical “optimizable” quantity in complex systems …

… is entropy – entropie – Entropie – entropia – entropía – entropi – entrópia –
entroopia – entropija – энтропия – ентропія – 熵 – エントロピー – سمقياس
– –אנטרופיה εντροπία
The word is ancient Greek (εντροπία, a feminine noun meaning: turning into; 
turning towards someone’s position; turning round and round)
The scientific term is due to Clausius (1850)
The entropy concept was fundamental to formulate the second law of 
thermodynamics
Boltzmann (1877), then complemented by Gibbs (1948), gave it a statistical 
mechanical content, showing that entropy of a macroscopical stationary state 
is proportional to the logarithm of the number w of possible microscopical
states that correspond to this macroscopical state
Shannon (1948) generalized the mathematical form of entropy and also 
explored it further. At the same time, Kolmogorov (1957) founded the concept 
on more mathematical grounds on the basis of the measure theory 
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What is entropy?
Entropy is defined on grounds of probability theory
For a discrete random variable X taking values xj with probability mass function 
pj ≡ p(xj), j = 1,…,w, the Boltzmann-Gibbs-Shannon (or extensive) entropy is defined as

For a continuous random variable X with probability density function f(x), the entropy is 
defined as

In both cases the entropy φ is a measure of uncertainty about X and equals the 
information gained when X is observed.
In other disciplines (statistical mechanics, thermodynamics, dynamical systems, fluid 
mechanics), entropy is regarded as a measure of order or disorder and complexity.
Generalizations of the entropy definition have been introduced more recently (Renyi, 
Tsallis)

 

φ := Ε[–ln f(Χ)] = –⌡⌠
–∞

∞

 f(x) ln f(x) dx,     where ⌡⌠
–∞

∞

 f(x) dx = 1

 

 

φ := Ε[–ln p(Χ)] = – ∑
j = 1

w
 pj ln pj ,        where ∑

j = 1

w
 pj = 1 
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Entropy maximization: The die example

What is the probability that the outcome of a 
toss of a die will be i? (i = 1, …, 6)
The entropy is: 

φ := Ε[–ln p(Χ)] = –p1 ln p1 – p2 ln p2 – … –p6 ln p6
The equality constraint (mass preservation) is

p1 + p2 + … + p6 = 1
The inequality constraint is pi ≥ 0
Solution of the optimization problem (e.g. by the Lagrange 
method) yields a single maximum: p1 = p2 = … = p6 = 1/6
This method, the application of the Maximum Entropy Principle 
(mathematically, an “optimation” form) is equivalent to the 
Principle of Insufficient Reason (Bernoulli-Laplace; 
mathematically, an “equation” form)
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Entropy maximization: The loaded die example

What is the probability that the outcome of a 
toss of a die will be i (i = 1, …, 6) if we know that 
it is loaded, so that p6 – p1 = 0.2?
The IS principle does not work in this case
The ME principle works. We simply pose an additional constraint:

p6 – p1 = 0.2
The solution of the optimization 
problem (e.g. by the Lagrange 
method) is a single maximum:

0
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0.2

0.3

0.4

1 2 3 4 5 6
i

p i Fair
Loaded
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Entropy maximization: The temperature example

What will be the temperature in my house (TH), compared to that of the 
environment (TE)? (Assume an open window and no heating equipment) 
Take a space of environment (E) in contact to 
the house (H) with volume equal to that of the house
Partition the continuous range of kinetic energy of 
molecules into several classes i = 1 (coldest), 2, …, k (hottest)
Denote pi the probability that a molecule belongs to class i, and partition it to 
pHi and pEi, if the molecule is in the house or the environment, respectively
Form the entropy in terms of pHi and pEi

Maximize entropy conditional on pHi + pEi = pi

The result is pHi = pEi

Equal number of molecules of each class are in the house and the
environment, so TH =TE

This could be obtained also from the IR principle 
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Formalization of the principle of maximum entropy

In a probabilistic context, the principle of ME was introduced by Janes
(1957)
In a probabilistic context, the principle of ME is used to infer unknown 
probabilities from known information
In a physical context, it determines thermodynamical states
The principle postulates that the entropy of a random variable should 
be at maximum, under some conditions, formulated as constraints,
which incorporate the information that is given about this variable
Typical constraints used in a probabilistic or physical context are:

