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Abstract.  An approximation of the friction factor of the Colebrook-White equation is 

proposed, which is expressed as a power-law function of the pipe diameter and the energy 

gradient and is combined with the Darcy-Weisbach equation, thus yielding an overall power-

law equation for turbulent pressurized pipe flow. This is a generalized Manning equation, 

whose exponents are not unique but depend on the pipe roughness. The parameters of this 

equation are determined by minimizing the approximation error and are given either in 

tabulated form or as mathematical expressions of roughness. The maximum approximation 

errors are much smaller than other errors resulting from uncertainty and misspecification of 

design and simulation quantities and also much smaller than the errors in the original 

Manning and the Hazen-Willians equations. Both these can be obtained as special cases of the 

proposed generalized equation by setting the exponent parameters constant. However, for 

large roughness the original Manning equation improves in performance and becomes 

practically equivalent with the proposed generalized equation. Thus its use, particularly when 

the networks operate with free surface flow is absolutely justified. In pressurized conditions 

the proposed generalized Manning equation can be a valid alternative to the combination of 

the Colebrook-White and Darcy-Weisbach equations, having the advantage of simplicity and 

speed of calculation both in manual and computer mode. 
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1. Introduction 

Turbulent flow in circular cross section pipes is of great practical interest, particularly in the 

design and simulation of urban water pipe networks. The Darcy-Weisbach equation (named 

after two great engineers of the 19th century) is by far the most widely used in flow 

calculations. Its use is accompanied with the calculation of the friction factor by the 

Colebrook–White equation (see section 2). The latter equation (Colebrook and White, 1937, 

Colebrook, 1939) is an implicit function that needs iterations to solve. Thus, soon after its 

appearance, it was regarded too complex to be of practical use (Rouse, 1943, from Brown, 

2004). Evidently, the specific form of the formula was dictated by the need to better fit 

laboratory results rather than to make it convenient for engineering application. The earliest 

remediation of this disharmony of the origin and the target of the equation was provided by its 

graphical depiction, the famous Moody diagram (Moody, 1944).  

 With the advancement of computers, the use of the Moody diagram receded, without 

being totally abandoned. Still the diagram enjoys a good place in water engineering textbooks 

and handbooks (e.g. Mays, 1996, 2001; Butler and Davies, 2000) as well as in other 

engineering fields (e.g. ASHRAE, 2001). On the other hand, computer based approaches gain 

ground. In addition to the computational implementation of the Colebrook–White equation, 

which requires a few repetitions, several explicit approximations have been proposed (Moody, 

1947; Wood, 1966; Jain, 1976; Chen, 1979; Churchill, 1977; Round, 1980; Barr, 1981; 

Zigrang and Sylvester, 1982; Haaland, 1983; Manadili, 1997). An excellent review and 

comparison of all approximations has been compiled by Romeo et al. (2002) who also 

provided another explicit approximate formula. The most recent approximation of this type 

has been proposed by Sonnad and Goudar (2006). 

 All of the above approximations aimed at converting the implicit friction factor formula 

to an explicit one and used the same reference variables (the Reynolds number and relative 

roughness). They differ in terms of the level of accuracy depending upon the complexity of 

their functional forms. The more complex ones usually provide estimates of high accuracy, 

while the simpler ones can result in maximum absolute error that exceeds 15% (Zigrang and 
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Sylvester, 1982). It can be argued that the contribution of all these approximations in practice 

is not very significant. Typically, the friction factor is not the final desideratum but an 

intermediate result for calculation of quantities such as velocity, discharge, diameter or energy 

gradient. In most of these calculations, substitution of an explicit formula of the friction factor 

results in a composite formula that may be again implicit in terms of final desiderata. Besides, 

the implicit setting of the original Colebrook-White formula is not a serious problem because 

of its quick convergence. For instance, the approximation by Zigrang and Sylvester (1982) is 

none other than the writing down in analytical terms of two or three iterations of the original 

Colebrook-White formula with an appropriately chosen initial value. From a programming 

point of view, this is more complicated that writing a small algorithmic loop.  

