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In his commentary article and his treatise “Deriving AR1 Autocorrelation Coefficients from 
Tree-Ring Data” (http://www.realclimate.org/supp/nred.pdf), David Ritson explains that in 
his tree ring analysis he decomposed the data series into a Markovian noise and a 
deterministic fluctuating signal component with comparatively large excursions over multi-
decadal periods. In these two comments it is maintained that this methodology is 
fundamentally flawed. Also, more consistent stochastic methodologies are discussed.  
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Comment 1* 

 
Dear Professor Ritson, 
 
With all respect to your work and with the risk of some misunderstanding because of my 
different scientific origin (engineering hydrology), I would like to make a few comments on 
your treatise “Deriving AR1 Autocorrelation Coefficients from Tree-Ring Data” that you link 
in your above post and seems to be the background document for the post. 
 
1. In my opinion it is useful that the author of a scientific text underlines the hypotheses 
which he/she uses to derive the results -- and not leave the reader to guess them. 
 
2. Apparently you use the hypothesis of stationarity and ergodicity – the latter is obvious from 
your notation, which is in terms of time averages rather than ensemble averages. Of course 
these are not strong hypotheses and everybody uses them; however, one must have always in 
mind that ergodicity has an asymptotic character (e.g. a stationary process is mean-ergodic if 
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its time average tends to the ensemble average as time tends to infinity; Papoulis, Probability, 
Random Variables and Stochastic Processes, McGraw-Hill, 1991, p. 428). 
 
3. You also use the hypothesis that the process X(j) (representing the growth-amplitudes) is an 
AR(1) process (please note that I have dropped your subscript i to simplify notation). Even 
though you put this hypothesis for a component of X(j) that you call “noise amplitude”, it 
becomes also the case for the initial (decomposed) process X(j), given that you assume 
equality in time for what you call “slow component”. Such a hypothesis is a strong yet 
unjustified one; in my opinion there is no reason that nature’s signals should be AR(1). 
 
4. Loosely speaking, the AR(1) hypothesis is equivalent with an hypothesis that a single time 
scale (e.g. the annual) dominates in nature. But I am glad to see in your paper the recognition 
of a “signal component with comparatively large excursions over multi-decadal periods”. So I 
agree with you that, in addition to fluctuations on the annual scale, there exist fluctuations on 
over-annual scales. In the case that we follow a multi-scale thinking, a maximum entropy 
consideration will result in a non Markovian (non AR(1)) dependence, and most probably in a 
process with long-range dependence (LRD) or long term persistence (LTP). This I tried to 
show in Koutsoyiannis (2005). 
 
5. Even with a simpler thinking, just with the superposition of fluctuations on three time 
scales, e.g. annual, decadal and centennial, one arrives at a process that is virtually equivalent 
(meaning for lags as high as 1000 years) to a process with LRD. This I demonstrated in 
Koutsoyiannis (2002). 
 
6. From a more philosophical – if you allow me to say – standpoint, viewing complex natural 
phenomena as AR(1) processes, which means Markovian processes, may be too simplified. 
Recall from the theory of stochastic processes that a Markovian process is by definition "a 
stochastic process whose past has no influence on the future if its present is specified" 
(Papoulis, ibid., p. 635). Thus, for me it is very difficult to imagine that only the present state 
of a complex natural system matters for its future and that we can drop our knowledge of its 
past. On the other hand, compared to a time independent (like head/tail outcomes in coin 
tossing) view of natural processes, in which even the present does not matter for the future, 
certainly a Markovian view is a progress. 
 
7. I was able to verify your main result in your treatise that α = 1 + 2 ρ, where α is the lag one 
autocorrelation of the process X(j) and ρ is the lag one autocorrelation of the process Y(j) as 
you define it. (Here I have used the notational convenience ρ for your fraction in your 
penultimate equation – I hope that my understanding is correct that this is lag one 
autocorrelation). In my opinion there is no need to do – as you did – a decomposition of the 
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process X(t) into a slow component and a noise amplitude. I think that such a decomposition 
is fuzzy, subjective, and not necessary because you can obtain your result without any 
decomposition (and without your accompanying assumption s(j) = s(j + n), which may not be 
justified). If one simply defines Y(j) := X(j) – X(j +1) (i.e. in terms of the actual process rather 
than the decomposed one) and also assumes an AR(1) autocorrelation function, one directly 
obtains α = 1 + 2 ρ. 
 