⌡⌠
–∞

∞

 f(x) dx = 1,    Ε[Χ] = ⌡⌠
–∞

∞

 x f(x) dx = μ   

Ε[Χ 2] = ⌡⌠
–∞

∞

 x2 f(x) dx = σ2 + μ2,  Ε[Χi Xi + 1] = ⌡⌠
–∞

∞

  xi xi + 1 f(xi, xi + 1) dxi dxi + 1 = ρ σ2 + μ2

Mass Mean/Momentum

Dependence/StressVariance/Energy

x ≥ 0 

Non‐negativity



D. Koutsoyiannis, A stochastic hydrological framework  31

Some results of ME interesting to hydrology
Assume that a hydrometeorological variable X (e.g. temperature, rainfall, 
runoff) is continuous and positive, has known mean µ and known variation
σ/µ. Estimate the distribution function with only this information, applying the 
ME principle 
The results are:

Maximum entropy + Low variation → (Truncated) normal distribution
Maximum entropy + High variation → Power-type (Pareto) distribution
Maximum entropy + High variation + High return periods → State scaling 

The celebrated state scaling (xT ~ T κ,where T is the return period and xT the 
corresponding quantile) is only: 

a consequence of the ME principle,
an approximation, good for high return periods and for variables with high 
variation

Real world time series (especially long ones) validate the applicability of the 
ME principle in hydrometeorological processes

{8}
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ME application to extreme daily rainfall worldwide

Data set: Daily rainfall from 168 stations worldwide each having at least 100 
years of measurements; series above threshold, standardized by mean and 
unified; period 1822-2002; 17922 station-years of data

0.1
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0.1 1 10 100 1000 10000 100000
T  (years)

x

Empirical Pareto
Exponential Truncated Normal
Normal

Conclusion:
Scaling 
for T > ~50 yr

µ = 0.28 
(mean minus 
threshold)
σ/µ = 1.19 > 1
ME distribution: 

Pareto 
κ = 0.15
φq = 1.16

{8,10,11}
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Entropic quantities of a stochastic process
The order 1 entropy (or simply entropy or unconditional entropy) refers to the marginal 
distribution of the process Xi :

The order n entropy refers to the joint distribution of the vector of variables Xn = (X1, …, 
Xn) taking values xn = (x1, …, xn):

The order m conditional entropy refers to the distribution of a future variable (for one time 
step ahead) conditional on known m past and present variables (Papoulis, 1991):

φc,m := Ε[–ln f(Χ1|X0, …, X–m + 1)] = φm –φm - 1

The conditional entropy refers to the case where the entire past is observed:

φc := limm → ∞ φc,m

The information gain when present and past are observed is:

ψ := φ – φc

Note: notation assumes stationarity

 

φ := Ε[–ln f(Χi)] = –⌡⌠
–∞

∞

 f(x) ln f(x) dx,     where ⌡⌠
–∞

∞

 f(x) dx = 1

 
 

φn := Ε[–ln f(Χn)] = –⌡⌠
Dn

 

 f(xn) ln f(xn) dxn 
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Entropy maximization for a stochastic process  
The purpose is to determine not only marginal probabilities but the dependence 
structure as well
All five constrains are used (mass/mean/variance/dependence/non-negativity)
The lag one autocorrelation (used in the dependence constraint) is determined for the 
basic (annual) scale but the entropy maximization is done on other scales as well
The variation is low (σ/µ << 1) and thus the process is virtually Gaussian (intermediate 
result). This is valid for annual and over-annual time scales
For a Gaussian process the nth order entropy is given as
where δn is the determinant of the autocovariance matrix cn := Cov[Xn, Xn].
The autocovariance function is assumed unknown to be determined by application of 
the ME principle. Additional constraints for this are:

Mathematical feasibility, i.e. positive definiteness of cn (positive δn)
Physical feasibility, i.e. autocorrelation function (a) positive and (b) non increasing 
with lag and time scale
(Note: periodicity that may result in negative autocorrelations is not considered 
here due to annual and over-annual time scales) 

φn = ln (2 πe)n δn

{9}
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Demonstration: 
Maximization of 
unconditional 
entropy 
averaged over 
ranges of scales
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Results of the ME principle in stochastic processes

Maximum entropy + Low variation + Dominance of a single time 
scale → Normal distribution + Time independence 
Maximum entropy + Low variation + Time dependence + 
Dominance of a single time scale → Normal distribution + 
Markovian (short-range) time dependence 
Maximum entropy + Low variation + Time dependence + Equal 
importance of time scales → Normal distribution + Time scaling 
(long-range dependence / Hurst phenomenon)
The time scaling behaviour is a result of the principle of maximum 
entropy 
The omnipresence of time scaling in numerous long hydrological 
time series, validates the applicability of the ME principle

{9}
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Another peculiar dependence explained by ME