 Thus, despite the large number of approximate equations, the problem of simplifying 

the calculations still remains. A drastic simplification is the use of either the Manning or the 

Hazen–Williams equations. Both preceded the Colebrook-White equation: The Manning 

equation was introduced in 1867 by Philippe Gauckler and was validated by experimental 

data in 1887 by Robert Manning (Levi, 1995), whereas the Hazen–Williams equation was 

introduced in 1902 (Liou, 1998).  Both have the advantage of providing convenient power-

law correlations of all design quantities, easily solvable for each one. However, the accuracy 

of these equations can be low, as will be discussed later (see also Liou, 1998). Another 

alternative is provided by nomographs of charts that correlate all design quantities. Such 

charts, which evidently manifest power-law relationships, are either provided by pipe 

manufacturers or contained in engineering textbooks and handbooks (e.g. Butler and Davies, 

2000; ASHRAE, 2001). However, its use has several weaknesses. They are rarely supported 

by methodological descriptions and documentation of their assumptions and derivation and 

thus one may have difficulty to trust them. They may not be representative for a spectrum of 

conditions or pipe materials; they must be too many of them to form a representative 

collection for different conditions and this negates their target to be convenient tools. Also, 

they do not comply with the need to eliminate the manual use of graphs.  

 In this study we propose a different simplification of the Colebrook-White formula, in a 

manner that, when combined with the Darcy-Weisbach equation, it enables the expression of 
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the friction factor in terms of the final design quantities rather than intermediate ones. 

Theoretically, this could be done at no cost in terms of accuracy. However, as our target is to 

provide a convenient approximation for design and simulation purposes, we preferred to 

express our approximation in a simple power-law relationship, which, combined with the 

Darcy-Weisbach equation, yields an overall power-law equation. This is a generalized 

Manning equation, whose exponents are not unique but depend on the pipe roughness. This 

generalized equation resembles the original Manning and the Hazen-Williams equations (in 

fact both are obtained as special cases of the generalized equation) but it is much more 

accurate (more than five times) than them. Furthermore, the maximum relative error in 

approximating the Colebrook-White friction factor can be smaller than the simplest 

approximations of it discussed above.  

 It can be argued that small approximation errors can be accepted in practical problems, 

particularly if these are smaller than other unavoidable errors involved in calculations. Even 

the Colebrook-White formula and the Moody diagram are not fully correct for all conditions 

(Rouse, 1943) but perhaps accurate only to 15% (White, 1994; Brown, 2004). Furthermore, in 

calculations of this type there is substantial uncertainty, both in basic quantities such as the 

pipe roughness (which is difficult to define) and design quantities such as the design 

discharge (see section 5).  

2. Rationale 

The Darcy-Weisbach equation for turbulent flow in circular cross section pipes correlates the 

energy gradient J with the pipe diameter D and the average velocity V: 

 J = f 
1
D 

V 2

2g (1) 

where g is the gravity acceleration (so that V2/2g is the kinetic energy head) and f is the 

(dimensionless) friction factor. The latter is given by the Colebrook–White equation:  

 
1
f
 = −2 log10

⎝
⎜
⎛

⎠
⎟
⎞ε/D

3.7 + 
2.51
Re f

 (2) 
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where Re := V D/ν is the Reynolds number and ε/D is the relative roughness, both 

dimensionless quantities, whereas ε is the absolute (surface) roughness of the specific pipe 

and ν is the kinematic viscosity. A third basic equation involved in pipe flow calculations is 

the one relating the discharge Q with the velocity:  

 Q = 
π D2

4  V (3) 

 It is easily seen that the term Re f that appears in the right-hand side of (2) can be 

calculated by solving (1) for f and then substituting it into the quantity Re f. The result is:  

 Re f = 
21/2 g1/2 J1/2 D3/2

ν  (4) 

Setting D = ε / (ε/D) in (4) and then substituting the result into (2) we obtain 

 
1
f
 = −2 log10⎝⎜

⎛
⎠⎟
⎞ 

ε/D
3.7 + 

1.775 ν
g1/2 ε3/2 

(ε/D)3/2

J1/2  (5) 

Now we define a normalized roughness 

  ε* := ε/ε0, where ε0 := ⎝⎜
⎛

⎠⎟
⎞ ν

2

g

1/3

 (6) 

and we observe that ε* is a dimensionless quantity always known in all practical problems 

(because g and ν are constants in any design or simulation and ε is also known given the pipe 

material and general technical conditions). The characteristic parameter ε0 has units of length 

and assuming a standard value ν = 1.1 × 10−6 m2/s, it is easily seen that ε0 = 0.05 mm.  

