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Abstract 

Today hydrologic research and modeling depends largely on climatological inputs, 

whose physical and statistical behavior are the subject of many debates in the scientific 

community. A relevant ongoing discussion is focused on long-term persistence (LTP), a 

natural behavior identified in several studies of instrumental and proxy hydroclimatic 

time series, which nevertheless is neglected in some climatological studies. LTP may 

reflect a long-term variability of several factors and, thus, can support a more complete 

physical understanding and uncertainty characterization of climate. The implications of 

LTP in hydroclimatic research, especially in statistical questions and problems, may be 

substantial, but appear to be not fully understood or recognized. To offer insights on 

these implications, we demonstrate using analytical methods that the characteristics of 

temperature series, which appear to be compatible with the LTP hypothesis, imply a 

dramatic increase of uncertainty in statistical estimation and reduction of significance in 

statistical testing, in comparison with classical statistics. Therefore, we maintain that 

statistical analysis in hydroclimatic research should be revisited, in order not to derive 

misleading results, and simultaneously that merely statistical arguments do not suffice to 

verify or falsify the LTP (or another) climatic hypothesis. 

 

Keywords: long term persistence; long memory; climate change; stochastic processes; 

Hurst phenomenon. 

 

Index terms: 1869 Stochastic hydrology; 1833 Hydroclimatology; 1616 Climate 

variability; 1872 Time series analysis. 
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1. Introduction 

“Even if we would know everything, we should still have to derive statistical information from 

this knowledge in order to answer what are essentially statistical problems, such as 

explaining gas pressure or the intensity of spectral lines”. (Karl Popper to Albert Einstein) 

 In the last decades, the hydrologic and water resources community goes behind the 

trails of the climatological community in an attempt to trace the future of water resources 

under climate change. Climate research uses two main routes, numerical models (known 

as general circulation models, GCMs) for future projections and paleoclimatology for 

past reconstructions. By definition of climate (as an average behavior of a long time), 

statistics play an important role in climatology. Statistics is a key tool in both routes. 

Even in GCMs, the manipulation of data inputs, the assessment of performance of 

models and the estimation of the uncertainty of projections are all statistical problems. A 

fortiori, paleoclimatology, which compiles and interprets numerous data series, is totally 

dependent on statistics. However, it has been recently argued [Wegman et al., 2006] that 

the paleoclimatic community, even though relies heavily on statistical methods, does not 

seem to be interacting much with the statistical community. As a result, certain statistical 

methods are in some cases misused in climatology [see also von Storch, 1995; von Storch 

and Zwiers, 1999]. This may be a sign to hydrologic and water resources community to 

carefully evaluate the assumptions behind climatologists’ results. 

Dominant doctrines behind paleoclimatic methodologies, which may influence the 

validity of results, are the (manichean) dichotomy of natural time series into deterministic 

and random components (“signal” and “noise”), and the (procrustean) suppression of low 

frequency fluctuations of time series so that they comply with an ab initio postulate of a 

Markovian behavior [see also Wegman et al., 2006] The dichotomy “signal” vs. “noise” 

has been borrowed from electronics, where indeed is meaningful, but lacks meaning in 

geophysics (unless noise is used to describe errors, either in measurements or in models). 
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All natural processes are Nature’s signals – not noises even when they “look like” noise. 

To describe these signals one may use either a deterministic or a stochastic approach but 

this is totally different from admitting that natural processes consist of two types of 

components. Obviously, a stochastic approach can incorporate any known deterministic 

dynamics (cf. the modeling of periodicity by cyclostationary stochastic models) but again 

this should not be confused as separation of components [Koutsoyiannis, 2003, 2006]. 

Such a separation, unfortunately very commonly performed, entails risk of 

misrepresentation of low frequency natural fluctuations as “deterministic trends” [e.g. 

Smith, 1993; Craigmile et al., 2004a, b; Koutsoyiannis, 2006].  

On the other hand, the Markovian postulate (dating back to 1960s [Gilman, 1963] and 

still in use today [e.g. Mann and Lees, 1996]) can be paralleled, in our opinion, with the 

pre-Keplerian fallacy that the astral bodies should follow cyclical orbits and that any 

deviation from the cycle should be modeled by another cycle, the epicycle. As climatic 

records do not verify a Markovian behaviour, its adoption has been combined with a 

decomposition of a climatic series into components, one of which is Markovian (e.g. 

Mann and Lees [1996, equation (6)] perform such a decomposition on stochastic grounds 

– by spectral methods – whose physical fundament may be disputable). 