8. However as I wrote above, the AR(1) hypothesis is a strong one and it would be better to 
avoid it. In this case, one can easily obtain that your relation α = 1 + 2 ρ (equivalently ρ = 
 –(1 – α)/2) becomes ρ = –(1 – 2 α + 2 α2)/(2 – 2 α), where α2 is the lag two autocorrelation of 
the process X(j). Your formula is a special case of the general one, obtained by substituting α2 
= α2 (i.e. assuming a Markovian process). Given that α2 is unknown in an approach such as 
yours, we cannot estimate α from ρ. But we can estimate its upper and lower bounds. 
Assuming stationarity, we can put the restriction that the size 3 autocorrelation matrix of the 
process X(j) is positive definite. In this case, a positive determinant results in the constraint  
–1 + 2 α2 ≤ α2 ≤ 1. From this constraint, using simple algebra, we can find an interval for α 
given the value of ρ. 
 
9. You may say that this interval of α is too wide and thus not helpful in an accurate point 
estimation of α. Well, this is the optimistic view. The interval for α would be that wide if we 
knew precisely the value of the lag one autocorrelation ρ. But we only have a sample estimate 
of ρ – thus the range of alpha is even wider. More specifically, in Koutsoyiannis (2003), I 
have demonstrated that the classic estimator of autocorrelation (that you use) implies high 
bias if the process exhibits LRD. You may also find there citations pointing that bias exists 
also in the AR(1) process. In addition to bias, there also exists significant variability and thus 
uncertainty in estimates. Therefore one should be very careful in such statistical calculations, 
because they entail bias and uncertainty -- in contrast to typical arithmetic calculations. 
 
10. Having some experience with statistical uncertainties and particularly with complex 
interactions of uncertainties (and the magnification of the total uncertainty) when ones 
combines two or more random variables in a single expression, personally I would avoid 
calculating statistics of a process X(j) based on the differenced process Y(j) = X(j) - X(j +1) 
(or, much worse, on a process involving differences of some subjectively defined components 
of X(j) as you did). You can check the magnification of uncertainty even with arithmetic 
calculations, assuming for instance a pair of values X(j) and X(j +1) close to each other and 
attributing a certain percentage of uncertainty in each of the two. In this respect, I would 
prefer to base my estimations on the process X(j) per se and in addition to be as aware and 
careful as possible of the uncertainty and bias in statistical estimations, especially for 
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processes which might exhibit LRD -- a case not well covered so far in classical statistical 
texts. 
 

Comment 2† 

 
Dear Professor Ritson, 
 
Thanks for your kind reception of my comments and your responses. Based on your 
responses, I have the feeling that we can converge, at least partially. Therefore, I will put my 
emphasis not to some different views that I may have for some of your points, but to points 
that I feel we can converge. 
 
I am happy that you “assume along with everybody else that the climate signal contains 
regions of warmth Medieval warm period and Little ice-age for example.” This could be a 
good point for convergence. I also agree with your statement that “These may result 
deterministically from externals such as solar forcing.” But I wish to discuss it further and 
first your term “deterministically”. I hope you could agree with me that a specific storm that 
causes severe damages results deterministically from some atmospheric dynamics. This 
dynamics is in fact the basis of the meteorological prediction of the storm, cast some days 
earlier. At the same time, nobody would accuse meteorologists for not having predicted the 
storm a year or a century earlier. Because of the complexity and chaotic behaviour, we all 
recognize that it may be impossible to accomplish such a long-term prediction. Therefore, in 
engineering, given that we have to design works that will last say a century, we use a 
probabilistic or stochastic approach to describe storms and to construct what we call “design 
storm”, a hypothetical severe storm that has some pre-specified probability of occurrence. 
 