 By virtue of (6), equation (5) can be written as  

 
1
f
 = −2 log10

⎝⎜
⎜⎛

⎠⎟
⎟⎞ 

ε/D
3.7 + 

1.775
ε3/2

*
 
(ε/D)3/2

J1/2  (7) 

which shows that f is a function of the normalized roughness ε*, the relative roughness ε/D 

and the energy gradient J, all dimensionless quantities. Because ε* is always given in any 

practical problem, we seek a function f* of ε/D and J determined for this specific ε*: 

 f = f*(ε/D, J) (8) 
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 For reasons stated in the Introduction, we abandon a requirement for perfect accuracy 

and seek an approximation by a power law: 

 f  ≈ α 
(ε0/D)β

J γ  (9) 

where α, β and γ are coefficients depended on ε*, i.e., α = α(ε*), β = β(ε*) and γ = γ(ε*). To 

avoid an infinite α when ε tends to zero we have formulated (9) in terms of (ε0/D) = (ε/D)/ε*. 

Had we used (ε/D) in lieu of (ε0/D), α(0) (the value of α for ε = ε* = 0) would be infinite 

(because f has a finite non zero value for ε = ε* = 0). Thus, with the particular formulation 

used in (9) we avoid infinity problems and keep our expressions more convenient without loss 

of generality and consistency. 

3. Formulation 

The power-law approximation is perfectly convenient, because it results in simple power-law 

equations correlating all design quantities J, D, V and Q. Such equations can be written in a 

generalized Manning form 

 V = (1/N) R (1+β)/2 J (1+γ)/2   (10) 

where R = D/4 is the hydraulic radius and N is a generalized Manning coefficient:  

 N:= 
εβ/2

0

23/2+β g1/2 α1/2 (11) 

Note that (10) and (11) are dimensionally homogeneous. For convenient reference, various 

forms of the power laws resulting from (10) and (11) and also involving Q are given in Box 1.  
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Box 1 Basic forms of the generalized Manning equation and its parameters, useful for 

application. 

Definitions of the characteristic roughness ε0, the normalized roughness ε*, and the 

generalized Manning coefficient N: 

 ε0 := ⎝⎜
⎛

⎠⎟
⎞ ν

2

g

1/3

 = 0.00005 m,  ε* := ε/ε0,  N:= 
εβ/2

0

23/2+β g1/2 α1/2 (B1.1) 

Relationships among energy gradient J, velocity V and diameter D: 

 J = ⎝⎜
⎛

⎠⎟
⎞ 

41+β N 2 V 2

D1+β  
1

1+γ,  D = 4 ⎝⎜
⎛

⎠⎟
⎞ 

N 2 V 2

J 1+γ  
1

1+β,  V = 
1

21+β N D (1+β)/2 J (1+γ)/2   (B1.2) 

Relationships among energy gradient J, discharge Q and diameter D: 

 J = ⎝⎜
⎛

⎠⎟
⎞ 

43+β N 2 Q2

π2 D5+β  
1

1+γ,  D = ⎝⎜
⎛

⎠⎟
⎞ 

43+β N 2 Q2

π2 J 1+γ  
1

5+β,  Q = 
π

23+β N D (5+β)/2 J (1+γ)/2 (B1.3) 

Optimal dimensionless parameters α, β, γ and the dimensional parameter N (in SI units m and 

s) from normalized roughness ε*  for the usual range (0.1 m ≤ D ≤ 1 m, 0.2 m/s ≤ V ≤ 2 m/s): 

  β = 0.3 + 0.0005 ε* + 
0.02

1 + 6.8 ε*
,   γ = 

0.096
1 + 0.31 ε*

 (B1.4) 

 α = 0.0037 (1 + 1.6 ε*)
0.32 (80 000)β,     N = 0.00687 (1 + 1.6 ε*)

0.16   (B1.5) 

Maximum relative errors in estimation of J, D, V, Q: 5%, 1%, 3%, 3%, respectively. 

 Having determined the form of the approximation, it is a matter of numerical 

optimization to determine its parameters β, γ and α (or equivalently N) for a specific ε (or ε*) 

in a manner that the maximum relative error (precisely, its absolute value) within a range is 

minimized. The range of application can be defined in terms of the diameter D and velocity V. 