The Markovian dependence (also known as autoregressive of order 1 – AR(1)) is the 

most typical and simple example of the so-called short-term persistence (STP, also 

known as short-term dependence). STP is contrasted with long term persistence (LTP, 

also known as Hurst phenomenon, Joseph effect, long memory, long-range dependence, 

scaling behavior, and multi-scale fluctuation). From a practical point of view, LTP 

indicates that the process is compatible with the presence of fluctuations on a range of 

timescales, which may reflect the long term variability of several factors such as solar 

forcing, volcanic activity and so forth. LTP can be also conceptualized as a tendency of 

clustering in time of similar events (droughts, floods, etc).  

In statistical terms, the presence in a time series of long term fluctuations implies 
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dramatically increased uncertainty, especially on long timescales, in comparison to 

classical statistics. This is easy to understand, as the observed record could be a small 

portion of a longer cycle whose characteristics might be difficult to infer on the basis of 

the available observations. In this respect, in processes characterized by LTP, the results 

of the statistical analysis may be difficult to decipher. As a consequence, the application 

of statistical tools to climatic time series should be carefully considered and classical 

statistics should be carefully revisited to locate points that may produce misleading or 

incorrect results.  

In stochastic terms, STP and LTP are conceptualized in terms of conditional 

probabilities for the future given past observations. Thus, in a Markovian process the 

future is not influenced by the past when the present (a time instant) is known whereas in 

a process exhibiting LTP the influence of the past (the entire history) never ceases. Both 

Markovian dependence and LTP can result from physical principles. For example, the 

maximum entropy principle results in Markovian dependence if the maximization of 

entropy is done on a particular timescale and in LTP if the maximization is done on a 

range of timescales [Koutsoyiannis, 2005b]. Despite dominance of the Markovian 

behavior in climatologists’ views, its two aforementioned features (non influence of the 

past, exclusiveness of a single scale of fluctuation) and other features discussed below 

might make it implausible, in our opinion.  

Probability, statistics and stochastic processes provide mathematical tools to describe 

LTP conveniently and efficiently. To fight a common misconception, it should be 

stressed that the use of such tools should not be confused with admitting that things 

happen spontaneously and randomly or without a cause. It is well known today (from the 

chaos literature) that even a simple nonlinear system with purely deterministic dynamics 

may trace an irregular trajectory, whose future may be unpredictable in deterministic 

sense. Unpredictability or future uncertainty depends then on the degree of nonlinearity 

and the dimensionality (number of degrees of freedom) of the deterministic system as 
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well as the time horizon of prediction. For chaotic systems, the deterministic dynamics 

cannot produce a good prediction for a large time horizon. This is particularly the case in 

high-dimensional systems, where a stochastic approach may give better results (mean 

predictions and uncertainty limits) than a pure deterministic approach. This is reflected 

for instance in the recently developed method of ensemble weather predictions, a method 

based on the idea of Monte Carlo (i.e. stochastic) simulation, whose use has now been 

generalized in meteorological services.  

An example of this type, more closely related to the subject of this study, has been 

proposed by Koutsoyiannis [2006]. This example deals with a simple toy model that was 

devised to mimic the evolution of long hydroclimatic time series. The model is purely 

deterministic (involving no random component) and nonlinear, and has only two degrees 

of freedom. Application of the model demonstrates that (a) extremely simple 

deterministic dynamics can produce trajectories exhibiting LTP; (b) large-scale climatic 

fluctuations (like upward or downward trends) can emerge without any apparent reason; 

and (c) deterministic dynamics do not help predict climatic evolution, even in the case of 

the caricature model with only two degrees of freedom. Thus, this demonstration justifies 

(a) the utility of a stochastic description even for systems with perfectly known purely 

deterministic dynamics and (b) the presence of LTP in all examined hydroclimatic series. 

 To date there is considerable empirical evidence for the presence of LTP in 

hydroclimatic and other geophysical records, as well as time series from other fields. In 

fact, the history of LTP started more than half a century ago, after its discovery in 

geophysics by Hurst [1951], although, in a mathematical (stochastic processes) and 

physical context (turbulence) the concept has been pioneered a decade earlier by 

Kolmogorov [1940; see also Shiryaev, 1989].  

Throughout these decades the studies providing indications that LTP may be 

omnipresent in several natural (hydroclimatic, geophysical, biological) and human-

associated (social, economical and technological) processes have been so numerous that 
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it is difficult to shape a complete picture; yet it is worth giving some recent examples 

(which contain additional references). LTP properties of temperature (which is the focus 

of this paper) at a point, regional or global basis, have been studied by Bloomfield 

[1992], Koscielny-Bunde et al, [1996, 1998], Pelletier and Turcotte [1997], 

Koutsoyiannis [2003],  Monetti et al. [2003] and Koutsoyiannis et al [2006]. Similar 

analyses have been conducted for other climatological time series including wind power 

and indexes of North Atlantic Oscillation [Haslet & Raftery, 1989, Stephenson et al., 

2000] as well as proxy series such as tree-ring widths or isotope concentrations [Pelletier 

and Turcotte, 1997; Koutsoyiannis, 2002; Beran and Feng, 2002; Craigmile, 2004b]. 

