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WAVE HEIGHT BACKGROUND ERRORS SIMULATION AND 
FORECASTING VIA STOCHASTIC METHODS IN DEEP AND 

INTERMEDIATE WATERS  

Zoe Theocharis1, Constantine Memos1 and Demetris Koutsoyiannis1 

Wave forecasting is accomplished today via numerical models. In this work we apply 
stochastic techniques using actual measurements to improve wave height forecast in real 
time. Application of these techniques in four locations of the Aegean Sea results in 
significant improvement of the forecast in the time domain retaining the same pattern of 
modifications, suggesting, thus, this method for operational use in deep and intermediate 
waters. The improvement is obtained by four regression models, which take into account 
the variable of the significant wave height as measured and forecasted by the model. 
Space-wise extension of the method was also investigated and applied to the Aegean Sea 
and the Indian Ocean, where its performance was remarkable.  

INTRODUCTION  
The forecast of the significant wave height is valuable in numerous coastal 

and offshore investigations and activities. This is currently accomplished 
numerically via the state of the art third generation deterministic wave models 
that solve the wave energy balance equation. In this work, we are dealing with 
the improvement of the wave forecast produced by these models. Waves have a 
deterministic relation to the wind. Nevertheless, the forecasting error can be 
important. There are two essential aspects regarding this issue: 
• The 3rd generation wave model WAM underestimates the wave height 

forecast in a global level (Janssen, 1997) 
• Wave fields predictability can not exceed wind fields predictability (Young, 

1999) 
 In recent years, data assimilation and artificial neural network techniques have 
been used in a number of wave height forecast improvement efforts.  

Data assimilation technique is a widespread method of satellite data 
operational exploitation. Its aim is the improvement of the forecast using 
imported observations of the wind and wave field mainly from satellites. Re-run 
of the model is taking place at the sequel. Usually, the operation wave models 
produce forecasts for the next 72-hours (1st guess forecast). Meanwhile, the 
satellites are overpassing the earth surface collecting information that can 
operationally being used. Henceforth, depending on the data used for the 
correction, one can obtain wind and wave data assimilation respectively. 

In the last decade there is a tendency of predicting wave parameters via 
Neural Network Techniques. Tsai et al. (2001) for example present a work to 
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forecast the wave height using a set of previous observations. This is achieved 
with the application of neural networks which use a background algorithm 
related to the history of wave realizations. Furthermore, in the framework of this 
research, the wave height forecast was produced with the use of an artificial 
neural network, using as input data the wave height observations time series of 
adjacent buoy stations instead of the wind parameters time series. This is 
achieved through the application of the ANN’s back propagation algorithm 
learning process, which provides the desirable results. The model computes the 
weight relations between neighbouring stations, based on short-term data, from 
which we can produce the forecast wave height time series or the missing data 
time series of the neighbouring station. The results show that ANN achieves 
satisfactory records for both aims of application. Deo et al. (2001), also, dealt 
with the wave height forecast in real time. They applied at the same time series 
two models, in order to compare the results: an ANN and a 2nd order 
autoregressive model. The ANN resulted in a coefficient of determination near 
0.66 for a one-step forecast (three hours) and in 0.61 for a two steps forecast. 
The corresponding results for the bivariate autoregressive model were 0.61 and 
0.50.  

The stochastic applications in the sector of wave forecasting are relatively 
limited and concern in the majority of cases gap filling of measurements time 
series or re-analysis of wave hindcasts. Contrary to the stochastic models used 
for long-term forecasts, which produce probabilities of appearance of extreme 
sea states, the stochastic models related to short term forecasting or now casting, 
like the regression models, are using the memory-history to reproduce the 
following sea states. This fact prompted initially the researchers to use 
stochastic methods, and specifically the regression models, so that they 
described sea surface elevation time series as well as its spectrum (Scheffner 
and Borgman 1992). On the other hand, the stochastic simulation of DelBalzo et 
al. (2002) uses a twenty years wave height visual observations time series, 
provided by the COADS database. The simulated time series were compared 
with the 4-years observations time series of the National Data Buoy Center. The 
inter-comparison was satisfactory and the deviations occurred are due to the 
interaction between the buoys and the passing boats. 