Obviously, the narrower the range, the most accurate the approximation is. A range of 

diameter 0.05 m ≤ D ≤ 10 m, of velocity 0.1 m/s ≤ V ≤ 10 m/s and of roughness 0 ≤ ε ≤ 5 mm 

(0 ≤ ε* ≤ 100) covers all values met in practical problems; this will be referred  to as global 
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range. A narrower range defined as 0.1 m ≤ D ≤ 1 m, 0.2 m/s ≤ V ≤ 2 m/s (with the same 

interval of roughness) covers most cases in urban networks; this will be referred to as usual 

range.  

 Determination of a set of triplets β, γ, α and the corresponding N for a specific value of ε 

is a routine task given the widespread modern computational tools. One forms a computation 

grid of values of D and V within the specified range, calculates the accurate values of f from 

equation (2) for each grid point, assumes some initial values of β, γ and N (e.g. β = 0.33, γ = 0, 

N = 0.010), computes the approximation of f from (9) and (11) for each grid point and 

determines the maximum, over all grid points, relative error. Then one lets an optimization 

procedure to modify the initial values so as to minimize the maximum relative error. Here an 

evolutionary commercial solver (by Frontline systems, http://solver.com/), was used. Due to 

the roughness of the surface representing the objective function (i.e. the maximum relative 

error) the evolutionary solver was proved to be superior to other tried options (based on 

gradient optimization methods) in locating the global minimum. Values of β, γ, α, N, 

determined in this way for the most typical values of ε that are used in urban water systems in 

Europe, are shown in Table 1 both for the global and usual application ranges.  

After a set of triplets β, γ, α has been determined for several values of ε, it can be 

attempted to establish functions β = β(ε*), γ = γ(ε*) and α = α(ε*) or N = N(ε*), give them 

mathematical expressions, define their internal parameters, and determine the numerical 

values of the parameters by a global optimization, now considering all values of ε* 

simultaneously for a specific application range. The laborious task in this problem is to find 

the appropriate mathematical expressions for the functions. To choose these expressions, 

graphical depictions of the values of β, γ, α, N, determined for a specific ε, versus ε*, are 

helpful. Once the expressions have been defined, the estimation of their internal parameters 

can be done using the same solver as above. The established functions α(ε*), β(ε*) and γ(ε*) 

for the usual range defined above, are shown in Box 1, along with the maximum relative 

errors in estimation of J, D, V, and Q. Similar functions for the global range as well as other 

useful sub-ranges are shown in the Appendix. 
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 It can be seen that the errors increased in comparison to those in Table 1; this is because 

of an additional error in the fitting of the functions α(ε*), β(ε*) and γ(ε*). Thus, the error in the 

estimation of the gradient J increases from 2.7% to 5%. The specific forms of the functions 

α(ε*), β(ε*) and γ(ε*) are simple, with linear and hyperbolic components. The exponential term 

in α(ε*) has been included to simplify the resulting expression of N in SI units, which in 

application replaces α. Indeed, as shown in Box 1, which contains the equations for final 

application in SI, N has a very simple expression. Graphical depictions of the variation of all 

parameters with roughness are given in  Figure 1. 

4. Comparison with the Manning and the Hazen-Williams equations 

Apparently, the Manning equation can be obtained as a special case of the generalized 

equation (10) setting β = 1/3 and γ = 0. Similarly, the Hazen-Williams equation can be 

obtained setting β = 0.26,   γ = 0.08. Then the parameter α (or n = N for the Manning equation 

or C = 1 / (0.85 N) for the Hazen-Williams equation) can be estimated by minimizing the 

error as in the previous cases. The optimized parameters are shown in Box 2.  

Box 2 Constants α and β and optimal n or C as functions of normalized roughness ε* for the 

Manning and Hazen-Williams equations in the SI system (units m, s) for the usual range.  

Manning equation 

 V = (1/n) (D/4) 2/3 J 1/2   (B4.1) 

 β = 1/3,   γ = 0,  N = n = 0.009 (1 + 0.3 ε*)
1/6  (B4.2) 

Maximum relative errors in estimation of J, D, V, Q: 34%, 7%, 23%, 23%, respectively. 