Numerous studies have indicated LTP in hydrological time series and particularly in river 

flows [Eltahir, 1996; Montanari et al., 1997; Pelletier and Turcotte, 1997, Koutsoyiannis, 

2002, 2003; Radziejewski and Kundzewicz, 1997; Sakalauskienė, 2003; Yue and Gan, 

2004; Koscielny-Bunde, 2006; among others]. Similar findings have been reported in 

diverse scientific fields such as biology [Peng et al., 1994], ecology [Halley and 

Inchausti, 2004], physiology [Hausdorff et al, 1997], psychology [Wagenmakers et al., 

2004], economics [Ray and Tsay, 2000], politics [Byers et al., 2000], and Internet 

computing [Karagiannis et al., 2004]. The similarity of behaviors in such diverse 

complex systems should not be regarded as coincidence; rather some fundamental 

explanation behind this should be investigated, as is for instance the Central Limit 

Theorem (CLT) for the emerging of the normal distribution in diverse processes. Perhaps 

this explanation is the principle of maximum entropy, which also produces the normal 

distribution independently of CLT [Koutsoyiannis, 2005a, b]. 

Most recently, the presence of LTP in temperature data has been considered by Cohn 

and Lins [2005] and Rybski et al. [2006]. Both have found that instrumental records and 

reconstructed time series of temperature are compatible with the hypothesis of LTP and 

therefore suggested that this property should be taken into account in statistical tests. 

Earlier, Koutsoyiannis [2003] arrived at similar conclusions, arguing that there is the 
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need in hydroclimatic research to adapt classical statistics, which is based on the 

Independent-Identically-Distributed (IID) paradigm, so as to account for the observed 

LTP behavior. Also a variety of methods shed light to the statistical problems related to 

LTP [Beran and Feng, 2002; Kantelhardt et al., 2002; Craigmile, 2004a, b]. 

 In this respect, Cohn and Lins [2005] and Rybski et al. [2006] have suggested a 

necessary rectification of the prevailing incorrect practices. Both have proposed adapted 

statistical tests, which they have illustrated essentially on the same climatic record, the 

instrumental temperature record of the Northern Hemisphere between 1856 and 2004 

(due to Climatic Research Unit – CRU). The LTP and trend properties of this record had 

been studied earlier by Smith [1993], Beran and Feng [2002], and Craigmile et al. 

[2004a]. Cohn and Lins [2005] and Rybski et al. [2006] focused on the well known 

detection problem (whether or not climatic changes have occurred) and attribution 

problem (whether or not observed changes are related to anthropogenic forcings of the 

climate system). Interestingly, however, their conclusions on these problems are 

opposite. Rybski et al. [2006] conclude that the hypothesis that at least part of the recent 

warming cannot be solely related to natural factors, can be accepted with a very low risk. 

Cohn and Lins [2005] state that, given what we know about the complexity, long-term 

persistence, and non-linearity of the climate system, this warming can be due to natural 

dynamics. This disagreement may indicate, in our opinion, that our understanding of the 

behavior of LTP and its consequences in climatic analyses and statistical testing is not 

complete yet and that additional insights are needed. 

Such insights are sought in this study using simple analytical methods, rather than 

complicated numerical methods. The justification for this choice is that analytical 

methods are more insightful (albeit less accurate for reasons that we will discuss) than 

numerical ones. As an empirical basis we use the same basic data set as in the two 

aforementioned recent studies, the CRU record (now extended up to 2005; 

http://www.cru.uea.ac.uk/ftpdata/tavenh2v.dat) and, as auxiliary information, the six 
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recently reconstructed temperature records of the northern hemisphere analyzed in 

Rybski et al. [2006]. These are abbreviated here as J98, M99, B00, E02, M03, M05 that 

stand respectively for Jones et al. [1998]; Mann et al. [1999]; Briffa [2000]; Esper et al. 

[2002]; McIntyre and McKitrick [2003]; and Moberg et al. [2005]; note that M03 was not 

proposed as a reconstruction but only as a modification of M99 to illustrate lack of 

robustness of methodology. These series have annual resolution (time step) and therefore 

their statistical analysis cannot (and need not) describe the effects of seasonality. The 

LTP properties of some of these and some other proxy series have been also studied in 

other works recently [D. Stockwell, Scale invariance for dummies, 

http://landshape.org/enm/?p=13] and earlier [Koutsoyiannis, 2003 for J98].  