Finally, Caires and Sterl (2005), proposed a non parametric method to 
correct ERA-40 re-analysis. This method predicts the error using a background 
algorithm produced from a learning dataset. 

Unlike Caires and Sterl method, the methods used here are parametric and 
customized to the specific application basin. Thus, in this work we present the 
application of linear and non-linear stochastic techniques to show that WAM 
background errors can be reasonably predicted by using a limited number of 
buoy observations and improve thus its forecasting robustness. Re-run of the 
wave model is not required. A full description of the third-generation ocean 
wave model WAM can be found in WAMDIG (1988). 
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THE METHOD - STOCHASTIC MODELS USED 
 

In this investigation four types of multiregression models were used:  
 

• a bivariate linear model BLM1 whose explanatory variables are the WAM 
prediction of the current step and the measured height at the previous step: 

                                         γβ +Ψ+=Ψ ∆+∆+ ttttt aX
^

 (1)  

where, 

tt ∆+Ψ
^

: the estimated value of the significant wave height aty time step t+∆t 

ttX ∆+ : the value of the WAM forecast for the significant wave height,  at time 
step t+∆t 

tΨ      : the value of the significant wave height measurement at time step t    

α              : weight parameter corresponding to ttX ∆+      

β              : weight parameter corresponding to tΨ    

γ              : steady parameter  
   

• a  bivariate  linear  model  BLM2 whose explanatory variables are the 
WAM prediction of the current step and the measured height at prior to the 
previous  step: 

                                         γβ +Ψ+=Ψ ∆+∆+ ttttt aX 22
^

 (2)  

 where, 

tt ∆+Ψ 2
^

: the estimated value of the significant wave height at time step t+2∆t 

ttX ∆+2   : the value of the WAM forecast for the significant wave height, at time 
step t+2∆t 

tΨ       : the value of the significant wave height measurement at time step t    

α               : weight parameter corresponding to ttX ∆+2       

β               : weight parameter corresponding to tΨ  

γ               : steady parameter  
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• a trivariate  linear model  TLM whose explanatory variables are the  WAM 
prediction of the current step and the measured height of two previous 
steps: 

                                   δγβ +Ψ+Ψ+=Ψ ∆−∆+∆+ ttttttt aX
^

 (3)  

where, 

tt ∆+Ψ
^

: the estimated value of the significant wave height at time step t+∆t 

ttX ∆+ : the value of the WAM forecast for the significant wave height at time 
step t+∆t 

tΨ        : the value of the significant wave height measurement at time step t   

tt ∆−Ψ : the value of the significant wave height measurement at time step t-∆t   

α              : weight parameter corresponding to ttX ∆+       

β              : weight parameter corresponding to tΨ  

γ              : weight parameter corresponding to tt ∆−Ψ  

δ              : steady parameter  
 
 
• a bivariate  non-linear model  BNLMa and BNLMb with  explanatory 

variables  same  as  in  the first bivariate model: 
 
BNLMa: 

                      111

^
γβ λλ

λ

+Ψ+=Ψ ∆+∆+ ttttt Xa ,    if  ct ≤Ψ                  (4)  

                      221

^
γβ λλ

λ

+Ψ+=Ψ ∆+∆+ ttttt Xa ,    if ct ≥Ψ                   (5) 
 
BNLMb: 

                   111

^
γβ λλ

λ

+Ψ+=Ψ ∆+∆+ ttttt Xa ,    if  cX tt ≤∆+                  (6) 
 

                   212

^
γβ λλ

λ

+Ψ+=Ψ ∆+∆+ ttttt Xa ,    if  cX tt ≥∆+                (7) 
 

where,  

tt ∆+Ψ
^

: the estimated value of the significant wave height at time step t+∆t 
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ttX ∆+ : the value of the WAM forecast for the significant wave height at time 
step t+∆t 

tΨ        : the value of the significant wave height measurement at time step t   

α              : weight parameter corresponding to ttX ∆+       

β              : weight parameter corresponding to tΨ    

γ              : steady parameter  
c            : the wave height defining the applicability range of the model equations 
λ         : exponential index of the non-linear transformation 
 
The parameters listed above are estimated by a weighted least squares procedure 
and from the continuity equations.  

