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1. Abstract
The long tails of the marginal distribution and the autocorrelation function
of rainfall are related to the observed rich patterns in hyetographs, the
diversity of rainfall events and even the intermittent behaviour. However,
maximization of the classical Boltzmann Gibbs Shannon entropy for rainfall
at a specific time scale, assuming a specified mean, would result in an
exponentially distributed Markovian process. Such a process, with short
tails both in the marginal distribution and autocorrelation function, would
produce unrealistic rainfall patterns characterized by monotony and
without intermittency. Some modified methodologies, which involve the
use of a generalized definition of entropy, have been already proposed to
reinstate consistency of the maximum entropy principle and observed
rainfall behaviour. Here we explore another method which uses the
classical entropy definition but assumes that rainfall can be represented as a
chain of stochastic processes, each member of which represents the mean of
the previous process and has lag one autocorrelation greater than that of the
previous process. Application of the method using Monte Carlo simulation
demonstrates that such a chain with only three members can produce
synthetic traces resembling actual hyetographs.



2. The principle of maximum entropy (ME) and
the marginal distribution
• The Boltzmann Gibbs Shannon entropy for a continuous random

variable X with density function f(x) is by definition (e.g. Shannon and
Weaver, 1949; Papoulis, 1991)

• The principle of ME, as formalized by E.T. Jaynes (1957a, b), states that
the (unknown) density function f(x) of a random variable X is the one
that maximizes the entropy , subject to any known constrains.

• Application of the ME principle using the Boltzmann Gibbs Shannon
entropy with simple constraints of known mean and variance 2

results in

f(x) = exp(– 0 – 1 x – 2 x
2) (1)

where 0, 1 and 2 are parameters depending on the known mean and
variance; inspection of (1) shows that it is the normal density function.

• In statistical physics, if X denotes the momentum of molecules or atoms
in a gas volume, the mean and variance constraints correspond
precisely to the principles of preservation of momentum and energy.
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3. An entropic approach to rainfall – Step 1

• Let Xi denote the rainfall rate at time i discretized at a fine time scale
(tending to zero).

• What we definitely know about Xi is Xi 0.

• Maximization of entropy with only this condition is not possible.

• Now let us assume that rainfall has a specified mean .

• Maximization of entropy with constraints

Xi 0,

results in the exponential distribution: f(x) = exp(–x/ )/ .

• In addition, let us assume that there is some time dependence of Xi,
quantified by E[Xi Xi + 1] = ; this will introduce an additional constraint for
the multivariate distribution

Here is the correlation coefficient ( > 0) and is the standard deviation
(for the exponential distribution = and thus = 2 + 2 = ( + 1) 2 > 2).

• Entropy maximization in multivariate setting will result in Markovian
dependence.

[ ] = 
–

x f(x) dx = µ

[ i Xi + 1] = 
– –

 xi xi + 1 f(xi, xi + 1) dxi dxi + 1 =  = 
2
 + µ

2



4. An entropic approach to rainfall – Step 2
• The constant mean constraint in rainfall modelling does not result from a

natural principle – as for instance in the physics of an ideal gas, where it
represents the preservation of momentum.

• Although it is reasonable to assume a specific mean rainfall, we can allow this
to vary in time.

• In this case we can assume that the mean at time i is the realization of a
random processMiwhich has mean and lag 1 autocorrelation M > .

• Application of the ME principle will produce thatMi is Markovian with
exponential distribution.

• Then application of conditional distribution algebra results in

f(x) = 2 K0(2 (x/ )1/2)/ , F(x) = 1 – 2 (x/ )1/2 K1(2 (x/ )1/2)/

where Kn(x) is the modified Bessel function of the second kind (important
observation: f(0) = , whereas in the exponential distribution f(0) = < ).

• The moments of this distribution are E[Xn] = n n!2 (note: in exponential
distribution E[Xn] = n n!) so that

E[X] = , Var[X] = 3 2 CV = / = 3 > 1

• The dependence structure becomes more complex than Markovian (difficult to
find an analytical solution).

5. An entropic approach to rainfall – Step 3
• Proceeding in a similar manner as in step 2, we can now replace the

constant mean of the processMiwith a varying mean, represented by
another stochastic process Ni with mean and lag 1 autocorrelation
N > M > .

• In this manner we can construct a chain of processes, each member of
which represents the mean of the previous process.

• By construction, the lag 1 autocorrelations of these processes form a
monotonically increasing sequence, i.e. …. > N > M > .