Hazen-Williams equation 

 V = 0.85 C (D/4) 0.63 J 0.54   (B4.3) 

 β = 0.26,   γ = 0.08,  N = 0.008 (1 + 0.22 ε*)
1/6,  C = 1 / (0.85 N) (B4.4) 

Maximum relative errors in estimation of J, D, V, Q: 36%, 8%, 27%, 27%, respectively. 
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 The maximum relative errors are also shown in Box 2. It can be seen that the errors are 

high in both cases, about five times larger than those of the proposed generalized Manning 

equation. A graphical comparison of the approximated f values with the Manning and Hazen-

Williams equations with the Colebrook-White values for the usual range of diameters and 

velocities and for ε = 0.5 mm is given in Figure 2. Values estimated by the proposed 

generalized Manning equation (10) are also given in this figure. Clearly, this figure 

demonstrates that the performances of the Manning and Hazen-Williams equations are not 

satisfactory but the approximation of the proposed generalized Manning equation (10) can be 

acceptable. This result harmonizes with earlier suggestions (e.g. Liou, 1998) to avoid the use 

of the Hazen-Williams equation and this is the case also for the Manning equation.  

 However, it can be seen from  that the parameter γ of the proposed generalized equation 

(10) tends to zero for large roughness and simultaneously the parameter β becomes about 1/3. 

These are the values of the original Manning equation and thus this observation supports the 

use of this equation for large roughness. Indeed, it was found that for ε ≥ 1 mm the maximum 

relative errors in estimation of J, D, V, Q by the original Manning equation become 9%, 2%, 

4%, 4%, respectively. Interestingly, for large ε, neglecting the term 1 over 0.3 ε* in estimation 

of n by equation (B4.2), we obtain n = ε1/6 / 26 (ε in m), which agrees with known earlier 

results (Meyer-Peter and Müller, 1948; Henderson, 1966, p. 98; Julien, 2002). All this 

discussion can support the use of the original Manning equation for large roughness. 

Particularly, this can be true for free surface flow in pipes as well as in lined or unlined open 

channels and natural channels. In this case the breaking of the perfect symmetry that is 

present in closed cylindrical pipe full flow makes the applicability of the Colebrook-White 

equation questionable. On the other hand, there exists a large body of experience for the 

successful applicability of the Manning equation. 

 On the other end, for small roughness the Manning equation has very poor performance, 

so it cannot be suggested for small ε. In contrast, the Hazen-Williams approximation can be 

acceptable this case. Indeed, for ε ≤ 0.1 mm the maximum relative errors in estimation of J, 

D, V, Q by the Hazen-Williams equation become 10%, 2%, 5%, 5%, respectively (more than 

three times better than in Box 2). Again, however, we cannot suggest the use of the Hazen-
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Williams equation even in this case: the proposed generalized Manning equation can perform 

more than three times better than this if fitted particularly for this range of roughness (0 ≤ ε ≤ 

0.1 mm; the fitted equations are not reproduced here).  

5. Error comparison 

The judgment of whether an approximation error can be acceptable or not should be done by 

comparing with other alternatives and with other types of errors. As mentioned in the 

Introduction, the original Colebrook-White formula, which was the basis of this study, is 

perhaps accurate only to 15%. The simplest of the existing approximations (see Introduction) 

are accurate, as compared to the Colebrook-White formula, to about 15% too; obviously if 

these maximum errors happen to be simultaneous (at the same conditions) and on the same 

direction (e.g. both positive) the resulting total error could reach in this case 30%; however 

statistically this is very unlikely. Roughly, the percentage 15% can be regarded as an upper 

bound for an approximation to be acceptable. The Manning and Hazen-Williams equations 

exhibit errors that can exceed twice this value and thus they must not be regarded as 

acceptable. On the other hand, the proposed generalized Manning equation (10) gives errors 

smaller than 5% for the usual range of diameters and velocities and thus it can be acceptable 

with this logic. Even in the global range the errors are smaller than 10-12% (Table 1 and 

Appendix).  

