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Part 1: A stochastic* introduction

(at an elementary level)

*Stochastic is used here with the literal modern Greek meaning, something 
in between sceptical and philosophical.
(στοχάζεσθαι = to think in depth; σκέπτεσθαι = to think; φιλοσοφείν = to love wisdom)
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What is the principle of parsimony?
A principle that advises scientists to prefer the simplest theory among 
those that fit the data equally well. 
Alternative names: principle of parsimony, principle of 
simplicity, principle of economy, Ockham’s razor.
Example of a parsimonious natural law: 

Dogs bark.
Examples of non-parsimonious laws:

Black, white and spotted dogs bark.
Dogs bark on Mondays, Wednesdays and Fridays.

Intuitively, the above example law should not exclude the case that a 
particular dog does not bark (he is mute); it should be mistaken to 
say “all dogs bark”.
In other words, laws of complex systems (e.g. the biological system 
“dog”) are necessarily probabilistic in nature: 

“Dogs bark” means “it is very likely that any dog may bark”.
Failure to recognize the probabilistic character of parsimony in complex 
systems may create confusion (see e.g. Courtney and Courtney, 2008, 
and the “all crows are black” example).
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Historical reference
Aristotle (384–322 BC), Αναλυτικά Ύστερα (Posterior Analytics): “We 
may assume the superiority ceteris paribus [other things being equal] 
of the demonstration which derives from fewer postulates or 
hypotheses ”. 
Also: “[the principles] should, in fact, be as few as possible, 
consistently with proving what has to be proved ”.
Claudius Ptolemy (100-178 AD), Μαθηµατική Σύνταξις (Mathematical 
Treatise or “Almagest ”): parsimony helps decide between theories 
about planetary motions.
Medieval philosophers: Robert Grosseteste (c. 1168-1253), Thomas 
Aquinas (c. 1225-1274), William of Ockham (c. 1285-1347; “Plurality 
is not to be posited without necessity ”). 
Nicolaus Copernicus (1473-1543), Galileo Galilei (1564-1642), Isaac 
Newton (1642-1727)—all used parsimony in developing their theories. 
Albert Einstein’s formulation of parsimony: “Everything should be 
made as simple as possible, but not simpler ”.

Read more about the history and philosophy of parsimony and the 
scientific method in the compelling book by Gauch (2003).
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Is the principle of parsimony epistemological 
or ontological?

Ockham insisted that parsimony was just an epistemological principle 
for choosing the best theory.
However, earlier philosophers, from Aristotle to Grosseteste had 
interpreted parsimony also as an ontological principle, thus expecting 
Nature to be simple. 

Light follows the simplest path from A 
to B (the red line) and not other more 
complex ones (e.g. the black lines 
ACB, ADB)?
But what does “simplest” mean?

AB

D
C

Were Nature not parsimonious
(e.g. were paths ACB, ADB 
materialized) it would be difficult to 
understand her and life would be 
hard.
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Quantification of simplicity
The traditional approach to physics is based on writing equations.

Equations generally express conservation laws. 
Such laws govern the following quantities:

Mass (scalar equation);
Linear momentum (vector equation);
Angular momentum (vector equation);
Energy (scalar equation);
Electric charge (scalar equation).

Other quantities (e.g. acceleration) are not conserved.
These laws refer to isolated systems that do not exchange heat and mass 
with the environment (in open systems there is no conservation).

However, to find states or paths which are “as simple as possible”, it 
seems more natural to formulate the problem in terms of optimization rather 
that using equations. 
A single optimization of a scalar function f (s) of a vector quantity s, i.e. a 
mathematical expression “optimize f (s)” is more powerful than an equation
form, i.e. “g (s) = 0” (the “optimation” form is equivalent to as many 
equations as required). 

Nature seems to be an optimizer—not an equalizer.
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Quantification of simplicity in light trajectory 
Attempt 1

Light follows the shortest possible path from A to B.
A parsimonious law for a parsimonious natural behaviour.
Further investigation will show that it is not correct (formulation 
simpler than “as simple as possible”).