• The scale of change or fluctuation of each process of the chain is a
monotonically increasing sequence, i.e. …. > qN > qM > q, where
q := (–ln )–1; the scale of fluctuation represents the time required for the
process to decorrelate down to an autocorrelation 1/e.

• The (unconditional) mean of all processes is the same, .

• All moments except the first form an increasing sequence as we
proceed through the chain; higher moments increase more.

• Analytical handling of the marginal distribution and the dependence
structure is very difficult.

• However we can easily inspect the idea using Monte Carlo simulation.



6. A demonstration using a chain with 3 processes
• Simulation of a Markovian process with exponential distribution is easy

and precise; there are several methodologies to implement it.

• Here we implement an Exponential Markov (EM) process as

Xi = [–ln G(Yi)]

where is the mean, Yi is a standard AR(1) process with standard
normal distribution and G( ) is the standard normal distribution
function.

• Simulations with a length 10 000 were performed for the following cases
(for comparison).
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* Autocorrelation coefficients refer to the standard AR(1) process but are approximately equal in the EM process.

7. Simulation results – distribution function

As the number of processes in the chain increases, the right tail of the
distribution moves toward higher “rainfall intensity” values and its shape
changes from exponential type to power type; simultaneously the
probability density becomes infinite for x = 0.

Logarithmic
plot of “rainfall
intensity” (x) vs.
empirically
estimated return
period
(T(x) := 1/[1 – F(x)],
where F(x) is the
distribution
function)
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8. Simulation results – dependence structure

As the number of processes in the chain increases, the shape of the
autocorrelation function changes from Markovian (exponential decay –
short range dependence) to power type (long range dependence).

The latter type is characteristic of the Hurst Kolmogorov behaviour, which
can be represented by a simple scaling stochastic process (SSS process).
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9. Simulation results – variation of the aggregated
process

The slope of the logarithmic plot (as k ) is H – 1 where H is the Hurst exponent.

The slope in the “1 EM” case is –0.5, i.e. H = 0.5, meaning no Hurst Kolmogorov
behaviour.

The slope in “3 EM” is –0.20, i.e. H = 0.80, suggesting a Hurst Kolmogorov
behaviour.

Logarithmic
plot of
standard
deviation (k)

of the process
aggregated at
scale k, vs.
scale k
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10. Simulation
results –
general
behaviour

As the number of
processes in the
chain increases the
general shape
changes:

From monotony
to rich patterns

From steadiness
to intermittency

Plots of parts of the
generated time
series (selected so as
to include the
maximum over
10 000 generated
values)

11. Can entropy maximization be performed in a

single step? (The Tsallis entropy)
• A generalization of the Boltzmann Gibbs Shannon entropy has been

proposed by Tsallis (1998, 2004)

with q = 1 corresponding to the Boltzmann Gibbs Shannon entropy.
• Maximization of Tsallis entropy with known yields

f(x) = [1 + ( 0 + 1 x)]
–1 – 1/ , x 0

where := (1 – q)/q and 0, 1, 2 and are parameters.
• Clearly, this is the Pareto distribution and has an over exponential

(power type) distribution tail.
• Whilst this approach succeeds in producing a long tail to the right, it

fails in reproducing the tail to the left (it underpredicts the probability
of very low values; see Papalexiou and Koutsoyiannis, 2008).

• Furthermore, a single step approach based on the Tsallis entropy
cannot reproduce the Hurst Kolmogorov behaviour; to remedy this, a
multi scale setting of the entropy maximization has been proposed by
Koutsoyiannis (2005).
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12. Conclusions
• The principle of maximum entropy provides a sound theoretical basis for

studying the rainfall process.
• However, maximization of the classical Boltzmann Gibbs Shannon entropy at

a specific time scale, assuming a specified mean, would result in an
exponentially distributed Markovian process, which is unrealistic.

• This can be remedied by performing the entropy maximization in several
steps, thus representing rainfall as a chain of stochastic processes, each
member of which represents the mean of the previous process and has lag one
autocorrelation greater than that of the previous process.

• Monte Carlo simulation demonstrates that such a chain with only three
members can produce synthetic traces resembling actual hyetographs.

• The resulting model is characterized by high autocorrelation at fine scales,
slowly decreasing with lag (Hurst Kolmogorov behaviour), by long
distribution tails, and by probability density tending to infinity for rainfall
intensity tending to zero.
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