 However, the comparison with other sources of errors is more enlightening. Uncertainty 

or error exists in all involved quantities. The pipe roughness is difficult to define and its value 

is very uncertain (Noutsopoulos, 1973). The discharge is uncertain too, particularly in the 

design phase of an urban network. The energy losses can be measured but in complex 

networks it is difficult to distinguish the friction losses (and thus the energy gradient) from 

form losses. Even the diameter of the pipe may by uncertain due to manufacturing defects or 

due to deformation and waving (Xanthopoulos, 1975), and particularly due to incrustation 

after long use. Thus, a maximum error 1-2% in diameter estimation, which is the maximum 

error of the proposed generalized equation, could be acceptable.  

 Particularly, the uncertainty in roughness can reach one to two orders of magnitude. For 
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example, Butler and Davies (2000) suggest for concrete pipes ε in the range 0.06-1.5 mm if 

the pipes are new and 1.5-6 mm if the pipes are old. Also, Chaudhry (1996) reproduces 

experience charts (from USBR), according to which the roughness of steel pipes ranges from 

0.03 mm (for new smooth pipes) to 6 mm (for pipes with severe tuberculation/incrustation). 

In both theses cases the highest value differs from the lowest by a factor of 100 or more. In 

this respect, Table 2 provides a set of error values in the estimation of the energy gradient due 

to misspecification of the roughness by a factor of 2, 5 and 10. It can be seen that these values 

are much greater than the maximum approximation error of the same quantity by the power-

law equation.  

6. Conclusions 

Equation (9), which is a power-law approximation of the Colebrook-White equation, enables 

the expression of the friction factor in terms of the final design quantities. In turn, combined 

with the Darcy-Weisbach equation, it yields an overall power-law relationship (equation (10)) 

that is a convenient approximation for design and simulation purposes. This is a generalized 

Manning equation, whose exponents are not unique but depend on the pipe roughness. The 

exponent parameters β and γ and the generalized Manning coefficient N are given either in 

tabulated form (Table 1 for the most typical design roughness values) or as mathematical 

expressions of roughness (Box 1). The maximum approximation errors in estimating the 

energy gradient is no more than 5% for the most usual range of diameters and velocities in 

urban water networks. The corresponding error in the estimation of diameter is 1%. These are 

much smaller than other errors resulting from uncertainty and misspecification of design and 

simulation quantities. The small errors render the method a useful substitution of the Darcy-

Weisbach and Colebrook-White equations for both design and simulation. In the design 

phase, it can be argued that the simplification of calculations by the proposed equation is 

considerable and that the cost is almost negligible if compared to the uncertainty of unknown 

future design quantities and conditions. But even in simulation of existing urban water 

systems, where uncertainties are smaller, it can be assumed that the proposed method could be 

worth trying, because of the expected reduction in computer time.  
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 The original Manning and the Hazen-Willians equations have been also examined in 

this study as potential alternatives for simplification of calculations. In fact, both can be 

obtained as special cases of the proposed generalized equation by setting the exponent 

parameters constant. It turns out that the approximation errors of both equations are much 

higher than those of the generalized Manning equation and thus their use cannot be 

encouraged. However, for large roughness, the performance of the original Manning equation 

is significantly improved and thus its use, particularly when the networks operate with surface 

flow rather than in pressurized conditions, is absolutely justified. 
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Appendix: Optimal parameters for additional diameter and velocity ranges  

Equations (B1.4) and (B1.5) in Box 1 are optimized in terms of approximation error for the 

usual range of diameters and velocities. If the application range becomes wider, the error 

increases. Generally, the error in the energy gradient J by equations (B1.3)- (B1.5) remains 

smaller than 15% for a range wider than usual, i.e. for 0.05 m ≤ D ≤ 3.5 m, 0.1 m/s ≤ V ≤ 5 

m/s. The error in other estimated quantities (D, V, Q) in this range is significantly lower.  

For even higher diameters and velocities up to D = 10 m and V = 10 m/s the 

approximation error may reach 25%. However, it is possible to decrease this error by slightly 

changing the internal parameters of these equations, so that they become optimal for the new 

range of diameters and velocities. This can be done using the same method described in 

section 3. Here we provide equations optimized for the global range (as defined in section 3) 

as well as for two other sub-ranges of it, referred to as usual + small and usual + large ranges 
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and graphically depicted in Figure A1. Note that the three different ranges examined here are 

deliberately wider than the usual range and overlap with each other as the purpose is to 

provide convenient additional information for wider spectra of applications that are not fit into 

the usual range. As D increases, V is expected to be larger and this was taken into account for 

the construction of sub-ranges in Figure A1.  

