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Data set 1:
Contemporary 
record of 
monthly flows at 
Aswan
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Data sets 2 and 3: records of annual maximum 
and minimum water levels at the Roda Nilometer

Data period 640-1452 (813 years): the longest instrumental data set available 
worldwide – high importance in understanding and modelling hydroclimatic 
behaviours
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Part 1
Seeking determinism
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Analysis of the 
monthly flows
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Analysis of the 
standardized 
monthly flows
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monthly time series 

2. ‘Linear’ logics 
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the type 
‘periodic + aperiodic’
or ‘signal + noise’
may be inappropriate 
for natural processes

3. No apparent over-
annual cycle

Fifty years of monthly flow cyclically standardized
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Seeking over-annual cycles
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Several studies have claimed 
to have detected several 
over-annual periods from 
the Nilometer time series
Here are two recent 
examples

Authors’ opinion:

Such claims may be suspicious for several reasons
1. The plethora of periods, which are numbers asymmetric to each other, may 

rather indicate a stochastic behaviour (all frequencies are significant)

2. Some studies test the significance of detected periods against white noise; 
apparently, a white noise hypothesis is totally inconsistent with the Nile 
behaviour

3. Some studies may have undervalued the estimation uncertainty in 
stochastic processes with high autocorrelation



D. Koutsoyiannis and A. Georgakakos, Lessons from the long flow records of the Nile 8

Seeking over-
annual cycles:
Aswan and 
Nilometer annual 
series
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Conclusion:
No over-annual  cycle 
appears in any of the 
three time series

A simple methodology:

A  ‘real’ peak in the 
power spectrum 
(manifesting 
determinism rather than 
a random effect) will 
appear also at the same 
frequency if we split the 
sample in two halves or 
in three tertiaries
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Algorithmic details in seeking over-annual cycles
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1. We split the sample into two halves; if the sample size n is not even we omit one value 
so that the half-sample size ν = n/2 is integral

2. We estimate the periodograms of the full time series and its two halves at frequencies 
ωk = k/ν for integral k such that 1/ν ≤ ωk ≤ 1/2

3. For each ωk we calculate a likelihood measure of a ‘real’ peak η(ωk) as the number of 
peaks in the three periodograms divided by 3 (a real peak should have η(ωk) = 1)

4. We repeat (analogously) steps 1-3 splitting the sample into three tertiaries (here ν = n/3)

5. We plot η(ωk) vs. ωk for the two cases (halves, tertiaries) and locate frequencies ω in 
whose neighborhood η(ω) = 1 in both cases

6. For these frequencies, we inspect in the periodogram of the full series whether or not 
the peak is higher than neighbouring peaks; if yes we can say that the identified ω
manifest determinism rather than a random effect

Power spectrum peaks 
plot, Nilometer, 
maximum
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Seeking a chaotic attractor

Notation: ε = scale length; m = embedding dimensions (from 1 to 8 as indicated 
in the legends); d2(ε, m) = local slope of correlation sums
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Conclusion: No low-dimensional determinism



Part 2
Stochastic description
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Multi-scale setting of stochastic analysis

A process at continuous time t X(t) 

The averaged process at a scale k  X(k)
i  := 

1

k
 ⌡

⌠

(i – 1) k

i k

  X(t) dt 

Properties of the process at an arbitrary 

observation scale k = 1 (e.g. annual)  

 

 

 Standard deviation σ ≡ σ(1) 

 Autocorrelation function (for lag j) ρj ≡ ρ(1)
j  

 Power spectrum (for frequency ω) s(ω) ≡ s(1)(ω) 

Properties of the process at any other scale  
Can be derived analytically from 

those at scale k = 1 – depend on ρj 

Specific properties at any scale of a simple 

scaling stochastic process (SSS - fractional 

Gaussian noise) with Hurst exponent H  

 

  Standard deviation σ(k) = kH – 1 σ    (0.5 < H <1) 

 Autocorrelation function (for lag j) ρ(k)
j  = ρj  ≈ H (2 H – 1) |j|2H – 2 

 Power spectrum (for frequency ω) s(k)(ω) ≈ 4 (1 – H) σ2 k 2H – 2 (2 ω)1 – 2 H 
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Manifestation of aperiodic fluctuations into the 
statistics of the time series