 Our focus is on providing insight on uncertainty rather than on proposing accurate 

statistical tests. In this respect, our study of the detection/attribution problem is carried 

out on a conceptual basis and therefore we avoid proposing categorical results. In 

addition, we try to locate potential pitfalls, which may appear if this uncertainty is not 

explicitly considered and may have also influenced previous studies.  

 The uncertainty is studied under both STP and LTP hypotheses, also in comparison to 

the IID case, but the emphasis is given to the LTP case. It is not our target to prove or 

disprove the LTP hypothesis here; in contrast, we demonstrate below that (because of 

high uncertainty) such a target cannot be achieved by merely statistical arguments. 

However, by summarizing the above discussion, we believe that several indications have 

been already accumulated (see the references cited above) that make the LTP hypothesis 

very plausible in contrast to the implausibility of common alternative hypotheses such as 

IID (usually implicit in most statistical analyses of hydroclimatic processes albeit not 

explicitly admitted) and Markovian (claimed by some climatological studies). 

2. Detecting the presence and intensity of long-term persistence  

Since Hurst [1951] discovered LTP, several formalisms and conceptualizations have 

been used to study it, on which the algorithms to detect this behavior are based [Taqqu et 
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al., 1995; Montanari et al. 1997; Kantelhardt et al., 2003]. Among these, the most popular 

are the original formalism by Hurst [1951], based on the so-called rescaled range statistic 

(R/S) and the detrended fluctuation analysis (DFA) introduced by Peng et al. [1994; see 

also Vjushin et al., 2001]. However, we choose to use in our analysis of climatic series 

the formalism based on the aggregated standard deviation (ASD). The latter has several 

advantages such as (a) easy understandability and transparency that enables better 

perception of the behavior and does not hide its implications; (b) simplicity and minimal 

parameterization (it does not involve any other concept than standard deviation), which 

enables a probabilistic description of the concepts it uses and hence a statistical 

framework of estimation and testing; and (c)  appropriateness, in terms of producing 

estimates within the interval (0, 1). The method is based on the analysis of the variability 

of the data aggregated at different time scales. Specifically, let Xi be a stationary process 

on discrete time i (referring to years in our case) with (true – or population) standard 

deviation σ and let  

 X(k)
i  := (Xi + … + Xi – k +1)/k (1) 

denote the aggregate (average) process at time scale k, with (true) standard deviation σ(k) 

(the notation implies that X(1)
i  ≡ Xi). For sufficiently large k, X(k)

i  represents the climatic 

process; typically, the convention k = 30 is used to standardize the climatic time scale 

(number of years). Now, LTP is expressed by the elementary scaling property  

 σ(k) = 
σ

k1 – H  (2) 

where H is the Hurst exponent, which for stationary and positively correlated processes 

varies in the range (0.5, 1). H = 0.5 means independence and increasing values represent 

increasing LTP intensities. The reader interested to further details about the range of 

values for H is referenced to Mandelbrot and van Ness [1968]. It is worth pointing out 

that the preliminary assumption of stationarity for Xi is necessary in a statistical testing 

framework for climatic change (see Section 5) because the null hypothesis to be tested 
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(based on a given climatic record) is precisely the stationarity of the process. 

The simple equation (2) can support: (a) a definition of LTP; (b) a definition of a 

stochastic process having this property, that is the simple scaling stochastic (SSS) process 

(also known as stationary intervals of a self similar process); and (c) the estimation of H 

using sample estimates of σ(k) at several scales k. Equation (2) implies that the 

autocorrelation ρ(k)
j  for scale k and lag j (defined as ρ(k)

j  := Cov[X(k)
i , X(k)

i + k j] / Var[X(k)
i ]) is 

independent of scale [e.g. Koutsoyiannis, 2002]: 

 ρ(k)
j  = ρj = (1/2) [(|j + 1|)2H + (|j – 1|)2H ] – |j|2H (3) 

 LTP is more precisely defined as an asymptotic property for large scales, in which 

case (2) should be replaced by σ(k) = σ(l) / (k/l)1 – H for k/l > 1 and l → ∞; also SSS is more 

precisely defined in terms of scaling properties of the distribution function. It is 

important to note that, even though the same equation (2) can serve as a basis for the 

definition of the LTP as well as the SSS process, these two are totally different notions: 

LTP is a behavior that can be investigated in any type of time series, such as series of 

observations of a natural process, output of a deterministic model, or synthetic series 

generated by a stochastic process. In contrast, SSS is a stochastic process.  