Rainfall at small scales is 
intermittent
The dependence of the rainfall 
occurrence process is not 
Markovian neither scaling but 
in between; it has been known 
as clustering or overdispersion
The models used for the 
rainfall occurrence process 
(point processes) are 
essentially those describing 
clustering of stars and galaxies
The ME principle applied with 
the binary state rainfall process 
in more or less the same way 
as in the continuous state 
process explains this 
dependence 

Probability p(k) that an interval of k hours is dry, 
as estimated from the Athens rainfall data set 
and predicted by the model of maximum entropy 
for the entire year (full triangles and full line) and 
the dry season (empty triangles and dashed line)
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Data points used for model construction
Model
Data points used for model verification

{3}
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Interpretation of results

The successful application of the ME principle in nature offers an explanation 
for of a plethora of phenomena (e.g. thermodynamic) and statistical behaviours
including 

the emergence of normal distribution, in many (but not all) cases
the scaling behaviour in state, in other cases
the scaling behaviour in time
the clustering behaviour in rainfall occurrence

This can be interpreted as dominance of uncertainty in nature
It harmonizes with the Socratic view: «Ἕν οἶδα, ὃτι οὐδέν οἶδα» (One I know, 
that I know nothing) 
This view was not a confession of modesty – Socrates regarded the 
knowledge of ignorance as a matter of supremacy
In this respect, the knowledge of the dominance of uncertainty can assist to 
safer design and management of hydrosystems

{3,8,9}



3. Operational synthesis
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Stochastic simulation/forecasting of hydrological processes
Question: Why simulated series (from stochastic models)?
Answer:

Deterministic forecasts for long horizons (appropriate for the hydrosystem 
management) are impossible
In a stochastic framework, analytical solutions for a hydrosystem as complex as 
that of Athens are not feasible or would assume oversimplification of the system
Of numerical methods, Monte Carlo simulation (stochastic simulation) is the most 
convenient
Detailed inflow and other (rainfall, evaporation) hydrological series are needed at 
many sites simultaneously and at several time scales for Monte Carlo simulation 
the hydrosystem
The acceptable failure probability level for Athens is of the order of 10–2: one 
failure in 100 years on the average
For a reasonable estimation error in the failure probability we need 1000-10 000 
years of data
Historical hydrological records are too short
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Requirements for stochastic simulation

1. Multivariate model
2. Multiple time scales of operation: annual to monthly or sub-monthly
3. Multiple time scales of preservation: multi-year (reproduction of the Hurst 

phenomenon) to sub-monthly (reproduction of sub-annual periodicity)
4. Preservation of essential marginal statistics up to third order (skewness)
5. Preservation of joint second order statistics 

autocorrelations of any type and any lag 
concurrent cross-correlations

6. Parsimony of parameters
7. Performance in simulation mode (steady state simulations) and in forecast 

mode, given the current and historical values (terminating simulations)

Models with such features did not exist (particularly, the ARMA type models 
were not useful)
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Stochastic simulation/forecast strategy 1
Consider the prediction of a single variable W (e.g. the monthly flow one month ahead), 
conditional on a number s of other variables with known values that compose the vector Z. Use 
the linear model:

W = aT Z + V
where a is a vector of parameters (the superscript T denotes the transpose of a vector or 
matrix) and V is the prediction error, assumed independent of Z; for simplicity, Z is assumed 
normalized and standardized with zero mean and unit variance
In forecast mode, V = 0 (to obtain the expected value of W conditional on Z = z); in simulation 
mode V is generated from the normal distribution independently of Z; in multivariate mode, Z
may contain variables of different locations and several models of this type, applied 
sequentially, are needed
The vector Z may contain very many elements; for instance: 

All available flow measurements of the same month on previous years – to take account of 
long-range dependence
The flows of the some previous months of the same year (2 variables) – to take account of 
short-range dependence

The model parameters are estimated from (Koutsoyiannis, 2000)
aT = ηT h–1,   Var[V] = 1 – ηT h–1 η = 1 – aT η

where η := Cov[W, Z] and h := Cov[Z, Z]

{1}
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Parameter estimation
Both a and Var[V] are estimated from the vector η := Cov[W, Z] and the matrix h := Cov[Z, Z] 
that contain numerous items 
For example, assuming 78 years of data and 2 previous months, the number of elements of η
and h will be 80 + 80 × 80 = 6480 for each month; such a number of parameters cannot be
estimated from 78 monthly data values
However, most covariances in η and h depend on:

2-3 parameters (same for all months) expressing the long-range dependence, as 
estimated by application on the ME principle on a multi-time scale setting (a stationary 
component) 
2-3 parameters (per month) expressing the monthly autocovariances at the monthly scale 
(a cyclostationary component)