AB

D
C
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Quantification of simplicity in light trajectory 
Attempt 2

In the presence of a mirror, light follows both red paths from A to B 
(AB, ADB)—but not other (the black) ones (e.g. AEB, AFB).
The previous formulation of the law is not valid. 
Replacement: Light follows the shortest path, but when there is a 
mirror, it also follows a second path with a reflection by the mirror 
such that the angle of incidence equals the angle of reflection.

A wordy law, not parsimonious (“equalizer” thinking…).
We observe that the mirror has 
imposed an inequality constraint 
to possible paths (by disallowing 
light to go through it) and thus 
“generated” a second minimum in 
the “shortest path” problem.
The paths followed by light have 
minimum length (either global or 
local minimum).
Parsimonious law—Principle of 
Hero of Alexandria (~1st cent. BC) 

A mirror
θ1> θ2

AB

E

D F

θ1= θ2
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Quantification of simplicity in light trajectory 
Attempt 3

If we replace the flat mirror 
with a cylindrical mirror, the 
light follows three paths from 
A to B (red lines AB, ACB, 
ADB). 
Of these, AB is the global 
minimum, ACB is a local 
minimum and ADB is a local 
maximum. 
The paths followed by light 
have extremal length (either 
global or local minimum or 
maximum).A semi-cylindrical mirror

θ1 > θ2

AB
C

E
D

F

Nature is a skilful optimizer, as she finds all local minima and maxima 
(put many mirrors to see lots of paths materializing).
Failure to observe this makes things difficult to explain, as indicated for 
instance in the debate by Gaertner (2003) and Schoemaker (2003).
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Quantification of simplicity in light trajectory 
Attempt 4 Refraction makes clear that light 

does not always follow the shortest 
(straight line) path; here it follows 
the broken line path ACB. 
This is related to the fact that the 
light speed in water is smaller than 
in air.
It is easily proved that the path 
ACB has the least travel time.
Final law (Fermat’s principle, 
corrected for extremum—instead 
of minimum):
Light follows paths that have 
extremal travel time.

B
C

A
A΄

Refraction by water

Nature is indeed parsimonious (ontological parsimony).
The final law is parsimonious (epistemological parsimony), reflecting 
the parsimony of Nature.
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Generalization to the trajectory of a weight 
The principle of extremal (stationary) action

Quantities involved
Potential energy: V = m g z
Kinetic energy: T = (1/2)m u 2 = (1/2)m (ux

2 +uz
2)

Lagrangian: L = T – V = (1/2)m (ux
2 +uz

2) – m g z
Action: S = ∫Π L dt along the path Π

Principle of extremal action (Hamilton)
From all possible motions between two points, the 
true motion has extremal (stationary) action.
Credit for the principle is given to Pierre-Louis 
Moreau de Maupertuis, who wrote about it in 1744; 
Leonhard Euler discussed it in 1744, whereas 
Gottfried Leibniz preceded both by 39 years.
The principle is applicable both in classical and in 
quantum physics).

Solution
Extremization of action results in Euler-Lagrange 
equation: 

x

z

At time t :
Position x, z
Velocity ux, uz

u0

Initial conditions (time t = 0) 
Position: x = 0, z = 0 
Velocity: ux = u0, uz = 0

Not a 
straight line.
Not 
minimum 
length or 
travel time.
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∂
∂
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The trajectory of a weight 
Application of the principle of extremal action

The Euler-Lagrange equation results in a single 
(global) minimum (least action): 

ux = u0 (= constant), uz = –g t
from which we obtain:

x = u0 t, z = –g t 2/2 or z = –(g / 2u0
2) x 2

(parabola; going down).
In the above formulation, we have not used 
Newton’s laws.
We did not even use preservation of energy.
Rather, the preservation of total energy E = T + V 
results from the least action solution.
The solution gives not only the geometry 
(parabola) and direction (down) of the trajectory 
but the full description of the movement of the 
weight. 

x

z

At time t :
Position x, z
Velocity ux, uz

u0

Initial conditions (time t = 0) 
Position: x = 0, z = 0, 
Velocity: ux = u0, uz = 0)