 For comparison, in the case of the simplest STP model, which is the AR(1), (2) and 

(3) become respectively [Koutsoyiannis, 2002]:  

 σ(k) = 
σ
k
 

(1 – ρ2) – 2ρ (1 – ρk) / k
(1 – ρ)2  (4)  

 ρ(k)
1  = 

ρ (1 – ρk)
2

k (1 – ρ2) – 2ρ (1 – ρk),     ρ
(k)
j  = ρ(k)

1  ρk (j – 1)
 ,   j ≥ 1 (5) 

where ρ ≡ ρ(1)
1 . These indicate that (a) for large k, σ(k) ~ σ/ k; (b) ρ(k)

j  is a decreasing 

function of scale k; and (c) only at scale k = 1 (annual) is the process Markovian (i.e., ρj = 

ρ j); at all other scales the autocorrelation structure in (5) (i.e. ρ
(k)
j  = ρ

(k)
1  (ρk)

j – 1
 ) is 

identical to that of an autoregressive moving average (ARMA) process of order (1, 1), 

another classical example of STP. Note that both AR(1) and SSS involve a single 
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parameter each and that the equations (2) and (3) of SSS are simpler than (4) and (5) of 

AR(1), even though the former has been regarded by many as very complicated.  

 Obviously, the different formalisms to LTP imply different estimates of H. This is 

demonstrated in Table 1 for the seven time series and for three formalisms: the DFA as 

derived by Rybski et al. [2006], the R/S and the ASD. In the latter we used an algorithm 

by Koutsoyiannis [2003], which by construction ensures appropriate estimates (0 < H < 

1). Generally, all methods result in very high but different H values. 

3. Statistical uncertainty 

 Given a sample X1, …, Xn of size n and observations x1, …, xn, clearly X(n)
1  is the 

standard estimator of the mean µ of the process (most typically denoted as X
 –

) and x(n)
1  is 

the estimate of µ. The standard deviation StD[X
 –

] ≡ StD[X(n)
1 ] is a convenient indicator of 

uncertainty, and according to the scaling property (2), StD[X
 –

] = σ(n) = σ/n1 – H. (Here 

StD[.] := Var[.] denotes the standard deviation of a random variable). If we compare it 

to the classical statistical law StD[X
 –

] = σ/ k (also valid asymptotically for STP processes 

as shown in (4)), the differences are dramatic as H grows away from 0.5. To demonstrate 

it, for a series of length n with LTP we can calculate the “equivalent” (or “effective”) 

sample size n΄ in the classical statistics (IID) sense, so that σ/n1 – H = σ/n΄0.5. Clearly,  

 n΄ = n2(1 – H) (6) 

As shown in Table 1, the equivalent sample sizes resulting by this equation for the seven 

time series are as low as 2-5. For instance in the SSS sense, the longest sample size 

(1979), is equivalent to a classical statistical sample size of about 3! Thus, a record with 

length of 1979 years, which certainly would be called a long record having in mind 

classical statistics, is a very short record in the SSS framework. Only this example 

suffices to demonstrate that the Hurst behavior has astonishing effects in the foundation 

of climatology and hydrologic statistics, provided that the LTP hypothesis is true. 

 Even the AR(1) model implies reduction of sample size; in this case using (4) and a 
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similar logic, we obtain that 

 n΄ = n (1 – ρ)2

(1 – ρ2) – 2ρ (1 – ρn) / n (7) 

Values estimated from (7) are also given in Table 1 and show that the reduction is not as 

dramatic as in the SSS case. However, it is noteworthy that in the CRU data set the 

effective sample size reduces to 14. 

 However, the implications are perhaps even worse than described above, because the 

analysis was based on the assumption that H is known a priori. In reality, H is estimated 

from the data, so there is additional sampling uncertainty (statistical estimation error). 

The sampling uncertainty applies also to all other statistics and we can anticipate that all 

confidence bands are wider than in classical statistics, as will be discussed below. In 

addition, because LTP is eventually an asymptotical property of the process (which 

should be detected on the tail, i.e. on the largest scales), even the detection of LTP is 

highly uncertain when dealing with time series with short length [Taqqu et al., 1995].  

 This point has already been made in some studies. For example Koutsoyiannis [2002] 

showed that the sum of three Markovian processes (whose behavior, rigorously speaking 

is STP) is virtually indistinguishable from a process with LTP for lags as high as of the 

order of 1000. To demonstrate this point further, we fitted to the E02 series an ARMA(1, 

1) process. Testing the autocorrelation function of the residuals of this, we concluded that 

they are indistinguishable from white noise; this means that the series is compatible with 

the ARMA(1, 1) process, i.e. it exhibits STP with Hurst coefficient 0.50. Furthermore, 

we generated with the fitted ARMA(1, 1) a synthetic series with sample size 2000, and 

all estimation methods we tried gave incorrect values of H in the order 0.79-0.93. 