Month µ (km
3
) σ (km

3
) Cs Ck τ3 τ4 Η ρFGN1 ρ1 ρ2 ρ12 

Aug 19.03 4.38 -0.06 -0.28 -0.01 0.11 0.74 0.40 0.58 0.06 0.17 

Sep 21.55 5.07 -0.21 -0.18 -0.03 0.11 0.81 0.53 0.74 0.24 0.25 

Oct 14.58 4.27 0.17 -0.24 0.01 0.11 0.91 0.77 0.85 0.61 0.50 

Nov 8.16 2.31 0.64 -0.14 0.14 0.09 0.85 0.62 0.86 0.72 0.33 

Dec 5.57 1.40 1.21 1.91 0.23 0.20 0.90 0.74 0.90 0.75 0.46 

Jan 4.33 1.03 0.74 1.05 0.14 0.19 0.87 0.68 0.90 0.75 0.44 

Feb 3.17 0.91 0.64 0.53 0.11 0.13 0.82 0.56 0.92 0.76 0.40 

Mar 2.76 0.87 0.79 1.25 0.10 0.14 0.83 0.59 0.90 0.75 0.41 

Apr 2.52 1.05 0.43 -0.87 0.12 0.01 0.93 0.82 0.80 0.62 0.73 

May 2.33 1.01 0.46 -1.11 0.14 -0.02 0.94 0.83 0.94 0.73 0.79 

Jun 2.24 0.82 0.82 0.69 0.15 0.07 0.88 0.69 0.78 0.69 0.46 

Jul 5.26 1.76 0.74 0.58 0.13 0.13 0.83 0.59 0.57 0.35 0.39 

Average   0.53 0.27 0.10 0.10 0.86 0.65 0.81 0.59 0.44 

Annual 91.51 18.38 0.48 0.23 0.11 0.13 0.83 0.58 0.32 0.32  

 Series µ (m) σ (m) Cs Ck τ3 τ4 Η ρFGN1 ρFGN2 ρ1 ρ2 

Minima 2.70 0.96 0.70 3.20 0.05 0.16 0.84 0.60 0.46 0.46 0.38 

Maxima 9.27 0.75 -0.13 6.24 -0.01 0.22 0.84 0.59 0.45 0.43 0.36 

 High autocorrelation (ρ) – High Hurst coefficient (H > 0.5)
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Empirical 
statistical 
analysis 1: 
Standard 
deviation 
vs. scale
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In all cases an SSS 
model seems 
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(White noise is 
far from 
satisfactory)



D. Koutsoyiannis and A. Georgakakos, Lessons from the long flow records of the Nile 15

Empirical 
statistical 
analysis 2: 
Auto-
correlation 
vs. lag at 
scale 1
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Empirical 
statistical 
analysis 3: 
Auto-
correlation 
vs. scale at 
lag 1
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Some type-“why?” questions

� Why the temperature of this room tends to equal 
that of the environment (in the absence of 
heating/cooling systems)

� Why the probability for each outcome of a die is 1/6?
� Why the normal (non scaling) distribution is so 

common for processes with relatively low variation?
� Why variables with high variation tend to have 

asymmetric inverse-J-shaped (rather than bell-
shaped) distributions?

� Why variables with high variation tend to have a 
scaling behaviour in state (i.e. non-normal 
distribution)?

� Why stochastic dependence of natural quantities in 
consecutive time steps appears so commonly to be 
linear?

� Why the Hurst phenomenon (scaling behaviour in 
time) is so common in geophysical, biological, 
socioeconomical and technological processes?

Because this 
behaviour
maximizes 
entropy 
(εντροπία
entropy
entropie
Entropie
entropia
entropía
entropi
entrópia
entroopia
entropija
энтропия
ентропія)
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What is entropy?

� For a discrete random variable X taking values xj with probability 
mass function pj ≡ p(xj), the Boltzmann-Gibbs-Shannon (or extensive) 
entropy is defined as

� For a continuous random variable X with probability density 
function f(x), the entropy is defined as

� Several generalizations of the entropy definition have been 
proposed; the most promising seems to be that of Tsallis (1988)

� In both cases the entropy φ is a measure of uncertainty about X and 
equals the information gained when X is observed

� Sometimes entropy is regarded as a measure of order or disorder and 
complexity

φ := Ε[–ln p(Χ)] = –∑
j = 1

w

 pj ln pj,    where    ∑
j = 1

w

 pj = 1 

φ := Ε[–ln f(Χ)] = –⌡⌠
–∞

∞

 f(x) ln f(x) dx,    where     ⌡⌠
–∞

∞

 f(x) dx = 1 
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Entropic quantities of a stochastic process

� The order 1 entropy (or simply entropy or unconditional entropy) refers 
to the marginal distribution of the process Xi :

� The order n entropy refers to the joint distribution of the vector of 
variables Xn = (X1, …, Xn) taking values xn = (x1, …, xn):