A single principle (Hamilton’s with Fermat’s as a special case) describes diverse 
phenomena in optics and classical mechanics. (Real parsimony!)
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From simple to complex systems
When we have a system of many “bodies” (e.g. many 
molecules of water in solid, liquid or gaseous phase), we are 
not interested on the properties (position, momentum) of 
each particular body. 
Even if we were interested, it would be difficult (and 
extremely unparsimonious) to know them; e.g. 1 m3 of a gas 
in standard conditions contains 2.7 × 1025 molecules.
Only macroscopic/statistical (or thermodynamical) properties 
of the system are of interest. 
Macroscopic properties are state variables such as pressure, 
internal energy, entropy, temperature, and characteristic 
constants such as specific heat and latent heat. 
Inevitably—albeit often not stated explicitly—macroscopic 
descriptions are probabilistic descriptions and involve 
uncertainty.
However, when the system components are very many and 
identical, due to the applicability of the laws of large numbers, 
uncertainty becomes almost certainty. 

When we move from single to complex systems, parsimony demands 
replacement of microscopic with macroscopic properties and of deterministic with 
probabilistic descriptions. 
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What does Nature “extremize” in complex systems?
The quantity that gets extremized seems to be the entropy.
The word is (ancient) Greek*.
The scientific term is due to Clausius (1850-1865).

The entropy concept was fundamental to formulate the second law 
of thermodynamics.
Boltzmann (1866) showed that the entropy of a macroscopic stationary 
state is proportional to the logarithm of the number w of possible 
microscopic states that correspond to this macroscopic state. 
Gibbs (1902) studied the concept further in a statistical mechanical 
context.
Shannon (1948) generalized the mathematical form of entropy and 
also explored it further. 
Kolmogorov (1956, 1958) founded the concept on more mathematical 
grounds on the basis of the measure theory and introduced entropy to 
the theory of dynamical systems.

*Εντροπία, a feminine noun from the verb εντρέποµαι meaning: to turn into; to turn 
towards someone’s position; to turn round and round.
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What is entropy?
The modern definition of entropy is based of probability theory.
For a discrete random variable x taking values xj with probability mass 
function pj ≡ p (xj), j = 1,…,w, the Boltzmann-Gibbs-Shannon (or 
extensive) entropy is defined as

For a continuous random variable x with probability density function 
f (x), the entropy is defined as

In both cases the entropy φ is a measure of uncertainty about x and 
equals the information gained when x is observed.
Entropy is also regarded as a measure of order/disorder and 
complexity (e.g. in statistical mechanics, thermodynamics, dynamical 
systems, fluid mechanics).
Generalizations of the entropy definition have been introduced more 
recently (Renyi, Tsallis).

φ := Ε[–ln f(x)] = –⌡⌠
–∞

∞
 f(x) ln f(x) dx,     where ⌡⌠

–∞

∞
 f(x) dx = 1 

 

φ := Ε[–ln p(x)] = – ∑
j = 1

w
 pj ln pj ,        where ∑

j = 1

w
 pj = 1 
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Entropy maximization: The die example
What is the probability that the outcome of a 
toss of a die will be i ? (i = 1, …, 6)
The entropy is: 

φ := Ε [–ln p(Χ)] = –p1 ln p1 – p2 ln p2 – … –p6 ln p6

The equality constraint (mass preservation) is
p1 + p2 + … + p6 = 1

The inequality constraint is pi ≥ 0.
Solution of the optimization problem (e.g. by the Lagrange method) 
yields a single maximum: p1 = p2 = … = p6 = 1/6.
This method, the application of the Principle of Maximum Entropy (ME; 
mathematically, an “optimation” form) is equivalent to the Principle of 
Insufficient Reason (IR; Bernoulli-Laplace; mathematically, an 
“equation” form).
However, ME is much more powerful and can perform in non-
symmetric cases (e.g. in a loaded die, when it is known that the
probability of a six is twice as high than that of an ace). 
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Entropy maximization and 
elementary statistical thermophysics