Continuing this experiment, we also found that we need a series with length of about 

20 000 to correctly estimate H, viz to find a value around 0.50. These examples clearly 

point out that even the distinction between the extreme cases H = 0.5 and H → 1 is not 

statistically decidable with typical sample sizes. 
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4. Observation uncertainty 

 It is well known that observations of hydrometeorological processes involve several 

inaccuracies; even in the instrumental CRU series, some observation uncertainty exists, 

mainly because of spatial integration of point measurements whose number and locations 

differ through history. But in the case of proxy data, there is an extra source of high 

uncertainty because the data are not instrumental. In fact, all six proxy series considered 

here are supposed to represent roughly the same process, that is, the evolution of the 

northern hemisphere temperature (even though, from their construction that joins 

different data sources with varying time span, seasonal representativeness, and 

methodological assumptions, one may have doubts about what they exactly represent 

[see also Wegman et al., 2006]). The different values assigned for the same year in the 

different series manifest none other than the uncertainty in reconstruction of the past 

climate. This is well known and is related to the subjectivity of dendroclimatology on 

which the given proxy series are primarily based. The subjectivity originates from 

sampling procedures (e.g. in picking and choosing which samples to use) and from the 

differing statistical calibration approaches. Recall, for instance, that M03 and M99 are 

based on the same original data. The differences in seasonal and spatial 

representativeness of the various reconstructions is an additional source of uncertainty. 

For most series, uncertainty bands are also given but as pointed out by the Board on 

Atmospheric Sciences and Climate [2006, p. 113] they have been underestimated. For 

additional discussions see Esper et al. [2003]; McIntyre and McKitrick [2003]; Jones and 

Mann [2004]; von Storch et al. [2004]; Zorita and von Storch [2004]; S. McIntyre [A 

Quote from Esper et al., http://www.climateaudit.org/?p=365]; and D. Stockwell, [A new 

temperature reconstruction, http://landshape.org/enm/?p=15]. 

An interesting piece of information conveyed by all proxies is the compatibility of all 

of them with the LTP hypothesis, even if we do not include in the analyses the years of 

instrumental observations (which one may argue that are affected by global warming). To 
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make this clearer, we redid the LTP analysis for the period 1400-1855, which is the 

common period of all proxy series prior to the period of instrumental records. The 

results, shown in Table 1, indicate that the H values obtained for this period are virtually 

identical to those for the complete data set and close to each other, averaging to 0.91, a 

value close to that of CRU (0.93). On the other hand, the standard deviations on the 

annual scale, even though they do not depart significantly from the values of the whole 

period of each sample, are very different to each other (ranging in 0.09-0.21oC vs. 0.27oC 

of the CRU series).  

 It is interesting to compare the above range of values with the sampling uncertainty of 

the standard deviation of the CRU series. Combining known results [Matalas, 1967; 

Salas, 1993, p. 19.11; Beran, 1994, p. 156; Koutsoyiannis, 2003], it is observed that, 

when there is temporal dependence in the process of interest, the standard estimator S of 

the standard deviation σ is not unbiased and that an approximately unbiased estimator for 

both the LTP and STP cases is 

 S
≈

 := 
n΄

n΄ – 1 S (8) 

This assumes that n (the actual sample size) is large enough; for a more accurate 

expression for small n see Koutsoyiannis [2003]. Notice the dependence of S
≈

 on the 

effective sample size n΄ rather than the n and that for small n΄ the correction factor (the 

square root in (8)) can be much larger than 1. Thus, in the SSS case the estimate s≈ may 

differ dramatically from the standard estimate s (notice the notational convenience of 

lower case letters for estimates, i.e. numerical values, and upper case ones for estimators, 

i.e. random variables). Also, combining results from Koutsoyiannis [2003] (based on 

systematic Monte Carlo simulations) and using s≈ as an estimate of the true standard 

deviation σ, it can be obtained that in the SSS case, 

 
StD[S

≈
]

s≈
 = 

StD[S
 
]

s 
 ≈ 

(0.1 n + 0.8)λ(H)

 2 (n – 1) , with λ(H) := 0.088 (4 H2 – 1)2 (9) 

 Now using the statistics of the CRU series, it is computed that the estimate of StD[S] 
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is 0.033oC (vs. 0.015oC in classical statistics). Loosely speaking, this justifies a 

difference in standard deviation between the different series of about 0.08oC (at 

significance 1%; even though the distribution of StD[S] is not normal). Consequently, 

from the values in Table 1, we can conclude that the variability of the J98 and M05 series 

is compatible with the variability of the CRU record. The same result does not apply to 

all other series. Thus, if one accepts one of the other four series as representative of the 

past climate, one can readily conclude that the observed temperature variation in the last 

years is not a result of natural dynamics. In other words, there is a statistical significance 

in the change of standard deviation, so no additional statistical test is needed. 