All other covariances that cannot be 
derived from these parameters are left 
‘unestimated’ (in terms of statistics) 
and are calculated by the ME principle, 
applied on a single scale
The entropy maximization in this case 
has an easy analytical solution that can 
be formulated as a generalized Cholesky
decomposition (assuming that h = b bT)
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Stochastic simulation/forecast strategy 2

Stage 1: Generate annual time series 
Use a parsimonious model yet capable of describing over-annual 
scaling
No need to describe sub-annual periodicity

Stage 2: Disaggregate the annual into sub-annual time series 
Use a parsimonious model structure such as PAR(1)
Couple it to the annual model
So, no need to describe over-annual scaling explicitly

{7,16,17}
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Annual model: Generalized generating scheme for any covariance 
structure
Typical (backward) moving average (BMA) scheme: Xi = … + a1 Vi – 1 + a0 Vi 
where Vi independent random variables and ai numerical coefficients
Symmetric moving average (SMA) scheme Xi = … + a1 Vi – 1 + a0 Vi + a1 Vi + 1 + …
SMA has several 
advantages over BMA. 
Among them, it allows 
a closed solution for ai:
sa(ω) = [2 sγ(ω)]1/2

where sa(ω) and sγ(ω) the 
Discrete Fourier Transforms
of the series aj and γj, 
respectively.
Both schemes are applicable 
for multivariate problems
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Annual model: Stochastic simulation in forecast mode

In forecast mode, the observed present and past values must 
condition the hydrological time series of the future
This is attainable using a two-step algorithm
1. Generate future time series without reference to the known 

present and past values
2. Adjust future time series using the known present and past 

values and a linear adjusting algorithm
The linear adjusting algorithm:
1. is expressed in terms of covariances among variables
2. preserves exactly means, variances and covariances
3. is easily implemented

{17}
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Coupling stochastic models of different time scales

The linear 
transformation 

Xs = X~s + h (Zp – Z~p)  

where  

h = Cov[Xs, Zp] ⋅ 
  {Cov[Zp, Zp]}–1  

preserves the vectors 
of means, the 
variance-covariance 
matrix and any linear 
relationship that holds 
among Xs and Zp.  

Coupling 
transformation
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{16,19}



D. Koutsoyiannis, A stochastic hydrological framework  48

Handling of skewness in multivariate problems: 
Optimized decomposition of covariance matrices

Consider any linear multivariate stochastic model of the form 
Y = a Z + b V

where Y: vector of variables to be generated, Z: vector of variables with known values, 
V: vector of innovations, and a and b: matrices of parameters 
The parameter matrix b is related to a covariance matrix c by

b bT = c
This equation may have infinite solutions or no solution (if c is not positive definite)
The skewness coefficients ξ of innovations V depend on b
The smaller the values of ξ, the more attainable the preservation of the skewness 
coefficients of the actual variables Y
Therefore, the problem of determination of b can be seen as an optimization problem 
that combines

minimization of skewness ξ, and
minimization of the error ||b bT – c||

A fast optimisation algorithm has been developed for this problem
The algorithm works even for c that are not positive definite

{18}
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Models developed are not only stochastic …
In the Boeoticos Kephisos River basin a hydrological model of the entire 
hydrological cycle had to be developed, which was demanding due to the extended 
karstic activity and the intensive withdrawals for irrigation

permeability terrain slope

hydrological
response units

groundwater 
cells

{5,12}
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Early stage

Supplementary water collection and distribution in 
Athens (early 20th century until 1930s)

Part of the Peisistratian aqueduct

Restoration of the Hadrianean
aqueduct (19th century)

Milestones
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Marathon dam

Construction of dam, 1928

Today

Construction of 
spillway, 1928

Hydrosystem
More pictures
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Marathon dam (2)

Devastating 
flood, 1926

Inauguration of 
Boyati tunnel, 1928

Marathon spillway 
in action, 1941

Hydrosystem
Previous pictures
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Hylike lake and 
pumping stations

Hylike lake Hylike, floating pumping stations

Hylike, main pumping station Kiourka pumping station
Hydrosystem
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Mornos reservoir 
and aqueduct

Mornos canal at Delphi
Mornos reservoir

Mornos canal at 
Thebes plain

Siphon at 
Distomo

Hydrosystem
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Control of Mornos 
aqueduct

Canal flow control construction

Aqueduct 
supervizing & 
control centre

Hydrosystem
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Evinos dam and 
tunnel

Construction of the Evinos-Mornos
connection tunnel

Evinos dam during construction

Hydrosystem
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Treatment plants

Perissos water treatment plant

Aspropyrgos water treatment plant

Hydrosystem
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