We could expand this logic to other simpler phenomena, e.g. the movement of a die. There is 
some deterministic dynamics in this movement; however we all say that the outcome of the 
die is random (cf. Einstein's apothegm “God does not play dice”). 
 
After this, I hope you will agree with me that the Medieval warm period and the Little ice-age 
are not MORE deterministic than the evolution of mean daily temperature or the mean annual 
temperature. So, if I have the right to use a stochastic description for the annual temperature, 
as you did with your proxies, I feel that I have the right to use a stochastic description for 
over-annual fluctuations or excursions such as the Medieval warm period and the Little ice-
age. Of course you may disagree with me. You may say that these excursions should be 

                                                 
†Comment #36 in http://www.realclimate.org/index.php/archives/2006/05/how-red-are-my-proxies/  



5 

modelled not stochastically but only deterministically. In this case I will ask you: Could you 
give me your deterministic dynamics for the variations of solar activity and their impacts to 
the atmosphere and particularly the global average temperature? Could you apply your 
deterministic dynamics for the past and hindcast the climate over the last 2000 years? Could 
you apply your deterministic dynamics for the future and forecast the climate over the next 
2000 years? In these questions I deliberately used long periods because we need long periods 
to observe such long-term fluctuations. 
 
As you see, by profession, I do not have any problem to use stochastic descriptions of natural 
phenomena. In fact I am very satisfied with the answers I am getting from my stochastic 
descriptions for engineering designs and for supporting water management decisions. But in 
fact, in hydrology we follow the paradigm of physics. In my knowledge and view, in the late 
19th century, physicists abandoned the mechanistic paradigm and were thus able to develop 
disciplines such as statistical thermophysics (including the entropy concept, first put on 
probabilistic grounds by Boltzmann) and quantum physics. In both these disciplines 
probability has a major role and replaces mechanistic concepts, explanations and analogues 
(e.g. Lavoisier's subtle caloric fluid). 
 
If we accept that one is allowed to use stochastic descriptions the question is: Which 
stochastic description can be appropriate for hydroclimatic processes, i.e. reproduce the 
Medieval warm period and Little ice-age, and the persistent droughts and floods of Nile? (I 
mentioned Nile because we have a lot of information covering many centuries – obviously 
such behaviours have been observed in other rivers, as well). A Markovian (AR(1)) 
description? I would say no. I have played a lot with several stochastic models and I think the 
simplest is a scaling model (also known as fractional Gaussian noise and with many other 
names – see my post in http://landshape.org/enm/?p=25). 
 
Please allow me to say that a simple scaling stochastic model is not a complex description, as 
you characterize it in your first response above. It is a very simple description, in some 
aspects simpler than Markovian. And it has a very simple interpretation: combine fluctuations 
or excursions on several times scales, and you get a scaling process. Amazingly, the resultant 
scaling process, by combining different initial components, is simpler than the components. 
But this may not be a surprise or a unique phenomenon: Combine several weird distribution 
functions by taking the sum of the different random variables. You get the extremely simple 
normal distribution – the central limit theorem (notably the normal distribution results also 
from the maximum entropy principle, regardless of the central limit theorem). 
 
Having said these, it’s a marvel to me that climatologists have been so strongly reluctant to 
adopt the scaling description for climatic processes. I marvel to read statements that long-term 
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persistence is not “...a proper recognition of the physics and dynamics underlying the 
[climatic] systems...” and that “… a simple model [an AR(1) model] for climatic noise has the 
advantages that it is (i) motivated by the actual underlying physics (see e.g. Hasselmann, 
1976…" (the quotations are from a review – apparently by a climatologist – that I received 
recently). A description that cannot reproduce important phenomena, such as the Medieval 
warm period, the Little ice-age and the persistent multiyear droughts and floods, has been 
regarded as consistent with the “actual underlying physics”!. At the same time, a description 
that can reproduce them, lacks “a proper recognition of the physics and dynamics”! 
 
I apologize if I have been verbose. I must stop here saying that my thoughts on these issues 
are presented in more detail in (just published) Koutsoyiannis (2006). 
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