Furthermore, with simple statistical calculations with the standard deviation estimates 

shown in Table 1, we can easily classify the proxies in two groups (one is J98, M03, M05 

and the other one M99, B00, E02), each of which contains series compatible to each 

other but the two groups are incompatible to each other. This makes unrealistic the 

possibility to use all series simultaneously in a global statistical approach and highlights 

once again the uncertainty involved in the use of proxy series. 

5. Statistical testing for climatic change 

 The above findings highlight the potential lack of reliability of statistical tests 

performed on climatic records, especially proxy ones. Some of these critical behaviors 

are not known and not immediately evident. It is interesting to inspect with deeper detail 

the potential effects on the statistical detection of climatic change.  

Cohn and Lins [2005] used as a test statistic the slope of a linear fit to the time series 

to test whether or not a climate variable has changed in a statistically significant sense, 

over the available observation period. Rybski et al. [2006] proposed essentially the 

statistic D(k)
i, l  := X(k)

i  – X(k)
i – l to test whether a or not a climate variable, defined on a time 

scale k, has changed in a statistically significant sense, over a period of l years (starting 

from year i). This is indeed an interesting statistic and we wish to discuss it further 
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(noting that similar analyses apply to any type of statistical test). First, D(k)
i, l  does not 

depend on a fitted model (as e.g. a linear fitting to the data). Second, it is flexible and 

convenient as it allows choosing the climatic time scale k and the lag l/k (defined on scale 

k). Third, and more important, it yields a simple, general (not dependent on the process 

type), convenient and exact expression for the standard deviation of the test statistic, 

which we have obtained from (1): 

 StD[D(k)
i, l ] = 2 σ(k) 1 – ρ(k)

l/k (10) 

This does not depend on the mean of the process and includes two multiplicative terms, 

the first (σ(k), computed by (2) or (4)) depending on the standard deviation and the 

autocorrelation structure of the process, and the second (computed by (3) or (5)) 

depending merely on the autocorrelation structure.  

 The variation of the two terms with ρ for both the SSS and AR(1) processes is 

depicted in Figure 1(a) for the assumptions indicated in the caption. The two terms have 

opposing effects. The first term increases with ρ, faster in the SSS than in the AR(1) case. 

The second term is a decreasing function of ρ but in AR(1) it practically equals 1 unless ρ 

takes very high values (> 0.95). The combined effect of the two terms is demonstrated in 

Figure 1(b) for σ = 1. In the SSS case, for relatively low ρ (or H), StD[D(k)
i, l ] is an 

increasing function of H but for ρ > ~0.70 it becomes a decreasing function tending to 

zero as ρ → 1 (because the second term dominates). The situation is similar in the AR(1) 

case but StD[D(k)
i, l ] becomes decreasing function of ρ only for ρ > 0.95.  

 In all this demonstration it was assumed that both σ and ρ are known. In practice, 

however both are unknown and estimated from the sample. The picture changes in this 

case. To estimate StD[D(k)
i, l ], one may be tempted to use the standard estimate s of σ that 

is used in classical statistics (for example, Rybski et al. [2006] do not mention this 

problem at all). However, as explained above (eqn. (8)), in SSS statistics, s is strongly 

biased and s≈ should be used instead; thus, if s = 1 then, according to (8) and (6), an 

approximately unbiased estimate of σ is [n2(1–H) / (n2(1–H) – 1)]1/2. It can be seen in Figure 
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1(b) that in this case StD[D(k)
i, l ] is an increasing function for virtually the entire domain of 

ρ.  

 The effects of autocorrelation to the significance of rejecting the null hypothesis of no 

change in climate is demonstrated in Figure 1(c), assuming that a classical statistical test 

has already resulted in rejection of the null hypothesis with extremely low risk (i.e. 

significance level) 10–15. It is observed that the significance level increases dramatically 

with ρ. For ρ = 0.7 the significance level becomes 10–2 in the SSS case and 10–3 in the 

AR(1) case. For higher values of ρ both the SSS and the AR(1) processes yield 

significance levels that are very close to each other; this may be interesting to those who 

do not appreciate the LTP hypothesis and prefer to assume an STP behavior.  