Take a room with volume, say, 60 m3 and assume
a partitioning into six slices, 10 m3 each.
Assume standard conditions, so that the room contains 60/0.0224 moles of air 
or N = 6.022×1023 × 60/0.0224 = 1.6×1027 molecules.
The case that all molecules are in the front sixth and all other slices are empty 
is not impossible; it has just very low probability: 
(1/6)N = 10-1 255 000 000 000 000 000 000 000 000. 
With respect to this partition to six slices, this state (p1 = 1; p2 = … = p6 = 0)
has minimum entropy φ = 1 ln 1 = 0.
The ME principle results again in p1 = p2 = … = p6 = 1/6 with maximum φ = 
ln 6 = 1.79.
Accordingly, the air molecules will be uniformly distributed in the six slices, so 
that each has an expected number of molecules E [M ] = (1/6) N = 2.7×1026. 
The standard deviation of the number of molecules is 
StD [M ] = [N (1/6) (5/6)]0.5 = 1.5×1013.
Hence, the variation is StD [M ] / E [M ] = 5.6×10-14. 
Thus, the high uncertainty at the microscopic scale becomes almost certainty 
at a macroscopic level.
This enables description of the conditions in the entire room with a few state 
variables, such as density, pressure, temperature (Parsimony again!).
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Is the principle of maximum entropy 
ontological or epistemological?

In thermodynamics and statistical physics the principle of maximum 
entropy is clearly ontological:

It determines (macroscopic thermodynamical) actual states of 
physical systems, which can be measured.

Jaynes (1957) introduced the principle of maximum entropy as an 
epistemological principle in a probabilistic context:

It is used to infer unknown probabilities from known information.
The (unknown) density function f (x) of a random variable x is 
the one that maximizes the entropy φ, subject to any known 
constraints.

Are these two different principles or one? 
If Nature aligns itself with the (ontological) principle, why not use 
the same principle in logic for inference about Nature?
Some more difficult questions: Is the principle of maximum entropy 
related to the principle of extremal action? Is extremal action a 
special case of extremal entropy? Or are the two different special 
cases of a more general principle?



Part 2: Hydrological applications
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Typical thermodynamical vs. hydrological systems 
A system of 
water molecules 
(classical thermo-
dynamics).

Topographical background of a 
hydrological system (Acheloos
River @ Mesounta, Greece; image 
from Google Earth).

Three-dimensional 
detail of a hydrological 
system (credit: 
Lessovaia et al., 2008).

Identical elements 
Deduction: possible

Different, unique elements 
Deduction: impossible; Induction: method of choice
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Is the principle of parsimony applicable in the 
complex hydrological systems?

The answer underlying the mainstream hydrological research of the 
last two decades seems to be negative. 
Hopes were invested to the power of computers that would enable 
faithful and detailed representation of the diverse system elements 
and the hydrological processes, based on merely “first principles”, 
thus resulting in “physically-based” models that tend to approach in 
complexity the real world systems. 
Few loud voices debated this direction, e.g.:

James Dooge (1997): Searching for simplicity in hydrology.
Keith Beven (1993): Prophecy, reality and uncertainty in 
distributed hydrological modelling.
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What is the mathematical tool to reconcile the 
complexity of hydrological systems with parsimony? 

As in thermodynamics, a consistent theory should necessarily be based on 
probability—but in an enhanced setting.
The tool is Stochastics = Probability theory + Statistics + Stochastic 
processes. 
Probability theory provides the theoretical basis for: 

moving from a microscopic to a macroscopic view of phenomena by 
mapping sets of diverse elements and events of hydrological systems to 
single numbers (a probability or an expected value);
making induction.

Statistics provides the empirical basis for:
summarizing data;
making inference from data; and 
supporting decision making. 

Stochastic processes and Monte Carlo simulations provide the means for:
probabilistic predictions;
uncertainty estimation;
design and management of complex hydrosystems. 
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A note on the “enhanced setting” of 
stochastics for hydrology

Classical statistics is based on the prototype of independence and 
repeatability (the “coin-tossing” prototype).
Hydrological and water resource systems (and more generally, real-
world systems) behave differently from the classical prototype. 
Typical stochastic models (particularly the multivariate ones) are 
often not parsimonious themselves. 
Therefore, substantial advancement of stochastics is necessary to 
make models more consistent with:

observed natural behaviours, and
the principle of parsimony.
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Application 1: ME and the marginal distribution of 
hydrometeorological variables
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Points: empirical distributions; lines: maximum entropy 
distributions; see details in Koutsoyiannis (2005a).