FIRST ASSESSMENT 

Improvement in the time domain 
Forecasting of the wave climate in the Aegean Sea is accomplished today 

via the numerical model WAM, run under the auspices of the National Centre 
for Marine Research of Greece in the framework of the Poseidon Operational 
System. A systematic underestimation of the significant wave height is observed 
for the region of the Aegean Sea, as seen for example in Figure 1, where the 
observations and WAM prediction for Athos location (39058’ - 24043’) in the 
northern part of this sea are depicted for the year 2001. This work deals with the 
improvement of the significant wave height forecast in real-time. The results 
were checked against measurements from four pilot-study monitoring stations of 
the Aegean Sea. These stations are located in the open sea near the Athos 
peninsula and offshore the islands of Lesvos, Mykonos and Santorini. 

In order to develop an efficient wave forecasting system for the Aegean 
Sea, taking into account the existing peculiarities such as the complex shore-line 
and the numerous islets as well as the changeable nature of the wind field that 
influence WAM’s predictive power, a set of stochastic methods was examined: 
four regression models, three linear and one non-linear that take into account the 
measured and forecasted significant wave height. 
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Observations vs WAM prediction (year 2001)
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Figure 1: Observed and predicted values of the wave height, Athos station. Severe 
underestimation observed especially in high sea-states in the year 2001. 

 
The four multiregression models presented in the previous section, resulted 

in significant improvement of the coefficient of determination, irrespectively of 
the time period of application. More specifically, the coefficients of 
determination, that give the proportion of the variance of the predicted variable 
from the measurements and represent the model adequacy, have increased from 
approximately 0.7 to over 0.9 as shown in Table 1. 
 

Table 1.  Coefficients of determination obtained for each station 
and each regression model. 

 R2 
Athos 

 

R2 
Lesvos 

 

R2 
Mykonos 

 

R2 
Santorini 

 
WAM 0.781 0.713 0.722 0.676 
BLM1 0.920 0.892 0.927 0.906 
BLM2 0.865 0.813 0.860 0.820 
TLM 0.924 0.895 0.931 0.911 
BNLMa 0.929 0.897 0.936 0.909 
BNLMb 0.929 0.898 0.935 0.908 
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It is shown that the stochastic models result in a significant forecast 
improvement, irrespectively of the application time period and of the location of 
the prediction. Better approximation of the measured wave height as compared 
to WAM’s prediction as well as significant decrease of the standard deviation is 
achieved in all stations. This can be seen in Figure 2, where Athos station results 
are presented in descending order of wave heights. 

 

 
Figure 2: BLM1 results in descending order together with the measured and 
forecasted values of the wave height in Athos station. 

By applying the stochastic model BLM1 for lead times between the three hours 
time step and the 72 hours step, one can observe that the predictive power of the 
stochastic model reaches the wave model coefficient of determination in all four 
stations after about 72 hours following the pattern shown in figure  3, 
suggesting, thus, that the stochastic tools could be valuable for operational use 
along with the wave model prediction.  
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Figure 3: Coefficient of determination decay v.s. lead time 

By observing results of the various applications performed, one can see that 
by applying the same parameters for all seasons and locations, significant 
improvement can be obtained.  The results for all periods of the year showed 
that there is no need for individual (depending on the season) implementation of 
the regression models, since the linear and non-linear factors were found to be 
almost constant regardless of the station or period analyzed. In Table 2 for 
example one can see a sample of the parameter values produced for different 
periods of implementation of BLM1 for Athos station. It is remarkable that by 
using an overall mean value of α,β and γ parameters produced for different 
periods the same significant improvement can be achieved. 

 
Table 2.  BLM1 parameters for different implementation periods. Athos 
station. 