� The order m conditional entropy refers to the distribution of a future 
variable (for one time step ahead) conditional on known m past and 
present variables (Papoulis, 1991):

φc,m := Ε[–ln f(Χ1|X0, …, X–m + 1)] = φm – φm - 1

� The conditional entropy refers to the case where the entire past is 
observed:

φc := limm → ∞ φc,m

� The information gain when present and past are observed is:

ψ := φ – φc

φn := Ε[–ln f(Χn)] = –⌡⌠
D

 f(xn) ln f(xn) dxn  

= –⌡⌠
–∞

∞

 f(x) ln f(x) dx, φ := Ε[–ln f(Χi)] =

The theory is for discrete time stationary processes
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What is the principle of maximum entropy (ME)? 

� In a probabilistic context, the principle of ME was introduced by 
Jaynes (1957) as a generalization of the “principle of insufficient 
reason” attributed to Bernoulli (1713) or to Laplace (1829)

� In a probabilistic context, the ME principle is used to infer unknown 
probabilities from known information

� In a physical context, the ME principle determines thermodynamical
states 

� The principle postulates that the entropy of a random variable should 
be at maximum, under some conditions, formulated as constraints,
which incorporate the information that is given about this variable

� Typical constraints used in a probabilistic or physical context are:

⌡⌠
–∞

∞

 f(x) dx = 1,    Ε[Χ] = ⌡⌠
–∞

∞

 x f(x) dx = μ  

Ε[Χ 2] = ⌡⌠
–∞

∞

 x2 f(x) dx = σ2 + μ2,  Ε[Χi Xi + 1] = ⌡⌠
–∞

∞

  xi xi + 1 f(xi, xi + 1) dxi dxi + 1 = ρ σ2 + μ2 

Mass Mean/Momentum

Dependence/StressVariance/Energy

x ≥ 0 

Non-negativity
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Application of the ME principle at the basic time scale

� Maximization of either φn (for any n) or φc with the mass/mean/ 
variance constraints results in Gaussian white noise, with 
maximized entropy

and information gain ψ = 0. This result remains valid even with the 
non-negativity constraint if variation is low (σ/μ << 1)

� Maximization of either φn (for any n) or φc with the additional 
constraint of dependence with ρ > 0 (for lag one) results in a 
Gaussian Markov process with maximized entropy

and information gain
� The question is how we should maximize entropy in a continuous 

time process:
� At the observation scale? (=> a Markov process – but not reasonable)
� At multiple time scales simultaneously? (see Koutsoyiannis, 2005 => SSS)
� At scale tending to zero? (a ‘local’ contemplation)
� At scale tending to infinity? (a ‘global’ contemplation)

φ = ln(σ 2πe),   φc = ln[σ 2 π e (1 – ρ2)],   φn =  φ + (n – 1) φc 

ψ = –ln 1 – ρ2 

φ = φc = ln(σ 2πe) ,   φn = n φ
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Entropy extremizing solutions - Comparison

• All five solutions are constrained by σ = 1 at the annual scale (k = 1); 

• All solutions but white noise are also constrained by ρ = 0.449, as in the Nile 
flow record at the annual scale (k = 1); white noise is plotted just for comparison

• To derive the simple scale and asymptotic scaling solutions two additional 
inequality constraints (restrictions) were used 

1. ψ(0)≥ ψ(k) for any k > 0 (meaning that predictability at any time scale k is 
lower than that instantaneously after the measurement)

2. ψ(∞) < ∞ (prohibiting an illimitable predictability at very large scales)

Unconditional Conditional
Grey noise 

Markov/ARMA(1,1)

Simple scaling
Asymptotic scaling

White noise
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Entropy extremizing solutions - Comparison

Large scales (→ ∞)Scale 1Small scales (→ 0)
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Min
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Note R: solutions with additional restrictions
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Entropy 
extremizing
solutions –
Auto-
correlation 
functions 
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Conclusions

� Apart from the annual cycle, no other signatures of 
determinism appear in the long records of the Nile River

� The type of stochastic behaviour observed in the Nile 
records is very different from white noise and suggests a 
simple scaling or asymptotic scaling process

� Both these processes are consistent with the maximum 
entropy principle and suggest much higher entropy on 
small and large scales in comparison to Markov processes

� Thus, the observed behaviour can be interpreted as 
dominance of uncertainty in nature

� (… which makes the world interesting, i.e. not boring)

Both classical physics and quantum physics are indeterministic
Karl Popper (in his book “Quantum Theory and the Schism in Physics”)

The future is not contained in the present or the past
W. W. Bartley III (in Editor’s Foreward to the same book)
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