The mean µ and 
the standard 
deviation σ are the 
most characteristic 
summary statistics 
of a hydrometeo-
rological variable.
Can µ and σ
determine the 
distribution 
function 
completely? 
Roughly yes, if 
combined with the 
principle of 
maximum entropy.
The shape of the 
distribution (from 
Pareto to 
Gaussian) depends 
on the variation 
σ/µ.
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Application 2: ME and the dependence structure of 
hydrometeorological processes

How many parameters do we need to express the autocorrelation function (ACF, i.e. 
ρj for lag j) of a hydrometeorological process? 
It seems that one parameter may suffice: the ACF is given by entropy maximization 
at a range of scales with a single dependence constraint, a specified ρ1.
The resulting structure is that of the simple scaling stochastic process (SSS 
process), whereas maximization at a single scale would result in a Markovian 
process. The parameter best expressing the ACF is the Hurst coefficient H.
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Application 3: ME and linearity of stochastic 
representations

How many parameters, in addition to those of the marginal distribution and 
autocorrelation, do we need to express the full dependence in time of a 
hydrometeorological process? 
None, because the dependence is linear (if the process is transformed to Gaussian).
Linearity is a result of ME. 
Linearity in stochastic terms (very common) should not be confused with linearity in 
deterministic terms (very rare); the two are fundamentally different.
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Application 4: ME and clustering of rainfall 
occurrence

How many parameters do 
we need to express the 
(intermittent) rainfall 
occurrence process at all 
scales, including its time 
dependence and its 
clustering behaviour (or 
overdispersion)?
It seems that two 
parameters may suffice. 
The solution is given by 
maximizing, for a range of 
scales, the entropy of the 
binary-state rainfall 
process maximized with 
two constraints 
representing the observed 
probabilities dry at two 
specified time scales.
The solution is not 
Markovian neither scaling 
but in between.
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details in Koutsoyiannis (2006).
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Application 5: Parameter parsimonious 
stochastic generation schemes

ARMA-type models become parameter-excessive when they try to reproduce an 
autocorrelation function with a long tail.
The problem is that an ARMA-type model is simultaneously a representation of an 
autocovariance function (γj for lag j) and a stochastic generating scheme for the process 
xi. The ARMA(p, q) process is: 

where aj and bj groups of parameters estimated from data, and vi is white noise.
This is a bad idea and the two could be separated. The autocovariance function γj  could 
be defined using, say, one (as in the SSS case) or two parameters estimated from the 
data (depending on the size of the data set and the prior information).
Then the generating scheme can be independent from the data, e.g. a simple symmetric 
moving average scheme:

where bj are now internal algorithmic coefficients estimated by

whereas sγ(ω) and sb(ω) are the inverse finite Fourier transforms of γj and bj, 
respectively.

xi = ∑
j = –s

s
 b|j| vi + j 

xi = ∑
j = 1

p
 aj xi – j + ∑

j = 0

q
 bj vi – j 

sb(ω) = 2sγ (ω) 

See details in Koutsoyiannis (2000).
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Application 6: Parsimonious multivariate 
stochastic modelling

Multivariate stochastic modelling is needed in multi-site simulation, in simulation of 
single-site cyclostationary processes, in prediction problems with different types of 
predictors, etc. 
For example, we consider the prediction w of the monthly flow one month ahead, 
conditional on a number s of other variables with known values that compose the 
vector z, using the linear model:

w = aT z + v
where a is a vector of parameters (the superscript T denotes the transpose of a 
vector or matrix) and v is the prediction error, assumed independent of z ; for 
simplicity, all elements of z are assumed normalized and with zero mean and unit 
variance.
For the model to take account of both long-range and short-range dependence, a 
possible composition of z may include the following:

The flows of a few previous months of the same year.
All available flow measurements of the same month on previous years.