Imple-
mentation 
period  

α 
 

β 
 

γ 
 

R2 
before 

 

R2 
after 

 
All years 0.408 0.879 -0.167 0.781 0.924 
1st year 0.394 0.914 -0.192 0.756 0.910 
2nd year 0.414 0.869 -0.164 0.801 0.932 
5/00 to  9/00 0.402 0.980 -0.254 0.593 0.850 
3/01 to 9/01 0.421 0.919 -0.215 0.775 0.914 
5/01 to 9/01 0.437 0.915 -0.234 0.603 0.840 
10/00 to 2/01 0.412 0.852 -0.152 0.748 0.910 
10/00 to 4/01 0.404 0.874 -0.163 0.779 0.922 
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This fact holds also for all other test stations used, and all other regression 
models impling that WAM underestimation pattern contains a systematic error 
source. 

Tthe common pattern of the results revealed in all four stations examined, 
suggested that a space-wise expansion of the present method could be 
worthwhile. 

 

SPATIAL MODIFICATION 
This part of the study consists of a space-wise application including spatial 

stochastic modeling and wave information transfer aiming at extending  the 
improvement described above in space and especially in coastal regions. To 
accomplish this, the wind speed and direction effects were included in order:  
 
• to cluster the sea states according to their direction and define a reference 

station whose observations were used to improve the wave height 
prediction of the whole basin 

• to determine the average time lag required for a sea state to be transferred in 
different locations of the basin which was used in BLM models 
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Figure 4: Spatial correlation of sea states for different time lags 

 
For Northern winds for example, Athos station was used as a reference 

station. Then, by calculating the sea states correlation factor, presented in Figure 
4, with respect to the stations to the south of Athos, it was found that depending 
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on the stations distance, the correlation factor values were changing revealing a 
temporal delay. This temporal delay was found to be equal to the time needed 
for a sea state to be transferred from one station (Athos) to the other station 
taking into account the mean wave group velocity. This is the phase lag used to 
determine the BLM type used in each location.  

The results of this space –wise extension of the stochastic methods under 
consideration, show a steady but somehow limited improvement of WAM’s 
predictability power. This is mainly due to the complexity of the Aegean Sea 
with its numerous islands and complicated shoreline as well as to the irregular 
wave filed that is frequent over the Aegean Sea.  

 

SECOND APPLICATION 
To avoid the previously mentioned peculiarities of the Aegean Sea, further 

examination was conducted. Two locations of the Indian Ocean were studied by 
stochastic techniques. WAM cycle 4 without assimilation schemes along with 
data from two buoys were used. The scope was to improve the 9 hrs time step 
wave forecast at the second location which lies in intermediate waters. For this 
purpose, data of the first location, which lies 900 Km offshore the India 
peninsula, along with the prediction of the WAM model represent the 
explanatory variables of the stochastic method.  

After examining the correlation factors the reference station was determined 
and the corresponding time lag was calculated before applying the BNLMa 
model. It is noted that non linear transformation in the stochastic models is 
related to the swell content, which can be appreciable in that area. It was found 
that this technique enhances the improvement of the wave height prediction in 
intermediate waters by using the offshore measurement. Validation was done by 
comparing the results with the intermediate waters buoy data. The improvement 
of the wave height prediction is remarkable as shouwn in Figure 5. 
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Forecast Improvement in Intermediate Waters
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Figure 5: Wave height time series in Indian Ocean intermediate waters. WAM versus 
buoy and stochastic model  

CONCLUSIONS 
 The results show that:  
• A systematic error source exists in the wave models prediction judging by 

the stochastic parameters behavior irrespectively of the wave height value 
and season of application 

• Measurements utilization in real time in combination with the use of 
stochastic methods, can significantly improve the wave model forecast in 
time and space 

• Intermediate and shallow waters wave forecast can be produced given that 
an offshore station exists  

 
Due to the results that seem rather encouraging, the authors have already 
implemented the method in other regions and tried specifically to focus on the 
possibility of using the stochastic tools for direct exploitation of satellite data in 
order to improve the wave forecast. This study has already been applied in a 200 
by 200 degrees box in the Southern Indian Ocean, the so called “wave energy 
storehouse”. This case study will be published in the near future.  
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