The following equations replace (B1.4) and (B1.5) of Box 1 for the respective ranges 

and produce the errors given below, which unavoidably are larger than in the usual range:  

Usual + small range (0.05 m ≤ D ≤ 1 m, 0.1 m/s ≤ V ≤ 3 m/s) 

 β = 0.32 + 0.0006 ε* + 
0.021

1 + 12.1 ε*
,   γ = 

0.11
1 + 0.32 ε*

,     

 α = 0.0033 (1 + 1.92 ε*)
0.32 (80 000)β,   N = 0.00648 (1 + 1.92 ε*)

0.16 (A.1) 

Maximum relative errors in estimation of J, D, V, Q: 9%, 2%, 5%, 5%, respectively. 

Usual + large range (0.1 m ≤ D ≤ 10 m, 0.3 m/s ≤ V ≤ 10 m/s) 

 β = 0.25 + 0.0006 ε* + 
0.024

1 + 7.2 ε*
,   γ = 

0.083
1 + 0.42 ε*

,     

 α = 0.0045 (1 + 2.47 ε*)
0.28 (80 000)β,   N = 0.00757 (1 + 2.47 ε*)

0.14 (A.2) 

Maximum relative errors in estimation of J, D, V, Q: 8%, 2%, 5%, 5%, respectively. 

Global range (0.05 m ≤ D ≤ 10 m, 0.1 m/s ≤ V ≤ 10 m/s) 

 β = 0.27 + 0.0008 ε* + 
0.043

1 + 3.2 ε*
,   γ = 

0.1
1 + 0.32 ε*

,     

 α = 0.0039 (1 + 2.38 ε*)
0.3 (80 000)β,  N = 0.00705 (1 + 2.38 ε*)

0.15   (A.3) 

Maximum relative errors in estimation of J, D, V, Q: 12%, 2%, 7%, 7%, respectively. 
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Tables 

Table 1 Optimal α, β, γ and N values for the most typical design roughness values used in 

Europe. 

ε (mm) 0 0.1 0.3 1 3 

Global application range (0.05 m ≤ D ≤ 10 m; 0.1 m/s ≤ V ≤ 10 m/s)* 

a 0.1273 0.1602 0.2200 0.3397 0.6458

β 0.31 0.28 0.28 0.29 0.32

γ 0.104 0.054 0.029 0.014 0.007

Ν (SI units: m, s) 0.0070 0.0093 0.0109 0.0128 0.0149

Usual application range (0.1 m ≤ D ≤ 1 m; 0.2 m/s ≤ V ≤ 2 m/s)** 

a 0.1376 0.1599 0.2115 0.3804 0.7886

β 0.33 0.30 0.29 0.31 0.35

γ 0.109 0.069 0.037 0.015 0.006

Ν (SI units: m, s) 0.0065 0.0083 0.0101 0.0121 0.0139

* Maximum relative errors in estimation of J, D, V, Q: 10%, 2%, 6%, 6%, respectively. 

** Maximum relative errors in estimation of J, D, V, Q: 2.7%, 0.6%, 1.5%, 1.5%, respectively. 

Table 2 Comparison of approximation errors and errors due to misspecification of roughness 

in the estimation of the energy gradient J (for the usual range of diameters and velocities). 

Maximum approximation error of the power-law equation 5%

Maximum approximation error of the Manning equation 34%

Maximum approximation error of the Hazen-Willians equation 36%

Maximum error due to misspecification of ε in the region 0.1-1 mm (using the 

Colebrook-White equation),   … by a factor of 2 19%

… by a factor of 5 36%

… by a factor of 10 44%
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Figure 1 Variation with roughness ε of the dimensionless parameter α, β and γ, and the 

dimensional parameter N (in SI units m and s) in the generalized Manning equation (10) for 

the four ranges of diameters and velocities examined.  
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Figure 2 Comparison of approximated f values with the proposed generalized Manning 

equation (10), as well as the original Manning and Hazen-Williams equations, with the 

Colebrook-White values for the usual range of diameters and velocities and for ε = 0.5 mm.  
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Figure A1 Definition sketch of the ranges of diameters and velocities.  
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