The model parameters are estimated from (Koutsoyiannis, 2000):
aT = ηT h –1,   Var[v] = 1 – ηT h –1 η = 1 – aT η

where η := Cov[w, z ] and h := Cov[z, z ].
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Application 6 (cont’d)
Both the vector η := Cov[w, z ] and the matrix h := Cov[z, z ] may contain numerous 
items, typically of the order of 103-104 (e.g. for a dimensionality 100, if we have 100 
years of observations: 100 + 100 × 100 = 10 100 items—but reduced due to symmetry).
Traditionally, the items of such covariance matrices and vectors have been estimated 
directly from data; this is totally illogical (100 years of data cannot support the statistical 
estimation of 1000-10 000 parameters).
An alternative approach is to use data to estimate a couple of parameters per month 
and derive all other ‘unestimated’ parameters by maximizing entropy. 
Such entropy maximization may in fact be very simple (suggestive of a generalized 
Cholesky matrix decomposition).
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Example: One 
month ahead 
predictions of Nile 
flow in comparison 
to historical values 
for the validation 
period (Efficiency 
= 91%).
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Application 7: Lumped vs. detailed 
hydrological modelling

A simple lumped representation of a 
complex hydrological system may be 
more skilful than detailed “physically-
based” representations.
As a recent example, we consider the 
hydrological modelling of a karst system 
in Eastern Herzegovina, which involves 
several ground and surface transport 
and storage elements (e.g. poljes).
Three different approaches were 
developed by three independent 
modelling teams: 

A detailed quasi-physically-based 
model (3DNet), performing full 
dynamic flow simulation in a 
network of tunnels and reservoirs 
and in the unsaturated zone. 
A detailed transfer-function-based model (Černi) that represents the dynamics of 
the transformation of precipitation into the karstic inflow, surface water flow and 
flow through porous medium using transfer functions.
A simplistic lumped conceptual model (K-Sim2), with caricature dynamics.
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Application 7 (cont’d)
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See details in Makropoulos et al.
(2008).

Schematic of the simplistic 
K-Sim2 model. Three reservoirs 
represent the different storage 
types, surface (poljes), soil and 
groundwater; these are 
connected through transport 
paths.

The simplest K-Sim2

model gave substantially 
better proximity with 
reality in terms of fitting 
flood hydrographs and 
the historical flow 
frequency curve. 



D. Koutsoyiannis, Seeking parsimony in hydrology 33

Application 8: Parsimonious 
semi-distributed catchment 
modelling

Semi-distributed modelling may be a 
good parsimonious choice when the 
problem involves multiple processes or 
multiple control points.
As a recent example, we consider the 
hydrological modelling of a peculiar 
modified catchment in Greece (Boeoticos
Kephisos river basin, ≈2000 km2) which 
lies mostly on a karst subsurface and has 
no outlet to the sea. 
The problem demands modelling of the 
interaction of surface- and ground-water 
processes, plus human intervention.
Basic choices for parsimony:

Separation of surface and sub-surface 
discretization;
Separation of schematization 
(discretization) and parameterization.

Low permeability, low slope
Low permeability, high slope
High permeability, low slope
High permeability, high slope
Medium permeability, low slope
Medium permeability, high slope

Surface system 
schematization 
(sub-basins, river 
network, springs)

Surface system 
parameterization 
through 6 hydrological 
response units 

Groundwater system 
schematization (36 cells) 
and parameterization (3 types 
of permeability and porosity)

See details in Efstratiadis et al. (2009);
A poster paper at this session this afternoon.

Drainage 
canals

Underground 
losses

Spring

Control site 
(karst spring)

Control site 
(basin outlet)
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Application 7 (cont’d)
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From an earlier 
application in 
Koutsoyiannis 
et al. (2007a).

The approach 
seems to have 
good 
prediction skill, 
as indicated 
from almost a 
century long 
validation.
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Application 9: Using probabilistic 
representations in catchment modelling

Several hydrological models effectively use parsimonious probabilistic representations 
of the geographically distributed system characteristics or state variables—instead of 
deterministic descriptions inflationary in detail.
A nice recent example is an analytical model developed to determine the effects of 
catchment elevation on the flood frequency distribution.
In this, the probability distribution of the annual maximum discharge is analytically 
derived, based on simple assumptions on the stochastic process of precipitation. The 
shape and the moments of this distribution explicitly relate to basin hypsometric curve 
(i.e. frequency distribution of elevation) and to the seasonality of temperatures. 
The model can explain the attenuation of flood quantiles in high-elevation basins by 
describing the freezing level elevation in the catchment, based on the hypsometric 
curve.