 Yet this modified analysis was based on the tacit assumption that the true value of H 

or ρ is known. But this assumption is not true and thus the above methodology does not 

consist a formal test, so we call it a “pseudo-test” and anticipate that it only yields a 

lower bound of the significance level. For unknown H, the estimate of StD[D(k)
i, l ] is 

anticipated to be greater but its calculation may be intractable by analytical means (given 

that the estimators of H and σ are dependent; Koutsoyiannis [2003]). A Monte Carlo 

testing framework becomes then the method of choice (such a framework was proposed 

in a different context by Cohn and Lins [2005], which results in even greater escalation 

of orders of magnitude of significance level). However, as explained above, the focus of 

this study is on understanding so we preferred the analytical discussion, even though it 

yields a pseudo-test rather than a formal one.  

 It may be of some interest to apply this pseudo-test to the CRU data series. The 

application is shown graphically in Figure 2, for a double-sided test for significance level 

10–2 and for the SSS case, using all possible integer lags l/k from 1 (l = 30) to 4 (l = 120). 

In neither case the pseudo-test resulted in rejection of the null hypothesis (no change), 

although it comes close to rejection for 2005 for l/k = 3. As noted above, a real test would 

be even more tolerant in rejecting the null hypothesis. This result agrees with Cohn and 
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Lins [2005] rather than with Rybski et al. [2006] who perhaps underestimated some 

uncertainty factors, as discussed above. 

6. Conclusion and discussion 

 The above analysis shows that several hydroclimatic tasks, including the detection and 

attribution problem and the characterization of trends, should be studied in a framework 

properly recognizing and characterizing the dependence structure of hydroclimatic 

records, and that the classical IID framework should be abandoned. It also shows that the 

statistical uncertainty is dramatically increased in the presence of dependence, especially 

if this dependence is LTP.  

 Certainly, statistical problems in hydroclimatic research will continue attracting 

attention in the years to come, as newer data accumulate. Before concrete conclusions 

can be drawn, a rigorous methodological framework, based on both physical and 

statistical arguments, should be built. Obviously, the aim of this study was neither to 

provide such a framework nor to give an answer to the detection and attribution 

problems. We hope, however, that our remarks may be useful in building this framework. 

 The answer to the very important question whether the dependence structure of 

hydroclimatic processes is LTP or STP is very relevant to the detection and attribution 

problems. However, a categorical answer to this question cannot be based on merely 

statistical arguments, because, as we demonstrated above, even the presence of LTP can 

be disputable on purely statistical grounds. Certainly, better physical understanding and 

theoretical analyses are strongly needed to illustrate and verify or falsify the LTP 

hypothesis or other climatic hypotheses.  

 This emphasizes the need of a theory, in addition to statistical tools, to assess the 

natural behaviors. Without a concrete theoretical framework the situation can be 

summarized by the following quotation from Cohn and Lins [2005]: “From a practical 

standpoint … it may be preferable to acknowledge that the concept of statistical 

significance is meaningless when discussing poorly understood systems.” 
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Table 1 Comparisons of estimates of statistics for different methods and data sets.  

Data series CRU J98 M99 B00 E02 M03 M05 

All data 

Sample size 150 992 981 994 1162 581 1979 

s, standard estimate 0.27 0.23 0.13 0.14 0.14 0.17 0.22 

H by DFA* 1.09 0.82 0.97 0.93 1.04 0.83 0.86 

H by R/S 1.07 0.90 0.89 0.89 0.93 0.97 0.92 

H by ASD 0.93 0.88 0.91 0.91 0.94 0.92 0.94 

ρ  0.84 0.53 0.65 0.64 0.81 0.66 0.91 

SSS 1.9 5.0 3.4 3.3 2.5 2.8 2.7 Equivalent  

sample size AR(1) 13.8 307.5 205.0 221.1 120.8 119.3 95.3 

Period 1400-1855 

Sample size  456 456 456 456 456 456 

s, standard estimate  0.20 0.10 0.13 0.09 0.16 0.21 

H by ASD  0.86 0.88 0.91 0.93 0.92 0.93 

ρ   0.54 0.62 0.59 0.77 0.65 0.88 

* Values from Rybski et al. (2006), except in the CRU series, which was estimated in this study. 
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List of Figure captions 

Figure 1 Variation with ρ of (a) the two multiplicative terms comprising StD[D] 

assuming σ = 1, (b) StD[D] assuming σ = 1 or s = 1 as indicated, and (c) the implied 

significance in rejecting the null hypothesis assuming that s = 1 and that in classical IID 

statistics this significance level is 10–15; common assumptions: k = 30, l/k = 3, n = 150.  

Figure 2 Graphical depiction of the pseudo-test based on StD[D] with known H. The 

continuous solid curve represents the CRU time series averaged over climatic scale k = 

30. The series of points represent values of D for the indicated lags l/k. Horizontal lines 

represent the critical values of the pseudo-test, which are the estimates of StD[D] times a 

factor 2.58 corresponding to a double-sided test with significance level 1% and assuming 

normality (only the positive critical values are plotted).  
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