See details in Allamano et al. (2009).
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Application 10: Regionalization
Regionalization techniques have been 
very effective in summarizing 
geographically distributed processes 
and mapping their parameters, and 
hence in the inference in ungauged 
basins. 
In a recent example, a simplification 
of the Penman-Montieth method was 
developed for estimating potential 
evapotranspiration at a monthly basis 
from incomplete data.
The simplified equation obtained is 

where PE is the potential 
evapotranspiration in kg m-2 d-1 (or 
mm/d), S0 is the extraterrestrial 
shortwave radiation (calculated), Ta
the air temperature (the only variable 
needed to measure), c = 0.0234°C-1

and a is a parameter varying 
geographically as in the map (in 
kg/kJ).

See details in Tegos et al. (2009);
A poster paper at this session this afternoon.

a

PE
cT

aS
−

=
1

0
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Application 11: From nonsense deterministic to 
parsimonious stochastic approaches in engineering 
Problem: Given a reservoir with storage capacity k and inflows it for time (year) t = 1, 2, 
…, n, find the release d that can be achieved on a year-to-year steady state basis. 

Classical deterministic formulation:
maximize d
s.t. st = st – 1 + it – d – wt

st ≤ k,   st , wt , d ≥ 0,  sn ≥ s0
where st and wt are, respectively, the 
reservoir storage and spill at time t. 
The equality constraint represents the 
water balance in the reservoir whereas 
the non-equality constraints represent 
physical or methodological restrictions. 
This is a typical linear programming 
problem with only one actual control 
variable (the steady state release d), 
but with 2n additional control variables 
(st , wt) and 2n + 1 constraints (not 
including the non-negativity 
constraints).
For example, in a simulation with n = 
1000, the problem includes 2001 
control variables and 2001 constraints.

Alternative stochastic formulation:
maximize L(d) = r(β n)

where β is an acceptable probability of 
failure and r(m) denotes the m th smallest 
value of the series of releases rt (e.g., for n
= 1000 and β = 1%, r(β n) ≡ r(10) is the 
tenth smallest value), determined by:

rt = min(d, st – 1 + it)
wt = max(0, st – 1 + it – d – k)
st = st – 1 + it – rt – wt

This is a nonlinear problem with one 
control variable only and no constraints. 
The formulation is very parsimonious, 
and the solution is reliability-based and 
does not depend on the sequence of 
unknown inflows but only on their 
statistical characteristics.

See details in Koutsoyiannis and 
Economou (2003).
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Application 12: Extension to the management of 
multi-reservoir systems

This example refers to the strategic management of the Athens water supply system 
comprising 4 reservoirs, assuming a 10-year control horizon and trying to maximize 
reliability and minimize cost.
A classical deterministic approach would involve 4 × 12 × 10 = 480 control variables 
and would rely on nonsense assumptions (e.g. perfect foresight of reservoir inflows).

See details in Koutsoyiannis et al. (2003) and Mamassis et al. (2009).

The adopted stochastic 
approach expresses the 
management in terms 
of parameterized rules 
referring to an optimal 
distribution of total 
system storage to 
target storages in each 
reservoir.
This approach assigns 
two control variables 
per reservoir (a total of 
8) and its results can be 
easily implemented and 
monitored in real time. 
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Conclusions
Nature seems to be naturally parsimonious.
It is then natural to try to build parsimonious models for natural 
processes. 
Simple systems can be parsimoniously modelled by deterministic 
approaches.
In complex systems parsimony should necessarily be combined with
stochastic approaches.
Recently mainstream research invested hopes in detailed approaches 
by building complicated models. 
However, comparisons of complicated models with parsimonious 
ones indicate that the latter: 

can facilitate insight and comprehension; 
improve accuracy, efficiency and predictive capacity; and
require fewer data to achieve the same accuracy with the former.

In water engineering and management, parsimonious formulations 
and solutions of problems are more reasonable and rational, and 
easier to apply and monitor in practice.
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